Taste-Masked Flucloxacillin Powder Part 2: Formulation Optimisation Using the Mixture Design Approach and Storage Stability
Abstract
:1. Introduction
2. Results
2.1. Data Analysis for D-Optimal Mixture Experimental Design
2.2. DSC Thermograms
2.3. Particle Size and Morphology
2.4. Storage Stability
2.4.1. Drug Content
2.4.2. DSC
2.5. In Vitro Drug Dissolution Profile
2.6. Swelling of FTM in Dissolution Medium
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Experimental Design
4.2.2. FTM Preparation
4.2.3. Particle Size Reduction and Analysis
4.2.4. Drug Content
4.2.5. Storage Stability
4.2.6. In Vitro Dissolution Profile
4.2.7. Particle Morphology and Swelling of FTM in Dissolution Medium
4.2.8. Analysis by Differential Scanning Calorimetry (DSC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Douroumis, D. Practical approaches of taste masking technologies in oral solid forms. Expert Opin. Drug Deliv. 2007, 4, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Baguley, D.; Lim, E.; Bevan, A.; Pallet, A.; Faust, S.N. Prescribing for children—Taste and palatability affect adherence to antibiotics: A review. Arch. Dis. Child. 2012, 97, 293–297. [Google Scholar] [CrossRef]
- Yoo, O.; Salman, S.; von Ungern-Sternberg, B.S.; Lim, L.Y. Taste-Masked Flucloxacillin Powder Part 1: Optimisation of Fabrication Process Using a Mixture Design Approach. Pharmaceuticals 2023, 16, 1171. [Google Scholar] [CrossRef]
- Philipp, B.; Dautzenberg, H.; Linow, K.-J.; Kötz, J.; Dawydoff, W. Polyelectrolyte complexes—recent developments and open problems. Prog. Polym. Sci. 1989, 14, 91–172. [Google Scholar] [CrossRef]
- Kulkarni, A.D.; Vanjari, Y.H.; Sancheti, K.H.; Patel, H.M.; Belgamwar, V.S.; Surana, S.J.; Pardeshi, C.V. Polyelectrolyte complexes: Mechanisms, critical experimental aspects, and applications. Artif. Cells Nanomed. Biotechnol. 2016, 44, 1615–1625. [Google Scholar] [CrossRef] [PubMed]
- Pogodina, N.V.; Tsvetkov, N.V. Structure and dynamics of the polyelectrolyte complex formation. Macromolecules 1997, 30, 4897–4904. [Google Scholar] [CrossRef]
- Moulis, F.; Durrieu, G.; Lapeyre-Mestre, M. Off-label and unlicensed drug use in children population. Thérapie 2018, 73, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, S.; Wang, S.; Liu, C.; Su, C.; Hageman, M.; Hussain, M.; Haskell, R.; Stefanski, K.; Qian, F. Initial drug dissolution from amorphous solid dispersions controlled by polymer dissolution and drug-polymer interaction. Pharm. Res. 2016, 33, 2445–2458. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, T.; Ogata, T.; Ozeki, T. Preparation of bitter taste-masking granules of lafutidine for orally disintegrating tablets using water-insoluble/soluble polymer combinations. J. Drug Deliv. Sci. Technol. 2016, 32, 38–42. [Google Scholar] [CrossRef]
- Humphrey, S.P.; Williamson, R.T. A review of saliva: Normal composition, flow, and function. J. Prosthet. Dent. 2001, 85, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Chatwal, G.R. Medicinal Chemistry, 2nd ed.; Himalaya Pub House: Mumbai, India, 2010. [Google Scholar]
- Hancock, B.C.; Shamblin, S.L.; Zografi, G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm. Res. 1995, 12, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Hancock, B.C.; Zografi, G. Characteristics and significance of the amorphous state in pharmaceutical systems. J. Pharm. Sci. 1997, 86, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lehmkemper, K.; Kyeremateng, S.O.; Bartels, M.; Degenhardt, M.; Sadowski, G. Physical stability of API/polymer-blend amorphous solid dispersions. Eur. J. Pharm. Biopharm. 2018, 124, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Shamblin, S.L.; Zografi, G. Enthalpy relaxation in binary amorphous mixtures containing sucrose. Pharm. Res. 1998, 15, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- McCrum, N.G.; Buckley, C.; Bucknall, C.B.; Bucknall, C. Principles of Polymer Engineering; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Cohen, M.H.; Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 1959, 31, 1164–1169. [Google Scholar] [CrossRef]
- Guo, J.H. A theoretical and experimental study of additive effects of physical aging and antiplasticization on the water permeability of polymer film coatings. J. Pharm. Sci. 1994, 83, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Evonik Industries. Technical Information: EUDRAGIT® E 100, EUDRAGIT® E PO and EUDRAGIT® E 12,5. Available online: https://www.pharmaexcipients.com/wp-content/uploads/attachments/TI-EUDRAGIT-E-100-E-PO-E-12-5-EN.pdf?t=1508413942 (accessed on 12 July 2021).
- Montaña, J.A.; Perez, L.D.; Baena, Y. A pH-responsive drug delivery matrix from an interpolyelectrolyte complex: Preparation and pharmacotechnical properties. Braz. J. Pharm. Sci. 2018, 54, e17183. [Google Scholar] [CrossRef]
- Bowles, A.; Keane, J.; Ernest, T.; Clapham, D.; Tuleu, C. Specific aspects of gastro-intestinal transit in children for drug delivery design. Int. J. Pharm. 2010, 395, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.; Alaneed, R.; Kressler, J.; Mäder, K. Fatty acid-modified poly(glycerol adipate) microparticles for controlled drug delivery. J. Drug Deliv. Sci. Technol. 2021, 61, 102206. [Google Scholar] [CrossRef]
Sample Number | Composition of Components (% w/w) | Measured Response | ||||
---|---|---|---|---|---|---|
%FS | %EE | %PA | %R2 | %R60 | %Ratio@6M | |
1 | 33 | 33 | 33 | 35.2 | 95.2 | 73.5 |
2 | 20 | 30 | 50 | 44.6 | 84.9 | 33.7 |
3 | 33. | 33. | 33 | 41.1 | 100.7 | 50.0 |
4 | 42 | 32 | 27 | 41.3 | 92.6 | 62.1 |
5 | 50 | 30 | 20 | 49.3 | 96.8 | 62.0 |
6 | 50 | 30 | 20 | 59.9 | 102.4 | 63.1 |
7 | 30 | 50 | 20 | 45.3 | 99.4 | 47.8 |
8 | 27 | 42 | 32 | 44.7 | 95.7 | 46.2 |
9 | 20 | 40 | 40 | 38.6 | 89.1 | 9.4 |
10 | 32 | 27 | 42 | 44.5 | 100.4 | 77.2 |
11 | 20 | 50 | 30 | 29.4 | 86.3 | 10.0 |
12 | 30 | 50 | 20 | 43.9 | 95.9 | 56.7 |
13 | 33 | 33 | 33 | 42.0 | 103.2 | 71.5 |
14 | 30 | 50 | 20 | 39.6 | 95.6 | 53.6 |
15 | 50 | 30 | 20 | 53.6 | 99.3 | 53.9 |
16 | 30 | 20 | 50 | 57.9 | 93.1 | 58.9 |
17 | 20 | 30 | 50 | 44.9 | 87.3 | 37.8 |
18 | 20 | 50 | 30 | 36.2 | 87.5 | 9.1 |
19 | 50 | 20 | 30 | 65.9 | 104.4 | 58.6 |
20 | 30 | 20 | 50 | 57.9 | 94.7 | 73.2 |
21 | 40 | 20 | 40 | 48.8 | 103.5 | 74.7 |
22 | 50 | 20 | 30 | 74.8 | 100.1 | 66.6 |
Coefficient Estimate | 95% CI | |
---|---|---|
%R2 | ||
A | 110.9 | 91.9–129.9 |
B | −5.4 | −38.6–27.9 |
C | 86.5 | 66.3–106.7 |
AB | −22.9 | −83.4–37.6 |
AC | −186.6 | −271.8–−101.4 |
BC | −7.5 | −60.7–45.6 |
AB(A-B) | −250.7 | −381.2–−120.2 |
BC(B-C) | 177.1 | 45.4–308.9 |
%R60 | ||
A | 95.3 | 87.3–103.4 |
B | 90.2 | 84.2–96.3 |
C | 84.4 | 78.3–90.5 |
AB | 26.6 | −4.1–57.3 |
AC | 48.5 | 21.3–75.8 |
%Ratio@6M | ||
A | −386.0 | −527.9–−244.2 |
B | −221.5 | −313.7–−129.4 |
C | −45.2 | −131.0–40.6 |
AB | 1462.8 | 1006.2–1919.5 |
AC | 1094.2 | 689.3–1499.1 |
Storage Condition | Duration of Storage (Months) | ||
---|---|---|---|
1 | 3 | 6 | |
Atmospheric RH | 94.5 ± 0.6 | 91.0.5 ± 0.9 | 82.6 ± 0.77 |
Reduced RH | 98.2 ± 1.6 | 96.8 ± 4.8 | 98.6 ± 0.8 |
Sample Number | Percent Weight Fraction of Components | Actual Weight of Components Used | ||||
---|---|---|---|---|---|---|
%FS | %EE | %PA | FS (g) | EE (g) | PA (g) | |
1 | 33 | 33 | 33 | 0.17 | 0.17 | 0.17 |
2 | 20 | 30 | 50 | 0.10 | 0.15 | 0.25 |
3 | 33 | 33 | 33 | 0.17 | 0.17 | 0.17 |
4 | 42 | 32 | 27 | 0.21 | 0.16 | 0.13 |
5 | 50 | 30 | 20 | 0.25 | 0.15 | 0.10 |
6 | 50 | 30 | 20 | 0.25 | 0.15 | 0.10 |
7 | 30 | 50 | 20 | 0.15 | 0.25 | 0.10 |
8 | 27 | 42 | 32 | 0.13 | 0.21 | 0.16 |
9 | 20 | 40 | 40 | 0.10 | 0.20 | 0.20 |
10 | 32 | 27 | 42 | 0.16 | 0.13 | 0.21 |
11 | 20 | 50 | 30 | 0.10 | 0.25 | 0.15 |
12 | 30 | 50 | 20 | 0.15 | 0.25 | 0.10 |
13 | 33 | 33 | 33 | 0.17 | 0.17 | 0.17 |
14 | 30 | 50 | 20 | 0.15 | 0.25 | 0.10 |
15 | 50 | 30 | 20 | 0.25 | 0.15 | 0.10 |
16 | 30 | 20 | 50 | 0.15 | 0.10 | 0.25 |
17 | 20 | 30 | 50 | 0.10 | 0.15 | 0.25 |
18 | 20 | 50 | 30 | 0.10 | 0.25 | 0.15 |
19 | 50 | 20 | 30 | 0.25 | 0.10 | 0.15 |
20 | 30 | 20 | 50 | 0.15 | 0.10 | 0.25 |
21 | 40 | 20 | 40 | 0.20 | 0.10 | 0.20 |
22 | 50 | 20 | 30 | 0.25 | 0.10 | 0.15 |
Samples | Purpose | Storage Condition | Time Points for Drug Content Analysis |
---|---|---|---|
FTM of all model points in the D-optimal design space | To measure model response, %Ratio@6M | Ambient temperature, relative humidity (RH) 32 to 79% | 0 and 6 months |
FTM-MCR and FTM-ECR | Storage stability at ambient conditions | Ambient temperature, RH 32 to 79% | 0, 0.5, 1, 3 and 6 months |
FTM-MCR and FTM-ECR | Accelerated stability study | 40 ± 5 °C, RH 44 to 52% | 0, 0.5 and 1 month |
FTM-ECR | Storage stability at reduced RH | Ambient temperature, reduced RH (23%) | 0, 3, 6, 9 and 12 months |
FTM-ECR | Effects of RH on stability | Ambient temperature, reduced RH (23%) for 9 months, then transferred to ambient temperature, RH 57 to 79% | 9 months at ambient temperature and reduced RH, and 7 and 14 days at ambient temperature, RH 57 to 79% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, O.; Salman, S.; von Ungern-Sternberg, B.S.; Lim, L.Y. Taste-Masked Flucloxacillin Powder Part 2: Formulation Optimisation Using the Mixture Design Approach and Storage Stability. Pharmaceuticals 2023, 16, 1179. https://doi.org/10.3390/ph16081179
Yoo O, Salman S, von Ungern-Sternberg BS, Lim LY. Taste-Masked Flucloxacillin Powder Part 2: Formulation Optimisation Using the Mixture Design Approach and Storage Stability. Pharmaceuticals. 2023; 16(8):1179. https://doi.org/10.3390/ph16081179
Chicago/Turabian StyleYoo, Okhee, Sam Salman, Britta S. von Ungern-Sternberg, and Lee Yong Lim. 2023. "Taste-Masked Flucloxacillin Powder Part 2: Formulation Optimisation Using the Mixture Design Approach and Storage Stability" Pharmaceuticals 16, no. 8: 1179. https://doi.org/10.3390/ph16081179
APA StyleYoo, O., Salman, S., von Ungern-Sternberg, B. S., & Lim, L. Y. (2023). Taste-Masked Flucloxacillin Powder Part 2: Formulation Optimisation Using the Mixture Design Approach and Storage Stability. Pharmaceuticals, 16(8), 1179. https://doi.org/10.3390/ph16081179