A New LC-MS/MS-Based Method for the Simultaneous Detection of α-Tocopherol and Its Long-Chain Metabolites in Plasma Samples Using Stable Isotope Dilution Analysis
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Work Up Procedure for Human Serum and Chromatographic Separation of Analytes
2.3. Suitability of Stable Isotope Labeled Standards (ILSs)
2.4. Method Validation
2.5. MSn for Simultaneous Metabolite and Tocopherol Quantification
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Synthesis and Purification of Deuterated Standards
4.3. Quantification of Stable Isotope Labeled Standard Stock Solutions
4.4. Plasma Sample Preparation and Isotope Dilution Method
4.5. Liquid Chromatography with Fluorescence Detection
4.6. Liquid Chromatography with Mass Spectroscopy
4.7. Method Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Traber, M.G.; Cross, C.E. Alpha-Tocopherol from People to Plants Is an Essential Cog in the Metabolic Machinery. Antioxid. Redox Signal. 2023, 38, 775–791. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.; Leist, M.; Petrzika, M.; Gassmann, B.; Brigelius-Flohé, R. Novel urinary metabolite of alpha-tocopherol, 2,5,7,8-tetramethyl-2(2′-carboxyethyl)-6-hydroxychroman, as an indicator of an adequate vitamin E supply? Am. J. Clin. Nutr. 1995, 62, 1527S–1534S. [Google Scholar] [CrossRef] [PubMed]
- Ciffolilli, S.; Wallert, M.; Bartolini, D.; Krauth, V.; Werz, O.; Piroddi, M.; Sebastiani, B.; Torquato, P.; Lorkowski, S.; Birringer, M.; et al. Human serum determination and in vitro anti-inflammatory activity of the vitamin E metabolite α-(13′-hydroxy)-6-hydroxychroman. Free Radic. Biol. Med. 2015, 89, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Lee, M.-J.; Cheung, C.; Ju, J.-H.; Chen, Y.-K.; Liu, B.; Hu, L.-Q.; Yang, C.S. Analysis of multiple metabolites of tocopherols and tocotrienols in mice and humans. J. Agric. Food Chem. 2010, 58, 4844–4852. [Google Scholar] [CrossRef] [PubMed]
- Wallert, M.; Mosig, S.; Rennert, K.; Funke, H.; Ristow, M.; Pellegrino, R.M.; Cruciani, G.; Galli, F.; Lorkowski, S.; Birringer, M. Long-chain metabolites of α-tocopherol occur in human serum and inhibit macrophage foam cell formation in vitro. Free Radic. Biol. Med. 2014, 68, 43–51. [Google Scholar] [CrossRef]
- Giusepponi, D.; Torquato, P.; Bartolini, D.; Piroddi, M.; Birringer, M.; Lorkowski, S.; Libetta, C.; Cruciani, G.; Moretti, S.; Saluti, G.; et al. Determination of tocopherols and their metabolites by liquid-chromatography coupled with tandem mass spectrometry in human plasma and serum. Talanta 2017, 170, 552–561. [Google Scholar] [CrossRef]
- Giusepponi, D.; Galarini, R.; Barola, C.; Torquato, P.; Bartolini, D.; Moretti, S.; Saluti, G.; Gioiello, A.; Libetta, C.; Galli, F. LC-MS/MS assay for the simultaneous determination of tocopherols, polyunsaturated fatty acids and their metabolites in human plasma and serum. Free Radic. Biol. Med. 2019, 144, 134–143. [Google Scholar] [CrossRef]
- Bartolini, D.; Marinelli, R.; Giusepponi, D.; Galarini, R.; Barola, C.; Stabile, A.M.; Sebastiani, B.; Paoletti, F.; Betti, M.; Rende, M.; et al. Alpha-Tocopherol Metabolites (the Vitamin E Metabolome) and Their Interindividual Variability during Supplementation. Antioxidants 2021, 10, 173. [Google Scholar] [CrossRef]
- Wallert, M.; Schmölz, L.; Koeberle, A.; Krauth, V.; Glei, M.; Galli, F.; Werz, O.; Birringer, M.; Lorkowski, S. α-Tocopherol long-chain metabolite α-13′-COOH affects the inflammatory response of lipopolysaccharide-activated murine RAW264.7 macrophages. Mol. Nutr. Food Res. 2015, 59, 1524–1534. [Google Scholar] [CrossRef]
- Hoff, J.; Karl, B.; Gerstmeier, J.; Beekmann, U.; Schmölz, L.; Börner, F.; Kralisch, D.; Bauer, M.; Werz, O.; Fischer, D.; et al. Controlled Release of the α-Tocopherol-Derived Metabolite α-13′-Carboxychromanol from Bacterial Nanocellulose Wound Cover Improves Wound Healing. Nanomaterials 2021, 11, 1939. [Google Scholar] [CrossRef]
- Riedl, R.; Wallert, M.; Lorkowski, S.; Wiegand, C. Effects of Histamine and the α-Tocopherol Metabolite α-13′-COOH in an Atopic Dermatitis Full-Thickness Skin Model. Molecules 2023, 28, 440. [Google Scholar] [CrossRef] [PubMed]
- Pein, H.; Ville, A.; Pace, S.; Temml, V.; Garscha, U.; Raasch, M.; Alsabil, K.; Viault, G.; Dinh, C.-P.; Guilet, D.; et al. Endogenous metabolites of vitamin E limit inflammation by targeting 5-lipoxygenase. Nat. Commun. 2018, 9, 3834. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jiang, F.; Zhu, J.; Zhong, G.; Huang, M. Development, Validation, and Application of a New Method To Correct the Nonlinearity Problem in LC-MS/MS Quantification Using Stable Isotope-Labeled Internal Standards. Anal. Chem. 2019, 91, 9616–9622. [Google Scholar] [CrossRef] [PubMed]
- FDA/CDER. Bioanalytical Method Validation Guidance for Industry; Food and Drug Administration: Rockville, MD, USA, 2018. [Google Scholar]
- Grebenstein, N.; Frank, J. Rapid baseline-separation of all eight tocopherols and tocotrienols by reversed-phase liquid-chromatography with a solid-core pentafluorophenyl column and their sensitive quantification in plasma and liver. J. Chromatogr. A 2012, 1243, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Schoenmakers, I.; Jones, K.; Koulman, A.; Prentice, A.; Volmer, D.A. Quantitative determination of vitamin D metabolites in plasma using UHPLC-MS/MS. Anal. Bioanal. Chem. 2010, 398, 779–789. [Google Scholar] [CrossRef]
- Antignac, J.-P.; de Wasch, K.; Monteau, F.; de Brabander, H.; Andre, F.; Le Bizec, B. The ion suppression phenomenon in liquid chromatography–mass spectrometry and its consequences in the field of residue analysis. Anal. Chim. Acta 2005, 529, 129–136. [Google Scholar] [CrossRef]
- Wang, S.; Cyronak, M.; Yang, E. Does a stable isotopically labeled internal standard always correct analyte response? A matrix effect study on a LC/MS/MS method for the determination of carvedilol enantiomers in human plasma. J. Pharm. Biomed. Anal. 2007, 43, 701–707. [Google Scholar] [CrossRef]
- Ciccimaro, E.; Blair, I.A. Stable-isotope dilution LC–MS for quantitative biomarker analysis. Bioanalysis 2010, 2, 311–341. [Google Scholar] [CrossRef]
- Bardowell, S.A.; Duan, F.; Manor, D.; Swanson, J.E.; Parker, R.S. Disruption of mouse cytochrome p450 4f14 (Cyp4f14 gene) causes severe perturbations in vitamin E metabolism. J. Biol. Chem. 2012, 287, 26077–26086. [Google Scholar] [CrossRef]
- Birringer, M.; Siems, K.; Maxones, A.; Frank, J.; Lorkowski, S. Natural 6-hydroxy-chromanols and -chromenols: Structural diversity, biosynthetic pathways and health implications. RSC Adv. 2018, 8, 4803–4841. [Google Scholar] [CrossRef]
- Mazzini, F.; Betti, M.; Netscher, T.; Galli, F.; Salvadori, P. Configuration of the vitamin E analogue garcinoic acid extracted from Garcinia Kola seeds. Chirality 2009, 21, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Wallert, M.; Bauer, J.; Kluge, S.; Schmölz, L.; Chen, Y.-C.; Ziegler, M.; Searle, A.K.; Maxones, A.; Schubert, M.; Thürmer, M.; et al. The vitamin E derivative garcinoic acid from Garcinia kola nut seeds attenuates the inflammatory response. Redox Biol. 2019, 24, 101166. [Google Scholar] [CrossRef] [PubMed]
- Ingold, K.K.; Hughes, L.; Slaby, M.; Burton, G.G. Synthesis of 2 R, 4′ R, 8′ R-α-tocopherols selectively labelled with deuterium. J. Label. Compd. Radiopharm. 1987, 24, 817–831. [Google Scholar] [CrossRef]
- O’Byrne, S.M.; Blaner, W.S. Retinol and retinyl esters: Biochemistry and physiology. J. Lipid Res. 2013, 54, 1731–1743. [Google Scholar] [CrossRef]
Compounds | Retention Time (min) | Ion Species | Qualifier | Quantifier | LOD/LOQ a nmol/L | Accuracy Recovery (rel.) | Precision RSDr |
---|---|---|---|---|---|---|---|
α-13′-COOH | 10.4 | [M+H]+ | 461.30 | 165.00/189.00/414.00 | 5.3/17.8 | ||
d6-α-13′-COOH | 10.4 | [M+H]+ | 467.30 | 171.00/194.00/420.00 | 89% | 2.0% | |
α-13′-OH | 11.0 | [M+H]+ | 447.30 | 165.00/429.40 | 3.4/11.2 | ||
d6-α-13′-OH | 11.0 | [M+H]+ | 453.30 | 171.00/435.40 | 94% | 6.1% | |
α-TOH | 14.8 | [M+H]+ | 431.30 431.30 → 165.00 | 165.00 137.00 | 3490/11,635 | ||
d6-α-TOH | 14.8 | [M+H]+ | 437.30 437.30 → 171.00 | 171.00 143.00 | 88% | 12.6% |
Study | Study Parameters a | Metabolites 13′-COOH [nm/L] | M1 + M2 | Σ b | 13′-OH [nmol/L] | M3 | Σ | TOH [µmol/L] |
---|---|---|---|---|---|---|---|---|
Bartolini_2021 | 300 µL plasma endogenous (n = 17) | 3.5 ± 1.8 | 35.1 ± 20.4 + 11.5 ± 6.3 | 50 | 2.6 ± 2.1 | 3.0 ± 0.9 | 5.6 | 23.5 ± 3.5 |
after supplementation (n = 17) | 5.8 ± 1.4 | 549.2 ± 329.6 + 102.3 ± 76.8 | 657 | 18.8 ± 8.7 | 5.9 ± 2.8 | 24.7 | 53.2 ± 10.5 | |
Guisepponi_2019 | 300 µL plasma endogenous (n = 13) | 1.8 ± 1.0 | 47.8 ± 36.6 + 7.4 ± 7.5 | 57.0 ± 33.6 | 3.0 ± 1.6 | 1.8 ± 1.5 | 4.8 ± 1.3 | 31± 6 |
NIST plasma (SRM 1950) | 1.2 ± 0.4 | - | - | 3.2 ± 0.5 | - | - | 16.9 ± 0.2 | |
Guisepponi_2017 | 500 µL plasma or serum endogenous (n = 2) | 1.1–1.3 | 21–24 + 3.7–4.8 | 27–29 | 0.7–1.0 | 1.1–0.7 | 1.7–2.8 | 22.2–23.7 |
after supplementation (n = 2) | 2.4–2.9 | 228–295 + 33–43 | 273–331 | 4.0–12.0 | 3.6–10 | 14–16 | 38.9–54.2 | |
endogenous (n = 6) | 1.8 ± 0.9 | 68 ± 40 + 5.3 ± 2.9 | 75 ± 41 | 29.6 ± 5.9 | ||||
Ciffolilli_2015 | 1000 µL serum endogenous (n = 2) | n.d. | - | - | n.d. | 24.2–31.5 | ||
after supplementation (n = 2) | - | - | - | 26.5–42.9 | - | - | 51.6–98.5 | |
this study | 700 µL serum endogenous (n = 1) c | - | - | 6.7 ± 0.6 (9%) d | - | - | 9.2 ± 3.53 (38.4%) | 15.7 ± 3.6 (23%) |
after supplementation (n = 1) | - | - | 184.5 ± 21.4 (11.6%) | - | - | 104.9 ± 47.6 (45.4%) | 32.2 ± 10.3 (32%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maxones, A.; Beck, E.; Rimbach, G.; Birringer, M. A New LC-MS/MS-Based Method for the Simultaneous Detection of α-Tocopherol and Its Long-Chain Metabolites in Plasma Samples Using Stable Isotope Dilution Analysis. Pharmaceuticals 2024, 17, 1405. https://doi.org/10.3390/ph17111405
Maxones A, Beck E, Rimbach G, Birringer M. A New LC-MS/MS-Based Method for the Simultaneous Detection of α-Tocopherol and Its Long-Chain Metabolites in Plasma Samples Using Stable Isotope Dilution Analysis. Pharmaceuticals. 2024; 17(11):1405. https://doi.org/10.3390/ph17111405
Chicago/Turabian StyleMaxones, Alexander, Eva Beck, Gerald Rimbach, and Marc Birringer. 2024. "A New LC-MS/MS-Based Method for the Simultaneous Detection of α-Tocopherol and Its Long-Chain Metabolites in Plasma Samples Using Stable Isotope Dilution Analysis" Pharmaceuticals 17, no. 11: 1405. https://doi.org/10.3390/ph17111405
APA StyleMaxones, A., Beck, E., Rimbach, G., & Birringer, M. (2024). A New LC-MS/MS-Based Method for the Simultaneous Detection of α-Tocopherol and Its Long-Chain Metabolites in Plasma Samples Using Stable Isotope Dilution Analysis. Pharmaceuticals, 17(11), 1405. https://doi.org/10.3390/ph17111405