Cyclodextrin-Nanosponge-Loaded Cyclo-Oxygenase-2 Inhibitor-Based Topical Gel for Treatment of Psoriatic Arthritis: Formulation Design, Development, and In vitro Evaluations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solubility Efficiency
2.2. Entrapment Efficiency
2.3. Characterization of Lumiracoxib β-Cyclodextrin Nanosponges
2.3.1. FT-IR Studies
2.3.2. DSC Studies
2.3.3. XRD Studies
2.3.4. Particle Size (PS) and Zeta Potential Analysis
2.3.5. Scanning Electron Microscopy
2.4. In vitro Drug Diffusion Studies
2.5. Optimization of Gel
2.6. Checkpoint Analysis of Gel
2.7. Characterization of Topical Gels
2.7.1. pH Determination
2.7.2. Homogeneity
2.7.3. Viscosity
2.7.4. Spreadability Studies
2.7.5. Extrudability
2.7.6. Drug Content
2.7.7. Rheological Studies
2.7.8. In vitro Drug Diffusion Studies
2.8. Mathematical Model Fitting
2.9. Cytotoxicity Profile on L929 and HaCaT Cell Lines
2.10. In vivo Studies
- Skin irritation studies
- b.
- Skin inflammation studies
2.11. Ex vivo Permeation Studies
2.12. Stability Studies
3. Materials and Methods
3.1. Synthesis of β-Cyclodextrin Nanosponges
3.2. Incorporation of Lumiracoxib into Nanosponges
3.3. Solubilization Efficiency
3.4. Entrapment Efficiency (EE)
3.5. Fourier-Transform Infrared (FT-IR) Spectroscopic Analysis
3.6. Differential Scanning Calorimetry (DSC)
3.7. X-Ray Diffraction (XRD)
3.8. Particle Size and Zeta Potential Analysis
3.9. Scanning Electron Microscopy (SEM)
3.10. In vitro Diffusion Studies
3.11. Preparation of Gel
3.12. Experimental Design
3.13. Loading of Lumiracoxib Nanosponges into Topical Gels
3.14. Characterization of Lumiracoxib NS Gel
3.14.1. pH Determination
3.14.2. Homogeneity
3.14.3. Spreadability Test
3.14.4. Extrudability
3.14.5. Rheological Studies
3.14.6. Drug Content
3.14.7. In vitro Drug Diffusion Studies
3.14.8. Cytotoxicity Profile on L929 and HaCaT Cell Lines
3.14.9. In vivo Studies [56,57,58]
- Animal grouping
- b.
- Skin irritation studies
- c.
- Skin inflammation studies
3.14.10. Ex vivo Permeation Studies
3.14.11. Stability Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Armstrong, A.W.; Mehta, M.D.; Schupp, C.W.; Gondo, G.C.; Bell, S.J.; Griffiths, C.E.M. Psoriasis Prevalence in Adults in the United States. JAMA Dermatol. 2021, 157, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Myers, W.A.; Gottlieb, A.B.; Mease, P. Psoriasis and psoriatic arthritis: Clinical features and disease mechanisms. Clin. Dermatol. 2006, 24, 438–447. [Google Scholar] [CrossRef]
- Lowes, M.A.; Bowcock, A.M.; Krueger, J.G. Pathogenesis and therapy of psoriasis. Nature 2007, 445, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Casanova, V.A.; Ventas, B.; Palomo, J.A.; Alcubierre, F.J.H.; Sánchez, L.V.; Martínez, M.R.; Gonzalez-Lopez, J.J. Epidemiology and clinical characteristics of psoriatic arthritis-related uveitis in Madrid, Spain. Int. Ophthalmol. 2022, 43, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Alinaghi, F.; Calov, M.; Kristensen, L.E.; Gladman, D.D.; Coates, L.C.; Jullien, D.; Gottlieb, A.B.; Gisondi, P.; Wu, J.J.; Thyssen, J.P.; et al. Prevalence of psoriatic arthritis in patients with psoriasis: A systematic review and meta-analysis of observational and clinical studies. J. Am. Acad. Dermatol. 2019, 80, 251–265.e19. [Google Scholar] [CrossRef]
- Scotti, L.; Franchi, M.; Marchesoni, A.; Corrao, G. Prevalence and incidence of psoriatic arthritis: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2018, 48, 28–34. [Google Scholar] [CrossRef]
- Qi, F.; Tan, Y.; Yao, A.; Yang, X.; He, Y. Psoriasis to Psoriatic Arthritis: The Application of Proteomics Technologies. Front. Med. 2021, 8, 681172. [Google Scholar] [CrossRef]
- Chandran, V. Genetics of psoriasis and psoriatic arthritis. Indian J. Dermatol. 2010, 55, 151. [Google Scholar] [CrossRef]
- Vlam, K.; Gottlieb, A.; Mease, P. Current Concepts in Psoriatic Arthritis: Pathogenesis and Management. Acta Derm. Venereol. 2014, 94, 627–634. [Google Scholar] [CrossRef]
- Veale, D.J.; Fearon, U. The pathogenesis of psoriatic arthritis. Lancet 2018, 391, 2273–2284. [Google Scholar] [CrossRef]
- Traub, M.; Marshall, K. Psoriasis--pathophysiology, conventional, and alternative approaches to treatment. Altern. Med. Rev. 2007, 12, 319–330. [Google Scholar] [PubMed]
- Suresh, K.; Suresh, P.K.; Singh, P.; Saraf, S. Novel topical drug carriers as a tool for treatment of psoriasis: Progress and advances. Afr. J. Pharm. Pharmacol. 2013, 7, 138–147. [Google Scholar] [CrossRef]
- Sundanum, S.; Orr, C.; Veale, D. Targeted Therapies in Psoriatic Arthritis—An Update. Int. J. Mol. Sci. 2023, 24, 6384. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.J.; Kavanaugh, A. Psoriatic arthritis: Latest treatments and their place in therapy. Ther. Adv. Chronic Dis. 2015, 6, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Ueda, C.T.; Shah, V.P.; Derdzinski, K.; Ewing, G.; Flynn, G.; Maibach, H.; Marques, M.; Rytting, H.; Shaw, S.; Thakker, K.; et al. Topical and Transdermal Drug Products. Dissolut Technol. 2010, 17, 12–25. [Google Scholar] [CrossRef]
- Soni, G.; Yadav, K.S. Nanogels as potential nanomedicine carrier for treatment of cancer: A mini review of the state of the art. Saudi Pharm. J. 2016, 24, 133–139. [Google Scholar] [CrossRef]
- Profit, L.; Chrisp, P. Lumiracoxib: The evidence of its clinical impact on the treatment of osteoarthritis. Core Evid. 2007, 2, 131–150. [Google Scholar]
- Geusens, P.; Lems, W. Efficacy and tolerability of lumiracoxib, a highly selective cyclo-oxygenase-2 (COX2) inhibitor, in the management of pain and osteoarthritis. Ther. Clin. Risk Manag. 2008, 4, 337–344. [Google Scholar] [CrossRef]
- Krabicová, I.; Appleton, S.L.; Tannous, M.; Hoti, G.; Caldera, F.; Pedrazzo, A.R.; Cecone, C.; Cavalli, R.; Trotta, F. History of Cyclodextrin Nanosponges. Polymers 2020, 12, 1122. [Google Scholar] [CrossRef]
- Utzeri, G.; Matias, P.M.C.; Murtinho, D.; Valente, A.J.M. Cyclodextrin-Based Nanosponges: Overview and Opportunities. Front. Chem. 2022, 10, 859406. [Google Scholar] [CrossRef]
- Garg, A.; Lai, W.-C.; Chopra, H.; Agrawal, R.; Singh, T.; Chaudhary, R.; Dubey, B.N. Nanosponge: A promising and intriguing strategy in medical and pharmaceutical Science. Heliyon 2024, 10, e23303. [Google Scholar] [CrossRef]
- PD, N.K.; Vineetha, K.; Kamath, K.; Shabaraya, A.R. Nanosponges: A Versatile Novel Drug Delivery System. Int. J. Pharm. Sci. Rev. Res. 2022, 76, 151–156. [Google Scholar] [CrossRef]
- Bhowmik, H.; Venkatesh, D.N.; Kuila, A.; Kumar, K.H. NANOSPONGES: A REVIEW. Int. J. Appl. Pharm. 2018, 10, 1. [Google Scholar] [CrossRef]
- Prabhu, P.P.; Mehta, C.H.; Nayak, U.Y. Nanosponges-Revolutionary Approach: A Review. Res. J. Pharm. Technol. 2020, 13, 3536. [Google Scholar] [CrossRef]
- Pyrak, B.; Rogacka-Pyrak, K.; Gubica, T.; Szeleszczuk, Ł. Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics. Int. J. Mol. Sci. 2024, 25, 3527. [Google Scholar] [CrossRef] [PubMed]
- Osmani, R.A.M.; Kulkarni, P.K.; Shanmuganathan, S.; Hani, U.; Srivastava, A.; Prerana, M.; Shinde, C.G.; Bhosale, R.R. A 32 full factorial design for development and characterization of a nanosponge-based intravaginal in situ gelling system for vulvovaginal candidiasis. RSC Adv. 2016, 6, 18737–18750. [Google Scholar] [CrossRef]
- Tejashri, G.; Amrita, B.; Darshana, J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm. 2013, 63, 335–358. [Google Scholar] [CrossRef]
- Mane, P.T.; Wakure, B.S.; Wakte, P.S. Cyclodextrin Based Nanosponges: A Multidimensional Drug Delivery System and its Biomedical Applications. Curr. Drug Deliv. 2021, 18, 1467–1493. [Google Scholar] [CrossRef]
- Iriventi, P.; Gupta, N.V. Development and evaluation of nanosponge loaded topical herbal gel of wrightia tinctoria. Int. J. Appl. Pharm. 2019, 89–95. [Google Scholar] [CrossRef]
- Balwe, M.B. Nanosponge a novel drug delivery system. Res. J. Pharm. Dos. Forms Technol. 2020, 12, 261–266. [Google Scholar] [CrossRef]
- Osmani, R.A.; Kulkarni, P.; Manjunatha, S.; Gowda, V.; Hani, U.; Vaghela, R.; Bhosale, R. Cyclodextrin Nanosponges in Drug Delivery and Nanotherapeutics. In Environmental Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 279–342. [Google Scholar] [CrossRef]
- Swaminathan, S.; Vavia, P.R.; Trotta, F.; Torne, S. Formulation of betacyclodextrin based nanosponges of itraconazole. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 89–94. [Google Scholar] [CrossRef]
- Khalid, Q.; Ahmad, M.; Minhas, M.U.; Batool, F.; Malik, N.S.; Rehman, M. Novel β-cyclodextrin nanosponges by chain growth condensation for solubility enhancement of dexibuprofen: Characterization and acute oral toxicity studies. J. Drug Deliv. Sci. Technol. 2021, 61, 102089. [Google Scholar] [CrossRef]
- Gaber, D.A.; Radwan, M.A.; Alzughaibi, D.A.; Alail, J.A.; Aljumah, R.S.; Aloqla, R.M.; Alkhalifah, S.A.; Abdoun, S.A. Formulation and evaluation of Piroxicam nanosponge for improved internal solubility and analgesic activity. Drug Deliv. 2023, 30, 2174208. [Google Scholar] [CrossRef] [PubMed]
- Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech 2011, 12, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Shende, P.K.; Trotta, F.; Gaud, R.S.; Deshmukh, K.; Cavalli, R.; Biasizzo, M. Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J. Incl. Phenom. Macrocycl. Chem. 2012, 74, 447–454. [Google Scholar] [CrossRef]
- Al-Nima, A.M.; Al-Kotaji, M.; Al-Iraqi, O.; Ali, Z.H. Preparation and Evaluation of Ultrasound Transmission Gel. Asian J. Pharm. Clin. Res. 2019, 12, 422. [Google Scholar] [CrossRef]
- Afzal, S.; Zahid, M.; Rehan, Z.A.; Shakir, H.M.F.; Javed, H.; Aljohani, M.M.H.; Mustafa, S.K.; Ahmad, M.; Hassan, M.M. Preparation and Evaluation of Polymer-Based Ultrasound Gel and Its Application in Ultrasonography. Gels 2022, 8, 42. [Google Scholar] [CrossRef]
- Gousia Begum, S.; Sekar, M. Formulation and evaluation of tinidazole mucoadhesive buccal gels. Int. J. Pharma Bio Sci. 2017, 8, 48–55. [Google Scholar] [CrossRef]
- Goudanavar, P.; Ali, M.; Wani, S.U.D.; Sreeharsha, N. Formulation and Evaluation of In-Situ Gel Containing Linezolid in the Treatment of Periodontitis. Int. J. Appl. Pharm. 2021, 13, 79–86. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar]
- Askarizadeh, M.; Esfandiari, N.; Honarvar, B.; Sajadian, S.A.; Azdarpour, A. Kinetic Modeling to Explain the Release of Medicine from Drug Delivery Systems. ChemBioEng Rev. 2023, 10, 1006–1049. [Google Scholar] [CrossRef]
- Swaminathan, S.; Pastero, L.; Serpe, L.; Trotta, F.; Vavia, P.; Aquilano, D.; Trotta, M.; Zara, G.; Cavalli, R. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 2010, 74, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Bachhav, Y.G.; Patravale, V.B. Microemulsion-based vaginal gel of clotrimazole: Formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech 2009, 10, 476–481. [Google Scholar] [CrossRef]
- Torne, S.J.; Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded nanosponges. Drug Deliv. 2010, 17, 419–425. [Google Scholar] [CrossRef]
- Aiyalu, R.; Govindarjan, A.; Ramasamy, A. Formulation and evaluation of topical herbal gel for the treatment of arthritis in animal model. Braz. J. Pharm. Sci. 2016, 52, 493–507. [Google Scholar] [CrossRef]
- Jales, S.T.L.; Barbosa, R.d.M.; de Albuquerque, A.C.; Duarte, L.H.V.; da Silva, G.R.; Meirelles, L.M.A.; da Silva, T.M.S.; Alves, A.F.; Viseras, C.; Raffin, F.N.; et al. Development and Characterization of Aloe vera Mucilaginous-Based Hydrogels for Psoriasis Treatment. J. Compos. Sci. 2022, 6, 231. [Google Scholar] [CrossRef]
- Alam, M.d.S.; Algahtani, M.S.; Ahmad, J.; Kohli, K.; Shafiq-un-Nabi, S.; Warsi, M.H.; Ahmad, M.Z. Formulation design and evaluation of aceclofenac nanogel for topical application. Ther. Deliv. 2020, 11, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Rapalli, V.K.; Kaul, V.; Waghule, T.; Gorantla, S.; Sharma, S.; Roy, A.; Dubey, S.K.; Singhvi, G. Curcumin loaded nanostructured lipid carriers for enhanced skin retained topical delivery: Optimization, scale-up, in-vitro characterization and assessment of ex-vivo skin deposition. Eur. J. Pharm. Sci. 2020, 152, 105438. [Google Scholar] [CrossRef]
- Baloglu, E.; Karavana, S.Y.; Senyigit, Z.A.; Hilmioglu-Polat, S.; Metin, D.Y.; Zekioglu, O.; Guneri, T.; Jones, D.S. In-situ gel formulations of econazole nitrate: Preparation and in-vitro and in-vivo evaluation. J. Pharm. Pharmacol. 2011, 63, 1274–1282. [Google Scholar] [CrossRef]
- Fang, J.-Y.; Lin, Y.-K.; Huang, Z.-R.; Zhuo, R.-Z. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int. J. Nanomed. 2010, 117, 117–128. [Google Scholar] [CrossRef]
- Shinde, C.G.; Pramod kumar, T.M.; Venkatesh, M.P.; Rajesh, K.S.; Srivastava, A.; Osmani, R.A.M.; Sonawane, Y.H. Intra-articular delivery of a methotrexate loaded nanostructured lipid carrier based smart gel for effective treatment of rheumatic diseases. RSC Adv. 2016, 6, 12913–12924. [Google Scholar] [CrossRef]
- Selvamuthukumar, S.; Anandam, S.; Krishnamoorthy, K.; Rajappan, M. Nanosponges: A Novel Class of Drug Delivery System—Review. J. Pharm. Pharm. Sci. 2012, 15, 103. [Google Scholar] [CrossRef]
- Shaker, D.S.; Shaker, M.A.; Hanafy, M.S. Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes. Int. J. Pharm. 2015, 493, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Mady, F.; Shaker, M. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Int. J. Nanomed. 2017, 12, 7405–7417. [Google Scholar] [CrossRef]
- Swindell, W.R.; Michaels, K.A.; Sutter, A.J.; Diaconu, D.; Fritz, Y.; Xing, X.; Sarkar, M.K.; Liang, Y.; Tsoi, A.; Gudjonsson, J.E.; et al. Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis. Genome Med. 2017, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Sakai, K.; Sanders, K.M.; Youssef, M.R.; Yanushefski, K.M.; Jensen, L.; Yosipovitch, G.; Akiyama, T. Mouse model of imiquimod-induced psoriatic itch. Pain 2016, 157, 2536–2543. [Google Scholar] [CrossRef]
- Zothanpuii, F.; Rajesh, R.; Selvakumar, K. A Review on Stability Testing Guidelines of Pharmaceutical Products. Asian J. Pharm. Clin. Res. 2020, 13, 3–9. [Google Scholar] [CrossRef]
Formulation | Solubility at pH 7.4 (µg/mL) (Mean ± SD *) |
---|---|
LXB | 13.54 ± 0.06 |
NS1 (1:2) | 363.74 ± 0.43 |
NS2 (1:4) | 476.24 ± 1.09 |
NS3 (1:8) | 423.74 ± 0.81 |
Sr. No. | Formulation | Entrapment Efficiency (%) (Mean ± SD *) |
---|---|---|
1 | NS1 (1:2) | 64.24 ± 0.050 |
2 | NS2 (1:4) | 72.38 ± 0.020 |
3 | NS3 (1:8) | 70.13 ± 0.015 |
Time (h) | % Cumulative Drug Release (Mean ± SD *) | ||
---|---|---|---|
Nanosponge 1 | Nanosponge 2 | Nanosponge 3 | |
0 | 0 | 0 | 0 |
0.5 | 16.34 ± 0.021 | 21.29 ± 0.025 | 19.18 ± 0.027 |
1 | 28.68 ± 0.018 | 34.49 ± 0.027 | 35.88 ± 0.023 |
2 | 40.12 ± 0.028 | 48.56 ± 0.023 | 53.33 ± 0.015 |
6 | 57.23 ± 0.025 | 63.42 ± 0.028 | 60.51 ± 0.030 |
12 | 69.42 ± 0.030 | 77.38 ± 0.018 | 72.14 ± 0.015 |
24 | 73.56 ± 0.026 | 86.12 ± 0.034 | 79.39 ± 0.024 |
Formulation Code | A * | B * | R1 * (PaS) (Mean ± SD) | R2 * (cm) (Mean ± SD) |
---|---|---|---|---|
FG1 | −1 | 1 | 0.58 ± 0.021 | 3.18 ± 0.025 |
FG2 | −1 | 0 | 0.71 ± 0.034 | 4.55 ± 0.035 |
FG3 | 1 | 1 | 2.85 ± 0.041 | 10.51 ± 0.036 |
FG4 | 1 | −1 | 2.23 ± 0.012 | 8.64 ± 0.026 |
FG5 | −1 | −1 | 1.15 ± 0.045 | 5.12 ± 0.041 |
FG6 | 1 | 0 | 2.82 ± 0.013 | 9.53 ± 0.025 |
FG7 | 0 | 0 | 1.69 ± 0.024 | 5.74 ± 0.033 |
FG8 | 0 | 1 | 2.19 ± 0.027 | 7.95 ± 0.031 |
FG9 | 0 | −1 | 2.31 ± 0.054 | 9.26 ± 0.035 |
Value | A | B | R1 (PaS) | R2 (cm) | Desirability |
---|---|---|---|---|---|
Predicted | 0.27 | 0.45 | 1.13 | 6.96 | 0.981 |
Actual | 0.27 | 0.45 | 1.15 ± 0.05 | 7.1 ± 0.03 | |
Relative error | - | - | 0.02 | 0.14 |
Formulation | Release Model | ||||
---|---|---|---|---|---|
Zero-Order | Peppas | Higuchi | First-Order | ||
NS 2 | Ko (Slope) | 3.1863 | 0.4562 | - | −0.035 |
R2 | 0.7190 | 0.9211 | 0.7743 | 0.9085 |
Sr. No | Time (h) | Edema or Erythema |
---|---|---|
1 | 0 | No sign |
2 | 24 | No sign |
3 | 48 | No sign |
4 | 72 | No sign |
Day | Group 1 * | Group 2 * | Group 3 * |
---|---|---|---|
0 | 0 | 4 | 4 |
2 | 0 | 4 | 3 |
4 | 0 | 4 | 2 |
6 | 0 | 4 | 2 |
7 | 0 | 4 | 1 |
13 | 0 | 4 | 0 |
Stability Condition | Sampling Interval (days) | Physical Appearance | % Drug Content (Mean ± SD *) |
---|---|---|---|
25° ± 2 °C/60 ± 5% RH | 0 | No change | 81.25 ± 0.0152 |
15 | No change | 80.18 ± 0.0153 | |
30 | No change | 80.02 ± 0.0240 |
Sr. No. | Formulation | Polymer–Crosslinker Ratio (ß-Cyclodextrin–DMC) |
---|---|---|
1 | Nanosponge 1 (NS1) | 1:2 |
2 | Nanosponge 2 (NS2) | 1:4 |
3 | Nanosponge 3 (NS3) | 1:8 |
Sr. No. | Ingredients | Percentage (%) |
---|---|---|
1 | Carbopol 940 | 0.2–0.4 |
2 | Badam gum | 0.4–0.6 |
3 | Propylene glycol | 0.5 |
4 | Propyl paraben | 0.02 |
5 | Triethanolamine | Q.S |
6 | Water | Q.S upto 100 mL |
Formulation Code | Concentration in Coded Factor Levels | |
---|---|---|
A | B | |
FG1 | −1 | 1 |
FG2 | −1 | 0 |
FG3 | 1 | 1 |
FG4 | 1 | −1 |
FG5 | −1 | −1 |
FG6 | 1 | 0 |
FG7 | 0 | 0 |
FG8 | 0 | 1 |
FG9 | 0 | −1 |
Groups | Treatment |
---|---|
Group 1 (Control group; G1) | No treatment |
Group 2 (Negative control group; G2) | Imiquad application and no treatment |
Group 3 (Test group; G3) | Imiquad application and treatment with optimized gel formulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hani, U.; Paramshetti, S.; Angolkar, M.; Alqathanin, W.K.; Alghaseb, R.S.; Al Asmari, S.M.; Alsaab, A.A.; Fatima, F.; Osmani, R.A.M.; Gundawar, R. Cyclodextrin-Nanosponge-Loaded Cyclo-Oxygenase-2 Inhibitor-Based Topical Gel for Treatment of Psoriatic Arthritis: Formulation Design, Development, and In vitro Evaluations. Pharmaceuticals 2024, 17, 1598. https://doi.org/10.3390/ph17121598
Hani U, Paramshetti S, Angolkar M, Alqathanin WK, Alghaseb RS, Al Asmari SM, Alsaab AA, Fatima F, Osmani RAM, Gundawar R. Cyclodextrin-Nanosponge-Loaded Cyclo-Oxygenase-2 Inhibitor-Based Topical Gel for Treatment of Psoriatic Arthritis: Formulation Design, Development, and In vitro Evaluations. Pharmaceuticals. 2024; 17(12):1598. https://doi.org/10.3390/ph17121598
Chicago/Turabian StyleHani, Umme, Sharanya Paramshetti, Mohit Angolkar, Wajan Khalid Alqathanin, Reema Saeed Alghaseb, Saja Mohammed Al Asmari, Alhanouf A. Alsaab, Farhat Fatima, Riyaz Ali M. Osmani, and Ravi Gundawar. 2024. "Cyclodextrin-Nanosponge-Loaded Cyclo-Oxygenase-2 Inhibitor-Based Topical Gel for Treatment of Psoriatic Arthritis: Formulation Design, Development, and In vitro Evaluations" Pharmaceuticals 17, no. 12: 1598. https://doi.org/10.3390/ph17121598
APA StyleHani, U., Paramshetti, S., Angolkar, M., Alqathanin, W. K., Alghaseb, R. S., Al Asmari, S. M., Alsaab, A. A., Fatima, F., Osmani, R. A. M., & Gundawar, R. (2024). Cyclodextrin-Nanosponge-Loaded Cyclo-Oxygenase-2 Inhibitor-Based Topical Gel for Treatment of Psoriatic Arthritis: Formulation Design, Development, and In vitro Evaluations. Pharmaceuticals, 17(12), 1598. https://doi.org/10.3390/ph17121598