Different PSMA Radiopharmaceuticals: A Comparative Study of [18F]F-PSMA-1007, [18F]F-JK-PSMA-7, and [99mTc]Tc-PSMA-I&S in the Skeletal System
Abstract
:1. Introduction
2. Results
2.1. Patient Cohorts
2.2. Comparability of Patient Groups Examined with Different Radioligands
2.3. Strong Correlation Among Maximum, Mean, and Peak SUV Values
2.4. Physiological Radiopharmacutical Uptake Homogeneity with Different Radiotracers in the Skeletal System and in Reference Regions
2.5. Distinct SUV Patterns Revealed by Different Radioligands Across Regions
2.6. Correlation Between Bone Tracer Uptake and Radiation Therapy
2.7. Limitations
3. Discussion
4. Materials and Methods
4.1. Patient Population
- (i)
- primary staging of histologically confirmed high- or intermediate-risk prostate carcinoma prior to radiation therapy or surgery (i.e., PSA (Prostate-Specific Antigen) > 20 ng/mL, Gleason score ≥ 4 + 3 = 7, or clinical stage ≥ T3), or
- (ii)
- restaging related to biochemical recurrence (PSA ≥ 0.2 ng/mL after prostatectomy or ≥2.0 ng/mL above the nadir after radiotherapy).
4.2. Acquisition
4.2.1. PSMA SPECT/CT
4.2.2. PSMA PET/CT
4.3. Imaging Analysis
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kopka, K.; Benešová, M.; Bařinka, C.; Haberkorn, U.; Babich, J. Glu-Ureido-Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers. J. Nucl. Med. 2017, 58 (Suppl. S2), 17S–26S. [Google Scholar] [CrossRef] [PubMed]
- Pillai, M.R.A.; Nanabala, R.; Joy, A.; Sasikumar, A.; Russ Knapp, F.F. Radiolabeled enzyme inhibitors and binding agents targeting PSMA: Effective theranostic tools for imaging and therapy of prostate cancer. Nucl. Med. Biol. 2016, 43, 692–720. [Google Scholar] [CrossRef] [PubMed]
- Jones, W.; Griffiths, K.; Barata, P.C.; Paller, C.J. PSMA Theranostics: Review of the Current Status of PSMA-Targeted Imaging and Radioligand Therapy. Cancers 2020, 12, 1367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jeitner, T.M.; Babich, J.W.; Kelly, J.M. Advances in PSMA theranostics. Transl. Oncol. 2022, 22, 101450. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farolfi, A.; Fendler, W.; Iravani, A.; Haberkorn, U.; Hicks, R.; Herrmann, K.; Walz, J.; Fanti, S. Theranostics for Advanced Prostate Cancer: Current Indications and Future Developments. Eur. Urol. Oncol. 2019, 2, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Robu, S.; Schottelius, M.; Eiber, M.; Maurer, T.; Gschwend, J.; Schwaiger, M.; Wester, H.J. Preclinical Evaluation and First Patient Application of 99mTc-PSMA-I&S for SPECT Imaging and Radioguided Surgery in Prostate Cancer. J. Nucl. Med. 2017, 58, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Seifert, R.; Telli, T.; Opitz, M.; Barbato, F.; Berliner, C.; Nader, M.; Umutlu, L.; Stuschke, M.; Hadaschik, B.; Herrmann, K.; et al. Unspecific 18F-PSMA-1007 Bone Uptake Evaluated Through PSMA-11 PET, Bone Scanning, and MRI Triple Validation in Patients with Biochemical Recurrence of Prostate Cancer. J. Nucl. Med. 2023, 64, 738–743. [Google Scholar] [CrossRef] [PubMed]
- Grünig, H.; Maurer, A.; Thali, Y.; Kovacs, Z.; Strobel, K.; Burger, I.A.; Müller, J. Focal unspecific bone uptake on [18F]-PSMA-1007 PET: A multicenter retrospective evaluation of the distribution, frequency, and quantitative parameters of a potential pitfall in prostate cancer imaging. Eur. J. Nucl. Med. 2021, 48, 4483–4494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arnfield, E.G.; Thomas, P.A.; Roberts, M.J.; Pelecanos, A.M.; Ramsay, S.C.; Lin, C.Y.; Latter, M.J.; Garcia, P.L.; Pattison, D.A. Clinical insignificance of [18F]PSMA-1007 avid non-specific bone lesions: A retrospective evaluation. Eur. J. Nucl. Med. 2021, 48, 4495–4507. [Google Scholar] [CrossRef] [PubMed]
- Ninatti, G.; Pini, C.; Gelardi, F.; Ghezzo, S.; Mapelli, P.; Picchio, M.; Antunovic, L.; Briganti, A.; Montorsi, F.; Landoni, C.; et al. The potential role of osteoporosis in unspecific [18F]PSMA-1007 bone uptake. Eur. J. Nucl. Med. 2023, 51, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Werner, P.; Neumann, C.; Eiber, M.; Wester, H.J.; Schottelius, M. [99cmTc]Tc-PSMA-I&S-SPECT/CT: Experience in prostate cancer imaging in an outpatient center. EJNMMI Res. 2020, 10, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Farkas, I.; Sipka, G.; Bakos, A.; Maráz, A.; Bajory, Z.; Mikó, Z.; Czékus, T.; Urbán, S.; Varga, L.; Pávics, L.; et al. Diagnostic value of [99mTc]Tc-PSMA-I&S-SPECT/CT for the primary staging and restaging of prostate cancer. Ther. Adv. Med. Oncol. 2024, 16, 17588359231221342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmidkonz, C.; Hollweg, C.; Beck, M.; Reinfelder, J.; Goetz, T.I.; Sanders, J.C.; Schmidt, D.; Prante, O.; Bäuerle, T.; Cavallaro, A.; et al. 99mTc-MIP-1404-SPECT/CT for the detection of PSMA-positive lesions in 225 patients with biochemical recurrence of prostate cancer. Prostate 2018, 78, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhu, Y.; Su, H.; Xu, X.; Zhang, Y.; Ye, D.; Hu, S. Relationship between PSA kinetics and Tc-99m HYNIC PSMA SPECT/CT detection rates of biochemical recurrence in patients with prostate cancer after radical prostatectomy. Prostate 2018, 78, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, B.; Khademi, N.; Karamzade-Ziarati, N.; Fard-Esfahani, A.; Emami-Ardekani, A.; Farzanefar, S.; Eftekhari, M.; Beiki, D. 99mTc-PSMA SPECT/CT Versus 68Ga-PSMA PET/CT in the Evaluation of Metastatic Prostate Cancer. Clin. Nucl. Med. 2021, 46, e68–e74. [Google Scholar] [CrossRef] [PubMed]
- Ells, Z.; Ludwig, V.; Weiner, A.; Meyer, C.; Sennung, D.; Carlucci, G.; Farolfi, A.; Czernin, J.; Dahlbom, M.; Reiter, R.; et al. 99mTc-PSMA-I&S radioguided salvage lymphadenectomy for prostate cancer: Preliminary clinical results from a prospective trial. J. Nucl. Med. 2024, 65 (Suppl. S2), 241890. [Google Scholar]
- Fendler, W.P.; Eiber, M.; Beheshti, M.; Bomanji, J.; Calais, J.; Ceci, F.; Cho, S.Y.; Fanti, S.; Giesel, F.L.; Goffin, K.; et al. PSMA PET/CT: Joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur. J. Nucl. Med. 2023, 50, 1466–1486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ceci, F.; Oprea-Lager, D.E.; Emmett, L.; Adam, J.A.; Bomanji, J.; Czernin, J.; Eiber, M.; Haberkorn, U.; Hofman, M.S.; Hope, T.A.; et al. E-PSMA: The EANM standardized reporting guidelines v1.0 for PSMA-PET. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1626–1638. [Google Scholar] [CrossRef] [PubMed]
- Hotta, M.; Gafita, A.; Murthy, V.; Benz, M.R.; Sonni, I.; Burger, I.A.; Eiber, M.; Emmett, L.; Farolfi, A.; Fendler, W.P.; et al. PSMA PET Tumor-to-Salivary Gland Ratio to Predict Response to [177Lu]PSMA Radioligand Therapy: An International Multicenter Retrospective Study. J. Nucl. Med. 2023, 64, 1024–1029. [Google Scholar] [CrossRef] [PubMed]
- Arndt, C.; Bergmann, R.; Striese, F.; Merkel, K.; Máthé, D.; Loureiro, L.R.; Mitwasi, N.; Kegler, A.; Fasslrinner, F.; González Soto, K.E.; et al. Development and Functional Characterization of a Versatile Radio-/Immunotheranostic Tool for Prostate Cancer Management. Cancers 2022, 14, 1996. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cardinale, J.; Schäfer, M.; Benešová, M.; Bauder-Wüst, U.; Leotta, K.; Eder, M.; Neels, O.C.; Haberkorn, U.; Giesel, F.L.; Kopka, K. Preclinical Evaluation of 18F-PSMA-1007.; a New Prostate-Specific Membrane Antigen Ligand for Prostate Cancer Imaging. J. Nucl. Med. 2017, 58, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, J.; Martin, R.; Remde, Y.; Schäfer, M.; Hienzsch, A.; Hübner, S.; Zerges, A.M.; Marx, H.; Hesse, R.; Weber, K.; et al. Procedures for the GMP-Compliant Production and Quality Control of [18F]PSMA-1007: A Next Generation Radiofluorinated Tracer for the Detection of Prostate Cancer. Pharmaceuticals 2017, 10, 77. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Location | Composition | |
---|---|---|
Portion 1 | Extracellular | 707 amino acids |
Portion 2 | Transmembrane | 24 amino acids |
Portion 3 | Intracellular | 19 amino acids |
Variables | Overall | JK-PSMA-7 | PSMA-1007 | PSMA-I&S | |
---|---|---|---|---|---|
Number of patients | 281 | 97 | 90 | 94 | |
Age (median, IQR) (years) | 73 (9) | 73 (6) | 71 (10) | 76 (11) | |
BMI (median, IQR) (kg/m2) | 28.0 (5.5) | 28.1 (5.7) | 28.1 (5.2) | 27.8 (5.1) | |
PSA (median, IQR) (ng/mL) | 2.9 (12.9) | 3.7 (13.0) | 1.7 (9.5) | 4.2 (17.4) | |
Gleason-score (n; %) | ≤6 | 36 (13) | 18 (19) | 7 (8) | 11 (12) |
7 | 84 (30) | 22 (23) | 28 (31) | 34 (36) | |
8–10 | 140 (50) | 48 (49) | 48 (53) | 44 (47) | |
ISUP grade (n, %) | I | 35 (12) | 18 (19) | 7 (8) | 10 (11) |
II | 47 (17) | 13 (13) | 10 (11) | 24 (26) | |
III | 32 (11) | 8 (8) | 17 (19) | 7 (7) | |
IV | 50 (18) | 19 (20) | 18 (20) | 13 (14) | |
V | 89 (32) | 29 (30) | 30 (33) | 30 (32) | |
iPSA (median, IQR) (ng/mL) | 18.4 (41.0) | 16.6 (45.6) | 18.6 (33.3) | 20.4 (42.1) | |
ADT+ (n; %) | 185 (66) | 53 (55) | 42 (47) | 90 (96) | |
Radiation therapy+ (n; %) | 92 (33) | 33 (34) | 37 (41) | 22 (23) |
Region 1 | VOI |
---|---|
parotid gland | iso-count 3D VOI |
blood pool | sphere diameter = 15 mm |
liver | sphere diameter = 30 mm |
right and left femoral bone | sphere diameter = 15 mm |
spleen | sphere diameter = 30 mm |
sacrum | sphere diameter = 15 mm |
lumbar vertebra 1, 4 | sphere diameter = 15 mm |
thoracal vertebra 5, 9 | sphere diameter = 15 mm |
left and right rib 5, 9 | freehand brush tool radius ~ 3 mm |
sternum corpus | on sagittal plane radius ~ 3 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikó, Z.S.; Varga, L.; Farkas, I.; Tóth, G.; Apró, K.; Révész, B.M.; Sipka, G.; Tompa, P.G.; Bakos, A.; Czékus, T.; et al. Different PSMA Radiopharmaceuticals: A Comparative Study of [18F]F-PSMA-1007, [18F]F-JK-PSMA-7, and [99mTc]Tc-PSMA-I&S in the Skeletal System. Pharmaceuticals 2024, 17, 1458. https://doi.org/10.3390/ph17111458
Mikó ZS, Varga L, Farkas I, Tóth G, Apró K, Révész BM, Sipka G, Tompa PG, Bakos A, Czékus T, et al. Different PSMA Radiopharmaceuticals: A Comparative Study of [18F]F-PSMA-1007, [18F]F-JK-PSMA-7, and [99mTc]Tc-PSMA-I&S in the Skeletal System. Pharmaceuticals. 2024; 17(11):1458. https://doi.org/10.3390/ph17111458
Chicago/Turabian StyleMikó, Zsófia Sára, László Varga, István Farkas, Gyula Tóth, Kristóf Apró, Barnabás Márk Révész, Gábor Sipka, Péter Gergő Tompa, Annamária Bakos, Tamás Czékus, and et al. 2024. "Different PSMA Radiopharmaceuticals: A Comparative Study of [18F]F-PSMA-1007, [18F]F-JK-PSMA-7, and [99mTc]Tc-PSMA-I&S in the Skeletal System" Pharmaceuticals 17, no. 11: 1458. https://doi.org/10.3390/ph17111458
APA StyleMikó, Z. S., Varga, L., Farkas, I., Tóth, G., Apró, K., Révész, B. M., Sipka, G., Tompa, P. G., Bakos, A., Czékus, T., Bukva, M., Pávics, L., Varga, L., Maráz, A., & Besenyi, Z. (2024). Different PSMA Radiopharmaceuticals: A Comparative Study of [18F]F-PSMA-1007, [18F]F-JK-PSMA-7, and [99mTc]Tc-PSMA-I&S in the Skeletal System. Pharmaceuticals, 17(11), 1458. https://doi.org/10.3390/ph17111458