Microbiome and Prostate Cancer: Emerging Diagnostic and Therapeutic Opportunities
Abstract
:1. Introduction
2. Evidence Acquisition
3. Direct Microbiome in Prostate Cancer
3.1. Urinary Microbiome and Prostate Cancer
3.2. Recent Studies of the Urinary Microbiome in Prostate Cancer
3.3. Potential Pharmaceutical Applications of Urinary Microbes and Future Direction
3.4. Limitations to Urinary Microbiome Use in Prostate Cancer Research
4. Indirect Microbiome in Prostate Cancer
4.1. Gut Microbiome and Prostate Cancer
4.2. Recent Studies on Gut Microbiome Involvement in Prostate Cancer
4.3. Recent Studies on Gut Microbiome Involvement in Prostate Cancer Treatment
Authors | Published Year, Reference | Study Design | Groups (n) | Materials | Method | Main Pathogens Found |
---|---|---|---|---|---|---|
Liss et al. | 2018, [63] | Prostate biopsy | PCa (64) vs. non-PCa (41) | Rectal swabs | 16S rRNA amplicon sequencing | High in PCa: Bacteroides Streptococcus |
Golombos et al. | 2018, [64] | Prostate biopsy | PCa (20) vs. non-PCa (8) | Stool samples before | 16S rDNA amplicon sequencing | High in PCa: Bacteroides massiliensis, Controls: Faecalibacterium prausnitzii, Eubacterium rectalie |
Sfanos et al. | 2018, [75] | PCa vs. Control | NoMeds (16) vs. ADT (5) vs. AA | Rectal swabs | 16S rDNA amplicon sequencing | High in ADT: Akkermansia muciniphila, Ruminococcaceae spp., Lachnospiraceae spp., AA: Brevibacteriaceae (low), Erysipelorichaceae (low), Streptococcaceae (low) |
Alanee et al. | 2019, [24] | Prostate biopsy | PCa (30) vs. non-PCa (16) | Rectal swabs | 16S rRNA amplicon sequencing | High in PCa: Bacteroides |
Daisley et al. | 2020, [76] | PCa vs. Control | ADT (21) vs. ADT + AA (14) vs. control (33) | Stool samples | 16S rRNA amplicon sequencing | ADT: Corynebacterium (low) High in ADT + AA: Akkermansia |
Liu et al. | 2020, [77] | PCa | HSPC (21) vs. CRPC (21) | Stool samples | 16S rRNA amplicon sequencing | High in CRPC: Phascolarctobacterium and Ruminococcus |
Matsushita et al. | 2021, [65] | Prostate biopsy | PCa (30) vs. non-PCa (16) | Rectal swabs | 16S rRNA amplicon sequencing | High in PCa: Rikenellaceae, Alistipes, and Lachnospira |
Pernigoni et al. | 2021, [78] | PCa | HSPC (19) vs. CRPC (55) | Rectal swabs | 16S rDNA amplicon sequencing | High in HSPC: Prevotella stercorea High in CRPC: Ruminococcus spp., Bacteroides spp. |
4.4. Potential Therapeutic Application of the Gut Microbiome
4.5. Emerging Insights and Future Directions of the Gut Microbiome in Prostate Cancer Research
5. Limitations of the Studies
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gandaglia, G.; Leni, R.; Bray, F.; Fleshner, N.; Freedland, S.J.; Kibel, A.; Stattin, P.; Van Poppel, H.; La Vecchia, C. Epidemiology and prevention of prostate cancer. Eur. Urol. Oncol. 2021, 4, 877–892. [Google Scholar] [CrossRef] [PubMed]
- Hjelmborg, J.B.; Scheike, T.; Holst, K.; Skytthe, A.; Penney, K.L.; Graff, R.E.; Pukkala, E.; Christensen, K.; Adami, H.O.; Holm, N.V.; et al. The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2303–2310. [Google Scholar] [CrossRef] [PubMed]
- Plym, A.; Penney, K.L.; Kalia, S.; Kraft, P.; Conti, D.V.; Haiman, C.; Mucci, L.A.; Kibel, A.S. Evaluation of a multiethnic polygenic risk score model for prostate cancer. J. Natl. Cancer Inst. 2021, 114, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.M.; Mucci, L.A. Diet and lifestyle in prostate cancer. Adv. Exp. Med. Biol. 2019, 1210, 1–27. [Google Scholar] [CrossRef]
- Benke, I.N.; Leitzmann, M.F.; Behrens, G.; Schmid, D. Physical activity in relation to risk of prostate cancer: A systematic review and meta-analysis. Ann. Oncol. 2018, 29, 1154–1179. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jacobs, E.J.; Newton, C.C.; McCullough, M.L. Lycopene, tomato products and prostate cancer-specific mortality among men diagnosed with nonmetastatic prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Int. J. Cancer 2016, 138, 2846–2855. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, K.M.; Wheeler, D.C.; Mucci, L.A. Fish consumption and prostate cancer risk: A review and meta-analysis. Am. J. Clin. Nutr. 2010, 92, 1223–1233. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I.J.N. The human microbiome project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Bloom, D.A.; McGuire, E.J.; Lapides, J.o.u. A brief history of urethral catheterization. J. Urol. 1994, 151, 317–325. [Google Scholar] [CrossRef]
- Aragón, I.M.; Herrera-Imbroda, B.; Queipo-Ortuño, M.I.; Castillo, E.; Del Moral, J.S.-G.; Gómez-Millán, J.; Yucel, G.; Lara, M.F. The urinary tract microbiome in health and disease. Eur. Urol. Focus 2018, 4, 128–138. [Google Scholar] [CrossRef]
- Yu, S.H.; Jung, S.I. The potential role of urinary microbiome in benign prostate hyperplasia/lower urinary tract symptoms. Diagnostics 2022, 12, 1862. [Google Scholar] [CrossRef]
- Sfanos, K.S.; Yegnasubramanian, S.; Nelson, W.G.; De Marzo, A.M. The inflammatory microenvironment and microbiome in prostate cancer development. Nat. Rev. Urol. 2018, 15, 11–24. [Google Scholar] [CrossRef]
- Porter, C.M.; Shrestha, E.; Peiffer, L.B.; Sfanos, K.S. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis. 2018, 21, 345–354. [Google Scholar] [CrossRef]
- Sfanos, K.S.; De Marzo, A.M. Prostate cancer and inflammation: The evidence. Histopathology 2012, 60, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Nelson, D.E.; Toh, E.; Diao, L.; Gao, X.; Fortenberry, J.D.; Van der Pol, B. The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS ONE 2011, 6, e19709. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.E.; Dong, Q.; Van der Pol, B.; Toh, E.; Fan, B.; Katz, B.P.; Mi, D.; Rong, R.; Weinstock, G.M.; Sodergren, E.; et al. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS ONE 2012, 7, e36298. [Google Scholar] [CrossRef]
- Sfanos, K.S.; Sauvageot, J.; Fedor, H.L.; Dick, J.D.; De Marzo, A.M.; Isaacs, W.B. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 2008, 68, 306–320. [Google Scholar] [CrossRef] [PubMed]
- Yow, M.A.; Tabrizi, S.N.; Severi, G.; Bolton, D.M.; Pedersen, J.; Giles, G.G.; Southey, M.C. Characterisation of microbial communities within aggressive prostate cancer tissues. Infect. Agent. Cancer 2017, 12, 4. [Google Scholar] [CrossRef]
- Krieger, J.N.; Riley, D.E.; Vesella, R.L.; Miner, D.C.; Ross, S.O.; Lange, P.H. Bacterial dna sequences in prostate tissue from patients with prostate cancer and chronic prostatitis. J. Urol. 2000, 164, 1221–1228. [Google Scholar] [CrossRef]
- Jayalath, S.; Magana-Arachchi, D. Dysbiosis of the human urinary microbiome and its association to diseases affecting the urinary system. Indian. J. Microbiol. 2022, 62, 153–166. [Google Scholar] [CrossRef]
- Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017, 17, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Meng, H.; Zhou, F.; Ni, X.; Shen, S.; Das, U.N. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch. Med. Sci. 2015, 11, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, E.; White, J.R.; Yu, S.H.; Kulac, I.; Ertunc, O.; De Marzo, A.M.; Yegnasubramanian, S.; Mangold, L.A.; Partin, A.W.; Sfanos, K.S. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J. Urol. 2018, 199, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Alanee, S.; El-Zawahry, A.; Dynda, D.; Dabaja, A.; McVary, K.; Karr, M.; Braundmeier-Fleming, A. A prospective study to examine the association of the urinary and fecal microbiota with prostate cancer diagnosis after transrectal biopsy of the prostate using 16sRNA gene analysis. Prostate 2019, 79, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Tsai, K.Y.; Wu, D.C.; Wu, W.J.; Wang, J.W.; Juan, Y.S.; Li, C.C.; Liu, C.J.; Lee, H.Y. Exploring the association between gut and urine microbiota and prostatic disease including benign prostatic hyperplasia and prostate cancer using 16S rRNA sequencing. Biomedicines 2022, 10, 2676. [Google Scholar] [CrossRef] [PubMed]
- Hurst, R.; Meader, E.; Gihawi, A.; Rallapalli, G.; Clark, J.; Kay, G.L.; Webb, M.; Manley, K.; Curley, H.; Walker, H.; et al. Microbiomes of urine and the prostate are linked to human prostate cancer risk groups. Eur. Urol. Oncol. 2022, 5, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; MacIntyre, D.A.; Marchesi, J.R.; Lee, Y.S.; Bennett, P.R.; Kyrgiou, M. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: What do we know and where are we going next? Microbiome 2016, 4, 58. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, N.J.; Glenn, W.K.; Sahrudin, A.; Orde, M.M.; Delprado, W.; Lawson, J.S. Human papillomavirus and Epstein Barr virus in prostate cancer: Koilocytes indicate potential oncogenic influences of human papillomavirus in prostate cancer. Prostate 2013, 73, 236–241. [Google Scholar] [CrossRef]
- Ghasemian, E.; Monavari, S.H.; Irajian, G.R.; Jalali Nodoshan, M.R.; Roudsari, R.V.; Yahyapour, Y. Evaluation of human papillomavirus infections in prostatic disease: A cross-sectional study in Iran. Asian Pac. J. Cancer Prev. 2013, 14, 3305–3308. [Google Scholar] [CrossRef]
- Huang, L.; Wu, M.G.; He, J.; Wei, Z.S.; Lü, W.X.; Song, X.J.; Zhang, Y.; Wu, S.X.; Yin, Y.L.; Fan, Y.Y. Correlation of high-risk HPV 16/18 infections with prostate cancer. Zhonghua Nan Ke Xue 2016, 22, 501–505. [Google Scholar]
- Atashafrooz, F.; Rokhbakhsh-Zamin, F. Frequency and type distribution of human papilloma virus in patients with prostate cancer, Kerman, Southeast of Iran. Asian Pac. J. Cancer Prev. 2016, 17, 3953–3958. [Google Scholar] [PubMed]
- Medel-Flores, O.; Valenzuela-Rodríguez, V.A.; Ocadiz-Delgado, R.; Castro-Muñoz, L.J.; Hernández-Leyva, S.; Lara-Hernández, G.; Silva-Escobedo, J.G.; Vidal, P.G.; Sánchez-Monroy, V. Association between HPV infection and prostate cancer in a Mexican population. Genet. Mol. Biol. 2018, 41, 781–789. [Google Scholar] [CrossRef]
- Dávila-Rodríguez, M.I.; Ignacio Morales, C.V.; Aragón Tovar, A.R.; Olache Jimenez, D.; Castelán Maldonado, E.; Lara Miranda, S.; Cortés Gutiérrez, E.I. Human papilloma virus detection by INNOLiPA HPV in prostate tissue from men of northeast mexico. Asian Pac. J. Cancer Prev. 2016, 17, 4863–4865. [Google Scholar] [CrossRef] [PubMed]
- Michopoulou, V.; Derdas, S.P.; Symvoulakis, E.; Mourmouras, N.; Nomikos, A.; Delakas, D.; Sourvinos, G.; Spandidos, D.A. Detection of human papillomavirus (HPV) DNA prevalence and p53 codon 72 (Arg72Pro) polymorphism in prostate cancer in a Greek group of patients. Tumour Biol. 2014, 35, 12765–12773. [Google Scholar] [CrossRef]
- Chen, A.C.; Waterboer, T.; Keleher, A.; Morrison, B.; Jindal, S.; McMillan, D.; Nicol, D.; Gardiner, R.A.; McMillan, N.A.; Antonsson, A. Human papillomavirus in benign prostatic hyperplasia and prostatic adenocarcinoma patients. Pathol. Oncol. Res. 2011, 17, 613–617. [Google Scholar] [CrossRef]
- Tachezy, R.; Hrbacek, J.; Heracek, J.; Salakova, M.; Smahelova, J.; Ludvikova, V.; Svec, A.; Urban, M.; Hamsikova, E. HPV persistence and its oncogenic role in prostate tumors. J. Med. Virol. 2012, 84, 1636–1645. [Google Scholar] [CrossRef] [PubMed]
- Glenn, W.K.; Ngan, C.C.; Amos, T.G.; Edwards, R.J.; Swift, J.; Lutze-Mann, L.; Shang, F.; Whitaker, N.J.; Lawson, J.S. High risk human papilloma viruses (HPVs) are present in benign prostate tissues before development of HPV associated prostate cancer. Infect. Agent. Cancer 2017, 12, 46. [Google Scholar] [CrossRef]
- Schütze, D.M.; Snijders, P.J.; Bosch, L.; Kramer, D.; Meijer, C.J.; Steenbergen, R.D. Differential in vitro immortalization capacity of eleven (probable) [corrected] high-risk human papillomavirus types. J. Virol. 2014, 88, 1714–1724. [Google Scholar] [CrossRef]
- Fatemipour, M.; Nahand, J.S.; Fard Azar, M.E.; Baghi, H.B.; Taghizadieh, M.; Sorayyayi, S.; Hussen, B.M.; Mirzaei, H.; Moghoofei, M.; Bokharaei-Salim, F. Human papillomavirus and prostate cancer: The role of viral expressed proteins in the inhibition of anoikis and induction of metastasis. Microb. Pathog. 2021, 152, 104576. [Google Scholar] [CrossRef]
- Vieira, V.C.; Leonard, B.; White, E.A.; Starrett, G.J.; Temiz, N.A.; Lorenz, L.D.; Lee, D.; Soares, M.A.; Lambert, P.F.; Howley, P.M.; et al. Human papillomavirus E6 triggers upregulation of the antiviral and cancer genomic DNA deaminase APOBEC3B. mBio 2014, 5, e0223414. [Google Scholar] [CrossRef]
- Coghill, A.E.; Engels, E.A.; Schymura, M.J.; Mahale, P.; Shiels, M.S. Risk of Breast, Prostate, and Colorectal Cancer Diagnoses Among HIV-Infected Individuals in the United States. J. Natl. Cancer Inst. 2018, 110, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ramírez, R.U.; Shiels, M.S.; Dubrow, R.; Engels, E.A. Cancer risk in HIV-infected people in the USA from 1996 to 2012: A population-based, registry-linkage study. Lancet HIV 2017, 4, e495–e504. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, X.; Deeb, D.; Zhang, Y.; Shaw, J.; Valeriote, F.A.; Gautam, S.C. Mycotoxin verrucarin A inhibits proliferation and induces apoptosis in prostate cancer cells by inhibiting prosurvival Akt/NF-kB/mTOR signaling. J. Exp. Ther. Oncol. 2016, 11, 251–260. [Google Scholar] [PubMed]
- Gu, X.; Guo, W.; Zhao, Y.; Liu, G.; Wu, J.; Chang, C. Deoxynivalenol-induced cytotoxicity and apoptosis in IPEC-J2 cells through the activation of autophagy by inhibiting PI3K-AKT-mTOR signaling pathway. ACS Omega 2019, 4, 18478–18486. [Google Scholar] [CrossRef]
- Wise, G.J.; Shteynshlyuger, A. How to diagnose and treat fungal infections in chronic prostatitis. Curr. Urol. Rep. 2006, 7, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Schröder, F.; Kattan, M.W. The comparability of models for predicting the risk of a positive prostate biopsy with prostate-specific antigen alone: A systematic review. Eur. Urol. 2008, 54, 274–290. [Google Scholar] [CrossRef]
- Schoots, I.G.; Barentsz, J.O.; Bittencourt, L.K.; Haider, M.A.; Macura, K.J.; Margolis, D.J.; Moore, C.M.; Oto, A.; Panebianco, V.; Siddiqui, M.M.; et al. PI-RADS Committee position on MRI without contrast medium in biopsy-naive men with suspected prostate cancer: Narrative review. Am. J. Roentgenol. 2021, 216, 3–19. [Google Scholar] [CrossRef]
- Seibert, T.M.; Fan, C.C.; Wang, Y.; Zuber, V.; Karunamuni, R.; Parsons, J.K.; Eeles, R.A.; Easton, D.F.; Kote-Jarai, Z.; Al Olama, A.A.; et al. Polygenic hazard score to guide screening for aggressive prostate cancer: Development and validation in large scale cohorts. BMJ 2018, 360, j5757. [Google Scholar] [CrossRef]
- Ly, L.K.; Rowles, J.L., 3rd; Paul, H.M.; Alves, J.M.P.; Yemm, C.; Wolf, P.M.; Devendran, S.; Hudson, M.E.; Morris, D.J.; Erdman, J.W., Jr.; et al. Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. J. Steroid Biochem. Mol. Biol. 2020, 199, 105567. [Google Scholar] [CrossRef]
- Guri, A.; Hurvitz Florenthal, M.; Scheier, E.; Mahlab-Guri, K.; Balla, U. Contamination rates of different methods of urine culture collection in children: A retrospective cohort study. J. Paediatr Child Health 2021, 57, 1281–1287. [Google Scholar] [CrossRef]
- Wolfe, A.J.; Toh, E.; Shibata, N.; Rong, R.; Kenton, K.; FitzGerald, M.; Mueller, E.R.; Schreckenberger, P.; Dong, Q.; Nelson, D.E.; et al. Evidence of uncultivated bacteria in the adult female bladder. J. Clin. Microbiol. 2012, 50, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Breinbjerg, A.; Mohamed, L.; Yde Nielsen, S.; Rittig, S.; Tullus, K.; Kamperis, K. Pitfalls in diagnosing urinary tract infection in children below the age of 2: Suprapubic aspiration vs clean-catch urine sampling. J. Urol. 2021, 206, 1482–1489. [Google Scholar] [CrossRef]
- Perez-Carrasco, V.; Soriano-Lerma, A.; Soriano, M.; Gutiérrez-Fernández, J.; Garcia-Salcedo, J.A. Urinary Microbiome: Yin and Yang of the Urinary Tract. Front. Cell Infect. Microbiol. 2021, 11, 617002. [Google Scholar] [CrossRef] [PubMed]
- Holland, B.; Karr, M.; Delfino, K.; Dynda, D.; El-Zawahry, A.; Braundmeier-Fleming, A.; McVary, K.; Alanee, S. The effect of the urinary and faecal microbiota on lower urinary tract symptoms measured by the International Prostate Symptom Score: Analysis utilising next-generation sequencing. BJU Int. 2020, 125, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Alanee, S.; El-Zawahry, A.; Dynda, D.; McVary, K.; Karr, M.; Braundmeier-Fleming, A. Prospective examination of the changes in the urinary microbiome induced by transrectal biopsy of the prostate using 16S rRNA gene analysis. Prostate Cancer Prostatic Dis. 2019, 22, 446–452. [Google Scholar] [CrossRef]
- Lee, J.; Demissie, K.; Lu, S.E.; Rhoads, G.G. Cancer incidence among Korean-American immigrants in the United States and native Koreans in South Korea. Cancer Control 2007, 14, 78–85. [Google Scholar] [CrossRef]
- Ingman, W.V. The Gut Microbiome: A New Player in Breast Cancer Metastasis. Cancer Res. 2019, 79, 3539–3541. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, G.; You, L.; Yang, J.; Feng, M.; Qiu, J.; Zhao, F.; Liu, Y.; Cao, Z.; Zheng, L.; et al. Role of the microbiome in occurrence, development and treatment of pancreatic cancer. Mol. Cancer 2019, 18, 173. [Google Scholar] [CrossRef]
- Sepich-Poore, G.D.; Zitvogel, L.; Straussman, R.; Hasty, J.; Wargo, J.A.; Knight, R. The microbiome and human cancer. Science 2021, 371, 1331. [Google Scholar] [CrossRef]
- Katongole, P.; Sande, O.J.; Joloba, M.; Reynolds, S.J.; Niyonzima, N. The human microbiome and its link in prostate cancer risk and pathogenesis. Infect. Agent. Cancer 2020, 15, 53. [Google Scholar] [CrossRef]
- Xia, B.; Wang, J.; Zhang, D.; Hu, X. The human microbiome links to prostate cancer risk and treatment. Oncol. Rep. 2023, 49, 123. [Google Scholar] [CrossRef] [PubMed]
- Pernigoni, N.; Guo, C.; Gallagher, L.; Yuan, W.; Colucci, M.; Troiani, M.; Liu, L.; Maraccani, L.; Guccini, I.; Migliorini, D.; et al. The potential role of the microbiota in prostate cancer pathogenesis and treatment. Nat. Rev. Urol. 2023, 20, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Liss, M.A.; White, J.R.; Goros, M.; Gelfond, J.; Leach, R.; Johnson-Pais, T.; Lai, Z.; Rourke, E.; Basler, J.; Ankerst, D.; et al. Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur. Urol. 2018, 74, 575–582. [Google Scholar] [CrossRef]
- Golombos, D.M.; Ayangbesan, A.; O’Malley, P.; Lewicki, P.; Barlow, L.; Barbieri, C.E.; Chan, C.; DuLong, C.; Abu-Ali, G.; Huttenhower, C.; et al. The role of gut microbiome in the pathogenesis of prostate cancer: A prospective, pilot study. Urology 2018, 111, 122–128. [Google Scholar] [CrossRef]
- Matsushita, M.; Fujita, K.; Motooka, D.; Hatano, K.; Fukae, S.; Kawamura, N.; Tomiyama, E.; Hayashi, Y.; Banno, E.; Takao, T.; et al. The gut microbiota associated with high-Gleason prostate cancer. Cancer Sci. 2021, 112, 3125–3135. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Suklabaidya, S.; Das, B.; Raghav, S.K.; Batra, S.K.; Senapati, S. TLR4 activation by lipopolysaccharide confers survival advantage to growth factor deprived prostate cancer cells. Prostate 2015, 75, 1020–1033. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Dash, P.; Minz, A.P.; Satpathi, S.; Samal, A.G.; Behera, P.K.; Satpathi, P.S.; Senapati, S. Lipopolysaccharide (LPS) enhances prostate cancer metastasis potentially through NF-κB activation and recurrent dexamethasone administration fails to suppress it in vivo. Prostate 2019, 79, 168–182. [Google Scholar] [CrossRef]
- Erridge, C.; Attina, T.; Spickett, C.M.; Webb, D.J. A high-fat meal induces low-grade endotoxemia: Evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 2007, 86, 1286–1292. [Google Scholar] [CrossRef]
- Levels, J.H.; Abraham, P.R.; van den Ende, A.; van Deventer, S.J. Distribution and kinetics of lipoprotein-bound endotoxin. Infect. Immun. 2001, 69, 2821–2828. [Google Scholar] [CrossRef]
- De Santis, M.; Saad, F. Practical guidance on the role of corticosteroids in the treatment of metastatic castration-resistant prostate cancer. Urology 2016, 96, 156–164. [Google Scholar] [CrossRef]
- Eberl, G. A new vision of immunity: Homeostasis of the superorganism. Mucosal Immunol. 2010, 3, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013, 342, 967–970. [Google Scholar] [CrossRef] [PubMed]
- Spanogiannopoulos, P.; Bess, E.N.; Carmody, R.N.; Turnbaugh, P.J. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 2016, 14, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef] [PubMed]
- Sfanos, K.S.; Markowski, M.C.; Peiffer, L.B.; Ernst, S.E.; White, J.R.; Pienta, K.J.; Antonarakis, E.S.; Ross, A.E. Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis. 2018, 21, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Daisley, B.A.; Chanyi, R.M.; Abdur-Rashid, K.; Al, K.F.; Gibbons, S.; Chmiel, J.A.; Wilcox, H.; Reid, G.; Anderson, A.; Dewar, M.; et al. Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients. Nat. Commun. 2020, 11, 4822. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, H. Compositional differences of gut microbiome in matched hormone-sensitive and castration-resistant prostate cancer. Transl. Androl. Urol. 2020, 9, 1937–1944. [Google Scholar] [CrossRef]
- Pernigoni, N.; Zagato, E.; Calcinotto, A.; Troiani, M.; Mestre, R.P.; Calì, B.; Attanasio, G.; Troisi, J.; Minini, M.; Mosole, S.; et al. Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis. Science 2021, 374, 216–224. [Google Scholar] [CrossRef]
- Neuman, H.; Debelius, J.W.; Knight, R.; Koren, O. Microbial endocrinology: The interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev. 2015, 39, 509–521. [Google Scholar] [CrossRef]
- Kustrimovic, N.; Bombelli, R.; Baci, D.; Mortara, L. Microbiome and Prostate Cancer: A Novel Target for Prevention and Treatment. Int. J. Mol. Sci. 2023, 24, 1511. [Google Scholar] [CrossRef]
- Zhong, W.; Wu, K.; Long, Z.; Zhou, X.; Zhong, C.; Wang, S.; Lai, H.; Guo, Y.; Lv, D.; Lu, J.; et al. Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-κB-IL6-STAT3 axis. Microbiome 2022, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Matsushita, M.; Banno, E.; De Velasco, M.A.; Hatano, K.; Nonomura, N.; Uemura, H. Gut microbiome and prostate cancer. Int. J. Urol. 2022, 29, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Salachan, P.V.; Sørensen, K.D. Dysbiotic microbes and how to find them: A review of microbiome profiling in prostate cancer. J. Exp. Clin. Cancer Res. 2022, 41, 31. [Google Scholar] [CrossRef] [PubMed]
- Garbas, K.; Zapała, P.; Zapała, Ł.; Radziszewski, P. The Role of Microbial Factors in Prostate Cancer Development-An Up-to-Date Review. J. Clin. Med. 2021, 10, 4772. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wu, L.; Zhu, C.; Xie, W.Z.; Hu, H.; Zeng, X.T. A potential therapeutic strategy for prostatic disease by targeting the oral microbiome. Med. Res. Rev. 2021, 41, 1812–1834. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.C.; Gharaibeh, R.Z.; Uronis, J.M.; Perez-Chanona, E.; Sha, W.; Tomkovich, S.; Mühlbauer, M.; Fodor, A.A.; Jobin, C. VSL#3 probiotic modifies mucosal microbial composition but does not reduce colitis-associated colorectal cancer. Sci. Rep. 2013, 3, 2868. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef]
- Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Queen, J.; Shaikh, F.; Sears, C.L. Understanding the mechanisms and translational implications of the microbiome for cancer therapy innovation. Nat. Cancer 2023, 4, 1083–1094. [Google Scholar] [CrossRef]
- Kandalai, S.; Li, H.; Zhang, N.; Peng, H.; Zheng, Q. The human microbiome and cancer: A diagnostic and therapeutic perspective. Cancer Biol. Ther. 2023, 24, 2240084. [Google Scholar] [CrossRef]
- Cullin, N.; Azevedo Antunes, C.; Straussman, R.; Stein-Thoeringer, C.K.; Elinav, E. Microbiome and cancer. Cancer Cell 2021, 39, 1317–1341. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Hu, Y.; Wang, X.; Shen, L.; Liao, X.; Zhu, Y.; Yu, J.; Zhao, F.; Zhou, Y.; Shen, H.; et al. Microbiome in cancer: An exploration of carcinogenesis, immune responses and immunotherapy. Front. Immunol. 2022, 13, 877939. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, A.; Dizaj, S.M.; Chodari, L.; Sunar, S.; Hasanzadeh, A.; Ahmadian, E.; Hasanzadeh, M. The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed. Pharmacother. 2018, 103, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Rebillard, A.; Lefeuvre-Orfila, L.; Gueritat, J.; Cillard, J. Prostate cancer and physical activity: Adaptive response to oxidative stress. Free Radic. Biol. Med. 2013, 60, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, Z.H.; Li, Y.X.; Xu, H.L.; Fang, W.H.; He, F. Targeted Delivery of Nanovaccine to Dendritic Cells via DC-Binding Peptides Induces Potent Antiviral Immunity in vivo. Int. J. Nanomed. 2022, 17, 1593–1608. [Google Scholar] [CrossRef]
- Goldberg, A.A.; Titorenko, V.I.; Beach, A.; Sanderson, J.T. Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells. PeerJ 2013, 1, e122. [Google Scholar] [CrossRef]
- Jaye, K.; Li, C.G.; Chang, D.; Bhuyan, D.J. The role of key gut microbial metabolites in the development and treatment of cancer. Gut Microbes 2022, 14, 2038865. [Google Scholar] [CrossRef]
Authors | Published Year, Reference | Groups (n) | Urine Sample | Study Design | Main Pathogens Found |
---|---|---|---|---|---|
Haining Yu et al. | 2015, [22] | BPH (21) PCa (13) | Expressed prostatic secretions | PCa vs. BPH | Bacteroidetes, Alphaproteobacteria, Firmicutes, Lachnospiraceae, Propionicimonas, Sphingomonas, Ochrobactrum |
Eva Shrestha et al. | 2018, [23] | Non-PCa (65) PCa (repeat Bx) (5) | Not mentioned | PCa vs. non-PC | Anaerococcus lactolyticus, Varibaculum cambriense, Propionimicrobium lymphophyilum |
Shaheen Alanee et al. | 2019, [24] | non-PCa (16) PCa (14) | First voided urine after prostate massage | PCa vs. non-PCa | Veillonella, Streptococcus, and Bacteroides (increased) Faecalibacterium, Lactobaccili, and Actinetobacter (decreased) |
Kai-Yen Tsai et al. | 2022, [25] | BPH (77) nmPCa (59) Control (36) | Mid-term voided urine | PCa vs Control PCa vs BPH | Faecalibacterium, Staphylococcus, Ruminococcaceaeu_UCG_002, Neisseria, Agathobacter, Alcaligenes, Pseudomonas, Lactobacillus, Akkermansia, Cetobacterium |
Rachel Hurst et al. | 2022, [26] | PCa w/u (300) Hematuria (18) | First voided urine after DRE | PCa vs. non-PCa (Risk/Prognosis) | Fenollaria, Fenollaria, Peptoniphilus, Prophyromonas, Anaerococcus, and Fusobacterium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.J.; Park, M.; Choi, A.; Yoo, S. Microbiome and Prostate Cancer: Emerging Diagnostic and Therapeutic Opportunities. Pharmaceuticals 2024, 17, 112. https://doi.org/10.3390/ph17010112
Kim SJ, Park M, Choi A, Yoo S. Microbiome and Prostate Cancer: Emerging Diagnostic and Therapeutic Opportunities. Pharmaceuticals. 2024; 17(1):112. https://doi.org/10.3390/ph17010112
Chicago/Turabian StyleKim, Sung Jin, Myungchan Park, Ahnryul Choi, and Sangjun Yoo. 2024. "Microbiome and Prostate Cancer: Emerging Diagnostic and Therapeutic Opportunities" Pharmaceuticals 17, no. 1: 112. https://doi.org/10.3390/ph17010112
APA StyleKim, S. J., Park, M., Choi, A., & Yoo, S. (2024). Microbiome and Prostate Cancer: Emerging Diagnostic and Therapeutic Opportunities. Pharmaceuticals, 17(1), 112. https://doi.org/10.3390/ph17010112