Polyphenol Profile and Antioxidant, Antityrosinase, and Anti-Melanogenesis Activities of Ethanol Extract of Bee Pollen
Abstract
:1. Introduction
2. Results
2.1. Components in Ethanol Extracts of Bee Pollens
2.1.1. TPCs and TFCs in Ethanol Extracts of Bee Pollens
2.1.2. The Polyphenols in Ethanol Extracts of Bee Pollens
2.2. Antioxidant and Tyrosinase Inhibitory Capacities of Ethanol Extracts of Bee Pollens
2.3. Anti-Melanogenesis Activity of Ethanol Extracts of Bee Pollens on Melanin Production in Mouse B16F10 Melanoma Cells
2.4. Anti-Melanogenesis Mechanism of the Ethanol Extract of Sunflower Bee Pollen on Melanin Production in Mouse B16F10 Melanoma Cells
3. Discussion
4. Materials and Methods
4.1. Samples and Chemical Reagents
4.2. Methods
4.2.1. Extraction of Bee Pollen
4.2.2. Determination of the Components in the Ethanol Extracts of Bee Pollens
4.2.3. Antioxidant and Tyrosinase Inhibitory Capacities of Ethanol Extracts of Bee Pollens
4.2.4. Anti-Melanogenesis Activities of Ethanol Extracts of Bee Pollens on Melanin Production in Mouse B16F10 Melanoma Cells
4.2.5. Analysis of the Anti-Melanogenesis Mechanism of the Ethanol Extract of Sunflower Bee Pollen on Melanin Production in Mouse B16F10 Melanoma Cells by Label-Free Proteomics
4.2.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clarke, D.; Morley, E.; Robert, D. The bee, the flower, and the electric field: Electric ecology and aerial electroreception. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2017, 203, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.G.; Frigerio, C.; Lopes, J.; Bogdanov, S. What is the future of Bee-Pollen? J. ApiProd. ApiMed. Sci. 2010, 2, 131–144. [Google Scholar] [CrossRef]
- Yang, K.; Wu, D.; Ye, X.; Liu, D.; Chen, J.; Sun, P. Characterization of chemical composition of bee pollen in China. J. Agric. Food Chem. 2013, 61, 708–718. [Google Scholar] [CrossRef]
- Campos, M.G.; Bogdanov, S.; de Almeida-Muradian, L.B.; Szczęsna, T.; Mancebo, Y.; Frigerio, C.; Ferreira, F. Pollen composition and standardisation of analytical methods. J. Apic. Res. 2008, 47, 154–161. [Google Scholar] [CrossRef]
- Li, Q.; Wang, K.; Marcucci, M.C.; Sawaya, A.C.; Hu, L.; Xue, X.; Wu, L.; Hu, F. Nutrient-rich bee pollen: A treasure trove of active natural metabolites. J. Funct. Foods 2018, 49, 472–484. [Google Scholar] [CrossRef]
- Nogueira, C.; Iglesias, A.; Feás, X.; Estevinho, L.M. Commercial bee pollen with different geographical origins: A comprehensive approach. Int. J. Mol. Sci. 2012, 13, 11173–11187. [Google Scholar] [CrossRef]
- Qiao, J.; Feng, Z.; Zhang, Y.; Xiao, X.; Dong, J.; Haubruge, E.; Zhang, H. Phenolamide and flavonoid glycoside profiles of 20 types of monofloral bee pollen. Food Chem. 2023, 405, 134800. [Google Scholar] [CrossRef] [PubMed]
- Çobanoğlu, D.N. Assessing monofloral bee pollens from Türkiye: Palynological verification, phenolic profile, and antioxidant activity. J. Food Sci. 2024, 89, 1711–1726. [Google Scholar] [CrossRef] [PubMed]
- Kalaycıoğlu, Z.; Kaygusuz, H.; Döker, S.; Kolaylı, S.; Erim, F.B. Characterization of Turkish honeybee pollens by principal component analysis based on their individual organic acids, sugars, minerals, and antioxidant activities. LWT–Food Sci. Technol. 2017, 84, 402–408. [Google Scholar] [CrossRef]
- Cheng, N.; Chen, S.; Liu, X.; Zhao, H.; Cao, W. Impact of schisandrachinensis bee pollen on nonalcoholic fatty liver disease and gut microbiota in highfat diet induced obese mice. Nutrients 2019, 11, 346. [Google Scholar] [CrossRef]
- Tao, Y.; Zhou, E.; Li, F.; Meng, L.; Li, Q.; Wu, L. Allergenicity alleviation of bee pollen by enzymatic hydrolysis: Regulation in mice allergic mediators, metabolism, and gut microbiota. Food 2022, 11, 3454. [Google Scholar] [CrossRef] [PubMed]
- Khalil, F.; El-Sheikh, N.M. The effects of dietary Egyptian propolis and bee pollen supplementation against toxicity if sodium fluoride in rats. Vet. Med. J. Giza 2010, 11, 310–316. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Adaskeviciute, V.; Kaškonas, P.; Mickienė, R.; Maruška, A.S. Antimicrobial and antioxidant activities of natural and fermented bee pollen. Food Biosci. 2020, 34, 100532. [Google Scholar] [CrossRef]
- Lawag, I.L.; Yoo, O.; Lim, L.Y.; Hammer, K.; Locher, C. Optimisation of bee pollen extraction to maximise extractable antioxidant constituents. Antioxidants 2021, 10, 1113. [Google Scholar] [CrossRef] [PubMed]
- De-Melo, A.A.; Estevinho, M.L.; Sattler, J.A.; Souza, B.R.; Freitas, A.D.; Barth, O.M.; Almeida-Muradian, L.B. Effect of processing conditions on characteristics of dehydrated bee-pollen and correlation between quality parameters. LWT–Food Sci. Technol. 2016, 65, 808–815. [Google Scholar] [CrossRef]
- Gercek, Y.C.; Celik, S.; Bayram, S. Screening of plant pollen sources, polyphenolic compounds, fatty acids and antioxidant/antimicrobial activity from bee pollen. Molecules 2022, 27, 117. [Google Scholar] [CrossRef] [PubMed]
- Orvalho, T.; Vaz, D.C.; Ribeiro, V.; Campos, M.J. Storage procedures influence the antioxidant capacity of bee pollen. In Proceedings of the 1st International Conference on Water Energy Food and Sustainability (ICoWEFS 2021), Leiria, Portugal, 10–12 May 2021. [Google Scholar] [CrossRef]
- Leblanc, B.; Davis, O.K.; Boue, S.M.; DeLucca, A.; Deeby, T. Antioxidant activity of Sonoran Desert bee pollen. Food Chem. 2009, 115, 1299–1305. [Google Scholar] [CrossRef]
- Özcan, M.M.; Aljuhaimi, F.; Babiker, E.E.; Uslu, N.; Ceylan, D.A.; Ghafoor, K.; Özcan, M.M.; Dursun, N.; Ahmed, I.A.; Jamiu, F.G.; et al. Determination of antioxidant activity, phenolic compound, mineral contents and fatty acid compositions of bee pollen grains collected from different locations. J. Apic. Sci. 2019, 63, 69–79. [Google Scholar] [CrossRef]
- Sarić, A.; Balog, T.; Sobocanec, S.; Kusić, B.; Sverko, V.; Rusak, G.; Likić, S.; Bubalo, D.; Pinto, B.; Reali, D.; et al. Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem. Toxicol. 2009, 47, 547–554. [Google Scholar] [CrossRef]
- Jin, T.; Saravanakumar, K.; Wang, M. In vitro and in vivo antioxidant properties of water and methanol extracts of linden bee pollen. Biocatal. Agric. Biotechnol. 2018, 13, 186–189. [Google Scholar] [CrossRef]
- Yıldız, O.; Can, Z.; Saral, O.; Yuluğ, E.; Oztürk, F.; Aliyazıcıoğlu, R.; Canpolat, S.; Kolaylı, S. Hepatoprotective potential of chestnut bee pollen on carbon tetrachloride-induced hepatic damages in rats. Evid. Based Complement. Alternat. Med. 2013, 2013, 461478. [Google Scholar] [CrossRef] [PubMed]
- Al-Salem, H.S.; Al-Yousef, H.M.; Ashour, A.E.; Ahmed, A.F.; Amina, M.; Issa, I.S.; Bhat, R.S. Antioxidant and hepatorenal protective effects of bee pollen fractions against propionic acid-induced autistic feature in rats. Food Sci. Nutr. 2020, 8, 5114–5127. [Google Scholar] [CrossRef] [PubMed]
- Aabed, K.; Shafi Bhat, R.; Moubayed, N.; Al-Mutiri, M.; Al-Marshoud, M.; Al-Qahtani, A.; Ansary, A. Ameliorative effect of probiotics (Lactobacillus paracaseii and Protexin®) and prebiotics (propolis and bee pollen) on clindamycin and propionic acid-induced oxidative stress and altered gut microbiota in a rodent model of autism. Cell. Mol. Biol. 2019, 65, 1–7. [Google Scholar] [CrossRef]
- Al-daihan, S.; Bhata, R.S. Protective effect of bee pollen against sodium fluoride induced hepatonephrotoxicity and serum electrolyte changes in rats. Fluoride 2019, 52, 9–17. [Google Scholar]
- Oyarzún, J.E.; Andia, M.E.; Uribe, S.; Núñez Pizarro, P.; Núñez, G.; Montenegro, G.; Bridi, R. Honeybee pollen extracts reduce oxidative stress and steatosis in hepatic cells. Molecules 2020, 26, 6. [Google Scholar] [CrossRef]
- Pham, T.N.; Cazier, E.A.; Gormally, E.; Lawrence, P. Valorization of biomass polyphenols as potential tyrosinase inhibitors. Drug Discov. Today 2024, 29, 103843. [Google Scholar] [CrossRef] [PubMed]
- Gou, L.; Lee, J.; Hao, H.; Park, Y.D.; Zhan, Y.; Lü, Z.R. The effect of oxaloacetic acid on tyrosinase activity and structure: Integration of inhibition kinetics with docking simulation. Int. J. Biol. Macromol. 2017, 101, 59–66. [Google Scholar] [CrossRef]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef]
- Wang, N.; Hebert, D.N. Tyrosinase maturation through the mammalian secretory pathway: Bringing color to life. Pigm. Cell Res. 2006, 19, 3–18. [Google Scholar] [CrossRef]
- Saud, A.; Sagineedu, S.R.; Ng, H.S.; Stanslas, J.; Lim, J.C.W. Melanoma metastasis: What role does melanin play? Oncol. Rep. 2022, 48, 217. [Google Scholar] [CrossRef]
- Bose, A.; Petsko, G.A.; Eliezer, D. Parkinson’s disease and melanoma: Co-occurrence and mechanisms. J. Park. Dis. 2018, 8, 385–398. [Google Scholar] [CrossRef] [PubMed]
- Krainc, T.; Monje, M.H.G.; Kinsinger, M.; Bustos, B.I.; Lubbe, S.J. Melanin and neuromelanin: Linking skin pigmentation and Parkinson’s disease. Mov. Disord. 2023, 38, 185–195. [Google Scholar] [CrossRef]
- Silva, C.C.; Benati, R.B.; Massaro, T.N.; Pereira, K.D.; Gaspar, L.R.; Marcato, P.D. Antioxidant and anti-tyrosinase activities of quercetin-loaded olive oil nanoemulsion as potential formulation for skin hyperpigmentation. J. Dispers. Sci. Technol. 2022, 44, 2628–2638. [Google Scholar] [CrossRef]
- Şöhretoğlu, D.; Sari, S.; Barut, B.; Özel, A. Tyrosinase inhibition by some flavonoids: Inhibitory activity, mechanism by in vitro and in silico studies. Bioorg. Chem. 2018, 81, 168–174. [Google Scholar] [CrossRef]
- Demirkiran, O.; Sabudak, T.; Ozturk, M.; Topcu, G. Antioxidant and tyrosinase inhibitory activities of flavonoids from Trifolium nigrescens Subsp. petrisavi. J. Agric. Food Chem. 2013, 61, 12598–12603. [Google Scholar] [CrossRef]
- Matsuura, R.; Ukeda, H.; Sawamura, M. Tyrosinase inhibitory activity of citrus essential oils. J. Agric. Food Chem. 2006, 54, 2309–2313. [Google Scholar] [CrossRef] [PubMed]
- Maisuthisakul, P.; Gordon, M.H. Antioxidant and tyrosinase inhibitory activity of mango seed kernel by product. Food Chem. 2009, 117, 332–341. [Google Scholar] [CrossRef]
- Khongkarat, P.; Ramadhan, R.; Phuwapraisirisan, P.; Chanchao, C. Safflospermidines from the bee pollen of Helianthus annuus L. exhibit a higher in vitro antityrosinase activity than kojic acid. Heliyon 2020, 6, e03638. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, J.L. Hydroquinone and its analogues in dermatology-a risk-benefit viewpoint. J. Cosmet. Dermatol. 2006, 5, 196–203. [Google Scholar] [CrossRef]
- Végh, R.; Sipiczki, G.; Csóka, M. Investigating the antioxidant and color properties of bee pollens of various plant sources. Chem. Biodivers. 2023, 20, e202300126. [Google Scholar] [CrossRef]
- Oroian, M.; Dranca, F.; Ursachi, F. Characterization of romanian bee pollen—An important nutritional source. Foods 2022, 11, 2633. [Google Scholar] [CrossRef] [PubMed]
- De Arruda, V.A.S.; dos Santos, A.V.; Sampaio, D.F.; Araújo, E.D.S.; Peixoto, A.L.D.C.; Estevinho, L.M.; de Almeida-Muradian, L.B. Brazilian bee pollen: Phenolic content, antioxidant properties and antimicrobial activity. J. Apic. Res. 2021, 60, 775–783. [Google Scholar] [CrossRef]
- Alimoglu, G.; Guzelmeric, E.; Yuksel, P.I.; Celik, C.; Deniz, I.; Yesilada, E. Monofloral and polyfloral bee pollens: Comparative evaluation of their phenolics and bioactivity profiles. LWT–Food Sci. Technol. 2021, 142, 110973. [Google Scholar] [CrossRef]
- Rocchetti, G.; Castiglioni, S.; Maldarizzi, G.; Carloni, P.; Lucini, L. UHPLC-ESI-QTOF-MS phenolic profiling and antioxidant capacity of bee pollen from different botanical origin. Int. J. Food Sci. Technol. 2018, 54, 335–346. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Milinčić, D.D.; Gašić, U.M.; Nedić, N.; Stanojević, S.P.; Tešić, Ž.L.; Pešić, M.B. Polyphenolic profile and antioxidant properties of bee-collected pollen from sunflower (Helianthus annuus L.) plant. LWT 2019, 112, 108244. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wang, K.; Li, C. Antioxidant and tyrosinase inhibitory properties of aqueous ethanol extracts from monofloral bee pollen. J. Apic. Sci. 2015, 59, 119–128. [Google Scholar] [CrossRef]
- Sun, L.; Guo, Y.; Zhang, Y.; Zhuang, Y. Antioxidant and anti-tyrosinase activities of phenolic extracts from rape bee pollen and inhibitory melanogenesis by cAMP/MITF/TYR pathway in b16 mouse melanoma cells. Front. Pharmacol. 2017, 8, 104. [Google Scholar] [CrossRef]
- Aylanc, V.; Larbi, S.; Calhelha, R.; Barros, L.; Rezouga, F.; Rodríguez-Flores, M.S.; Seijo, M.C.; El Ghouizi, A.; Lyoussi, B.; Falcão, S.I.; et al. Evaluation of antioxidant and anticancer activity of mono- and polyfloral moroccan bee pollen by characterizing phenolic and volatile compounds. Molecules 2023, 28, 835. [Google Scholar] [CrossRef]
- Duh, P.D.; Tu, Y.Y.; Yen, G.C. Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat). Food Sci. Technol. 1999, 32, 269–277. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, X.; Huang, Q.; Zhang, L.; Liu, X.; Liu, R.; Lu, Q. Antioxidant and anti-inflammatory activities of rape bee pollen after fermentation and their correlation with chemical components by ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry-based untargeted metabolomics. Food Chem. 2023, 409, 135342. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, M.; Zhu, X.; Liu, R.; Lu, Q. Metabolomics reveals that phenolamides are the main chemical components contributing to the anti-tyrosinase activity of bee pollen. Food Chem. 2022, 389, 133071. [Google Scholar] [CrossRef] [PubMed]
- Bonham, A.J.; Wenta, N.; Osslund, L.M.; Prussin, A.J., 2nd; Vinkemeier, U.; Reich, N.O. STAT1: DNA sequence-dependent binding modulation by phosphorylation, protein: Protein interactions and small-molecule inhibition. Nucleic Acids Res. 2013, 41, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Choi, H.; Han, J.; Jin, S.H.; Park, J.Y.; Shin, D.W.; Lee, T.R.; Kim, K.; Lee, A.Y.; Noh, M. IL-4 inhibits the melanogenesis of normal human melanocytes through the JAK2-STAT6 signaling pathway. J. Investig. Dermatol. 2013, 133, 528–536. [Google Scholar] [CrossRef]
- Han, N.R.; Park, H.J.; Ko, S.G.; Moon, P.D. Stigmasterol exerts an anti-melanoma property through down-regulation of reactive oxygen species and programmed cell death ligand 1 in melanoma cells. Antioxidants 2024, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.A.; Thapa, R.; Afzal, O.; Agrawal, N.; Almalki, W.H.; Kazmi, I.; Alzarea, S.I.; Altamimi, A.S.A.; Prasher, P.; Singh, S.K.; et al. The pyroptotic role of Caspase-3/GSDME signalling pathway among various cancer: A Review. Int. J. Biol. Macromol. 2023, 242, 124832. [Google Scholar] [CrossRef]
- Sasaki, M.; Kondo, M.; Sato, K.; Umeda, M.; Kawabata, K.; Takahashi, Y.; Suzuki, T.; Matsunaga, K.; Inoue, S. Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism. Pigm. Cell Melanoma Res. 2014, 27, 754–763. [Google Scholar] [CrossRef]
- Jin, R.; Hu, W.; Zhou, M.; Lin, F.; Xu, A. Caffeic acid derivative WSY6 protects melanocytes from oxidative stress by reducing ROS production and MAPK activation. Heliyon 2024, 10, e24843. [Google Scholar] [CrossRef]
- Günenc, A.N.; Graf, B.; Stark, H.; Chari, A. Fatty acid synthase: Structure, function, and regulation. In Macromolecular Protein Complexes IV; Springer: Cham, Switzerland, 2022; Volume 99, pp. 1–33. [Google Scholar] [CrossRef]
- Xie, W.; Ma, L.L.; Xu, Y.Q.; Wang, B.H.; Li, S.M. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism. Biochem. Biophys. Res. Commun. 2019, 518, 120–126. [Google Scholar] [CrossRef]
- Ando, H.; Ryu, A.; Hashimoto, A.; Oka, M.; Ichihashi, M. Linoleic acid and alpha-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch. Dermatol. Res. 1998, 290, 375–381. [Google Scholar] [CrossRef]
- Kose, A. Chemical composition and tyrosinase inhibitory activities of fatty acids obtained from Heterotrophic Microalgae, S. limacinum and C. cohnii. Appl. Biochem. Biotechnol. 2023, 195, 369–385. [Google Scholar] [CrossRef]
- Diwakar, G.; Rana, J.; Saito, L.; Vredeveld, D.; Zemaitis, D.; Scholten, J. Inhibitory effect of a novel combination of Salvia hispanica (chia) seed and Punica granatum (pomegranate) fruit extracts on melanin production. Fitoterapia 2014, 97, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.S.; Yun, H.Y.; Baek, K.J.; Kwon, N.S.; Park, K.C.; Kim, D.S. Okadaic acid suppresses melanogenesis via proteasomal degradation of tyrosinase. Biol. Pharm. Bull. 2013, 36, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Consoli, V.; Sorrenti, V.; Grosso, S.; Vanella, L. Heme Oxygenase-1 signaling and redox homeostasis in physiopathological conditions. Biomolecules 2021, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Mei, X.; Shi, W. Kaempferol promotes melanogenesis and reduces oxidative stress in PIG1 normal human skin melanocytes. J. Cell. Mol. Med. 2023, 27, 982–990. [Google Scholar] [CrossRef]
- Rosei, M.A.; Blarzino, C.; Coccia, R.; Foppoli, C.; Mosca, L.; Cini, C. Production of melanin pigments by cytochrome c/H2O2 system. Int. J. Biochem. Cell Biol. 1998, 30, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ma, W.; Fan, D.; Hu, J.; An, X.; Wang, Z. The biochemistry of melanogenesis: An insight into the function and mechanism of melanogenesis-related proteins. Front. Mol. Biosci. 2024, 11, 1440187. [Google Scholar] [CrossRef]
- Kudo, M.; Kobayashi-Nakamura, K.; Tsuji-Naito, K. Bifunctional effects of O-methylated flavones from Scutellaria baicalensis Georgi on melanocytes: Inhibition of melanin production and intracellular melanosome transport. PLoS ONE 2017, 12, e0171513. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin-Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, Y.; Yang, A.; Tan, W.; Liu, X.; Yang, W. Antitumor effect of poplar propolis on human cutaneous squamous cell carcinoma A431 cells. Int. J. Mol. Sci. 2023, 24, 16753. [Google Scholar] [CrossRef]
- Tan, W.; Tian, Y.; Zhang, Q.; Miao, S.; Wu, W.; Miao, X.; Kuang, H.; Yang, W. Antioxidant and antibacterial activity of Apis laboriosa honey against Salmonella enterica serovar Typhimurium. Front. Nutr. 2023, 10, 1181492. [Google Scholar] [CrossRef]
- Sim, M.; Choi, I.; Cho, J.; Shin, H.M.; Cho, H. Anti-melanogenesis and anti-oxidant of Salix pseudo-lasiogyne water extract in α-MSH-induced B16F10 melanoma cells. Food Agric. Immunol. 2017, 28, 1003–1016. [Google Scholar] [CrossRef]
- Liu, X.; Tian, Y.; Yang, A.; Zhang, C.; Miao, X.; Yang, W. Antitumor effects of poplar propolis on DLBCL SU-DHL-2 Cells. Foods 2023, 12, 283. [Google Scholar] [CrossRef] [PubMed]
Bee Pollen | TPC (mg GAE/g) | TFC (mg RE/g) |
---|---|---|
Rapeseed | 64.80 ± 1.34 c | 79.81 ± 1.62 b |
Apricot | 79.00 ± 1.14 b | 66.55 ± 4.72 c |
Camellia | 64.29 ± 1.64 c | 64.1 9± 1.77 c |
Lotus | 5.36 ± 0.50 d | 1.99 ± 0.45 d |
Sunflower | 132.57 ± 1.41 a | 109.06 ± 1.35 a |
Name | Formula | Molecular Weight | Retention Time (min) | m/z | Relative Quantitative Value # | Polarity Mode | ||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | ||||||
4′,7-Dihydroxyflavanone | C15 H12 O4 | 256.07342 | 6.011 | 257.0807 | ND * | 421,160,345.9 | 2,761,299.049 | 2,878,041.662 | ND | pos |
Paracetamol | C8 H9 N O2 | 151.06328 | 5.696 | 152.0706 | 43,034,369.2 | 76,811,021.73 | 376,365,295.8 | 147,656,556.3 | 388,854,376.3 | pos |
Diosmetin | C16 H12 O6 | 300.06318 | 6.039 | 301.0705 | 214,452,989 | 191,074,539.2 | 52,141,965.55 | 24,221,989 | 32,956,884.01 | pos |
Galangin | C15 H10 O5 | 270.05258 | 6.642 | 271.0599 | 71,935,041.1 | 78,118,724.65 | 39,386,575.66 | 20,616,903.96 | ND | pos |
Isorhamnetin | C16 H12 O7 | 316.0581 | 5.561 | 317.0654 | 684,415,707 | 2,700,227,153 | 848,073,257 | 1,339,085,340 | 410,416,525.5 | pos |
Kaempferol | C15 H10 O6 | 286.04762 | 5.783 | 287.0549 | 421,485,230 | 542,513,047.8 | 1,083,001,678 | 3,746,952,740 | 4,545,692,793 | pos |
Apigenin | C15 H10 O5 | 270.05266 | 6.035 | 271.0599 | 59,073,999 | 492,996,321.1 | 34,174,186.03 | 103,121,637.5 | 15,609,215.28 | pos |
Chrysin | C15 H10 O4 | 254.05766 | 6.584 | 255.0649 | 386,526,326 | 472,417,967.1 | 187,207,714.9 | 146,964,633.5 | 25,581,440.96 | pos |
Hesperetin | C16 H14 O6 | 302.07906 | 5.396 | 303.0863 | ND | 1,206,039,601 | 5,768,035.731 | 70,706,093.49 | 19,793,290.76 | pos |
4-Ethylphenol | C8 H10 O | 122.07331 | 7.007 | 123.0805 | 232,956,283 | 219,609,736.9 | 581,174,572.1 | 848,615,029.3 | 744,324,047.7 | pos |
3-Hydroxyphenylacetic acid | C8 H8 O3 | 152.04652 | 3.448 | 153.0538 | 1,258,417,229 | 495,499,205.9 | 32,153,838.89 | 178,078,042.9 | 156,571,841.1 | pos |
DL-Metanephrine | C10 H15 N O3 | 197.1052 | 1.438 | 198.1125 | 44,608,165.2 | 14,591,930.83 | 25,372,108.46 | 174,820,069.1 | 493,116,291 | pos |
Robinetin | C15 H10 O7 | 132.04349 | 5.472 | 303.0501 | 7,228,439.57 | 192,17,361,011 | 347,711,367.3 | 295,845,940.9 | 113,126,228.6 | pos |
Isoeugenol | C10 H12 O2 | 164.08379 | 5.872 | 165.0911 | 121,446,929 | 168,376,512.1 | 507,361,781.8 | 664,056,676.7 | 257,748,794.5 | pos |
N-Oleoyl dopamine | C26 H43 N O3 | 439.30561 | 7.476 | 440.3129 | ND | 186,795,049.6 | ND | 7,434,264.734 | ND | pos |
4′-O-Glucosylvitexin | C27 H30 O15 | 594.15738 | 5.303 | 595.1647 | 137,988,745 | 201,390,496.8 | 12,019,090.94 | 123,593,071.6 | 21,336,459.52 | pos |
Epicatechin | C15 H14 O6 | 308.08945 | 5.238 | 291.0861 | ND | ND | ND | 158,962,728.2 | ND | pos |
Dihydrocapsaicin | C18 H29 N O3 | 307.21458 | 5.781 | 308.2219 | 13,025,748.8 | 5,255,758.773 | 28,698,096.6 | 33,645,843.33 | 58,189,390.76 | pos |
Vanillin | C8 H8 O3 | 170.05787 | 5.896 | 188.0917 | 18,507,044.3 | 39,733,515.43 | 23,754,186 | 16,790,489.85 | 23,462,102.25 | pos |
Antiarol | C9 H12 O4 | 184.07359 | 5.897 | 185.0811 | ND | 34,692,677.88 | 33,181,916.55 | 11,779,943.87 | 13,883,890.37 | pos |
Rhoifolin | C27 H30 O14 | 616.11857 | 11.184 | 617.1259 | ND | ND | ND | 83,619,032.81 | 115,639,570.7 | pos |
Narcissoside | C28 H32 O16 | 624.17131 | 5.543 | 625.1786 | 12,927,457.8 | 6,672,526.705 | 3,798,041.678 | 4,862,624.146 | ND | pos |
Neodiosmin | C28 H32 O15 | 646.12896 | 10.452 | 647.1362 | 10,404,117.8 | 7,699,224.206 | ND | 227,282,528.5 | 222,436,152.3 | pos |
(+)-Catechin | C15 H14 O6 | 290.0791 | 5.095 | 291.0864 | ND | 1,884,259.734 | ND | 62,231,803.58 | ND | pos |
Isovanillin | C8 H8 O3 | 152.04737 | 4.003 | 170.0812 | 43,279,880.4 | 36,658,145.71 | 57,981,490.76 | 49,821,480.76 | 43,032,161.47 | pos |
Olivetol | C11 H16 O2 | 180.11491 | 6.118 | 181.1222 | 1,579,855,301 | 219,826,697.2 | 1,867,879,237 | 7,178,979,570 | 4,250,002,794 | pos |
N-Sinapoylputrescine | C15 H22 N2 O4 | 294.15804 | 5.245 | 295.1653 | 223,796,341 | 85,396,936 | 2,034,501,055 | 114,756,689.9 | 642,065,079.6 | pos |
m-Cresol | C7 H8 O | 108.05771 | 6.987 | 109.065 | 453,056,628 | 492,797,783.9 | 760,132,605.4 | 934,468,079.3 | 1,352,699,960 | pos |
N-Feruloylspermidine | C17 H27 N3 O3 | 321.20493 | 5.311 | 322.2122 | 16,227,369.5 | ND | ND | 388,149,239 | 291,830,830.8 | pos |
Syringetin | C17 H14 O8 | 346.06869 | 5.989 | 347.076 | 213,797,430 | 36,006,183.47 | 83,525,509.69 | 56,476,876.03 | 2,790,118.961 | pos |
10-Gingerol | C21 H34 O4 | 350.24526 | 6.449 | 351.2525 | 63,159,023.2 | 31,907,273.33 | 85,237,129.4 | 59,818,272.11 | 185,615,026 | pos |
Synephrine | C9 H13 N O2 | 167.09488 | 5.367 | 168.102 | 11,473,821.2 | 10,736,209.71 | 32,505,178.53 | 29,179,639.69 | 37,779,114.95 | pos |
Homovanillic acid | C9 H10 O4 | 182.0578 | 6.121 | 165.0545 | 36,791,534.7 | 53,843,338.18 | 98,234,762.32 | 79,103,854.53 | 64,102,700.09 | pos |
3-Hydroxy-glabrol | C25 H28 O5 | 408.19311 | 2.638 | 409.2004 | 15,627,920.5 | 7,577,848.342 | 12,982,293.77 | 2,144,060.696 | 65,127,151.99 | pos |
Eupatilin | C18 H16 O7 | 344.08942 | 6.993 | 345.0967 | ND | 55,836,940 | 28,821,311.22 | ND | ND | pos |
Cyanin chloride | C27 H31 Cl O16 | 646.12943 | 7.508 | 647.1367 | ND | ND | ND | 80,724,006.14 | 78,662,587.44 | pos |
N-Caffeoylagmatine | C14 H20 N4 O3 | 292.15315 | 5.011 | 585.3145 | 7,508,559.99 | ND | 24,444,379.22 | ND | 31,458,991.44 | pos |
Capsaicin | C18 H27 N O3 | 305.19874 | 6.452 | 306.206 | 12,087,681.5 | 2,776,542.382 | 25,089,124.12 | 17,821,873.15 | 15,588,985.07 | pos |
(−)-Epigallocatechin | C15 H14 O7 | 306.07351 | 5.599 | 307.0808 | ND | ND | ND | 53,832,441.21 | 13,548,177.99 | pos |
Tangeretin | C20 H20 O7 | 372.12075 | 5.423 | 355.1177 | ND | ND | ND | 5,917,055.075 | ND | pos |
Tyrosol | C8 H10 O2 | 138.06757 | 5.138 | 299.1232 | ND | 5,068,007.118 | 6,256,197.387 | 3,557,810.413 | 5,186,575.09 | pos |
Epigallocatechin gallate | C22 H18 O11 | 458.0842 | 5.285 | 457.0769 | ND | ND | ND | 33,786,926.33 | 2,234,317.434 | neg |
Luteolin | C15 H10 O6 | 286.04732 | 10.293 | 285.04 | 40,846,755.4 | 35,743,531.6 | 65,613,907.63 | 22,530,517.56 | 33,920,595.23 | neg |
Quercetin-3β-D-glucoside | C21 H20 O12 | 464.09462 | 5.497 | 463.0873 | 7,811,562.25 | 31,223,348,577 | 424,844,619.2 | 93,067,914.68 | 49,376,059.55 | neg |
Quercetin | C15 H10 O7 | 302.04189 | 6.168 | 301.0346 | 50,861,607.5 | 3,456,250,485 | 167,546,683.1 | 100,938,577 | 9,389,005.75 | neg |
Naringenin | C15 H12 O5 | 272.06788 | 5.811 | 271.0606 | 696,497,190 | 2,964,782,677 | 26,471,899.02 | 157,562,617.8 | 15,620,342.86 | neg |
Trifolin | C21 H20 O11 | 448.09963 | 5.586 | 447.0924 | 15,251,810.2 | 3,616,379,862 | 219,125,099.9 | 768,635,754.3 | 672,018,938.1 | neg |
Myricetin | C15 H10 O8 | 318.03709 | 11.206 | 317.0298 | ND | 3,028,274.129 | ND | 19,796,260.72 | 8,338,753.585 | neg |
Catechin | C15 H14 O6 | 290.07854 | 5.233 | 289.0713 | ND | 11,479,131.28 | ND | 362,680,090 | 21,989,649.4 | neg |
Rutin | C27 H30 O16 | 610.15255 | 5.406 | 609.1453 | 4,896,680,579 | 11,032,993,617 | 4,297,271,375 | 391,130,440.3 | 181,767,093.3 | neg |
Camelliaside A | C33 H40 O20 | 756.21056 | 5.419 | 755.2033 | 1,856,076,137 | 152,399,114.1 | 9,105,591.564 | 4,331,242,550 | 2,044,379,996 | neg |
Vitexin | C21 H20 O10 | 432.10434 | 5.582 | 477.1025 | 25,549,827.3 | 3,047,473,762 | 142,276,104.5 | 693,348,490.6 | 225,742,072.2 | neg |
Quercetin-3-O-beta-glucopyranosyl-6′-acetate | C23 H22 O13 | 506.10501 | 5.508 | 505.0977 | 3,746,894.48 | 1,951,523,698 | 22,777,582.34 | 5,963,197.709 | ND | neg |
(−)-Gallocatechin | C15 H14 O7 | 306.07093 | 1.48 | 305.0636 | 426,513,401 | 202,996,217.7 | 352,989,760.4 | 778,605,608.9 | 197,179,065.1 | neg |
C-pentosyl-apeignin O-feruloylhexoside | C36 H36 O17 | 740.19445 | 5.658 | 739.1872 | ND | ND | 4,277,967.468 | 482,030,561.8 | 398,168,515.7 | neg |
Lysionotin | C18 H16 O7 | 344.08877 | 6.465 | 343.0815 | 5,045,809.68 | 366,547,540.5 | ND | ND | ND | neg |
Morin Hydrate | C15 H12 O8 | 320.05248 | 5.669 | 319.0452 | 40,211,091.5 | ND | ND | 9,452,094.08 | 6,808,868.601 | neg |
Laricitrin | C16 H12 O8 | 332.05252 | 5.702 | 331.0452 | 30,519,617 | 24,396,606.59 | 15,799,130.1 | 313,192,808.2 | 5,637,949.068 | neg |
Liquiritigenin | C15 H12 O4 | 256.07285 | 5.724 | 255.0656 | ND | 222,165,135.5 | ND | ND | ND | neg |
Scutellarin | C21 H18 O12 | 462.07957 | 5.554 | 461.0723 | ND | 5,717,791.241 | 264,675,766.2 | ND | ND | neg |
Astragaloside I | C45 H72 O16 | 868.48566 | 9.474 | 867.4784 | 192,740,828 | ND | 9,275,827.199 | ND | ND | neg |
Procyanidin B2 | C30 H26 O12 | 578.1422 | 5.083 | 577.1349 | ND | ND | ND | 148,408,865.7 | 5,040,187.901 | neg |
Dihydromyricetin | C15 H12 O8 | 320.05263 | 5.306 | 319.0454 | ND | ND | ND | 85,023,185.27 | 2,195,644.614 | neg |
Typhaneoside | C34 H42 O20 | 770.21135 | 5.284 | 769.2041 | 159,063,911 | 1,31,733,637.6 | 34,066,220.05 | 231,660,164.2 | 63,182,732.09 | neg |
Flavanone | C15 H12 O2 | 224.08876 | 3.351 | 223.0815 | 20,038,004.3 | 1,65,971,467.7 | 9,437,481.559 | 19,717,896.64 | 8,643,483.933 | neg |
Epicatechin-3-O-gallate | C22 H18 O10 | 442.08902 | 5.363 | 441.0817 | ND | ND | ND | 42,171,533.16 | 3,743,314.08 | neg |
Theaflavin | C29 H24 O12 | 564.12608 | 5.844 | 563.1188 | ND | ND | ND | 28,600,078.21 | 33,086,570.62 | neg |
Casticin | C19 H18 O8 | 374.09987 | 6.383 | 373.0926 | ND | 26,391,447.21 | ND | ND | ND | neg |
Tricin O-malonylhexoside | C26 H26 O15 | 578.12501 | 5.27 | 577.1177 | ND | 29,288,856.87 | ND | ND | ND | neg |
Wogonoside | C22 H20 O11 | 460.09926 | 5.694 | 459.092 | ND | ND | ND | 17,955,043.79 | 13,013,533.49 | neg |
Methyl Hesperidin | C29 H36 O16 | 640.20009 | 5.25 | 639.1928 | ND | ND | ND | 7,345,122.487 | ND | neg |
Isosilybin | C25 H22 O10 | 482.12057 | 5.762 | 481.1133 | ND | ND | 18,684,411.97 | ND | ND | neg |
Engeletin | C21 H22 O10 | 434.12086 | 5.569 | 433.1136 | ND | 13,637,214.15 | 10,381,819.84 | ND | ND | neg |
Heptamethoxyflavone | C22 H24 O9 | 432.14137 | 5.495 | 431.1341 | ND | ND | 7,644,360.736 | ND | ND | neg |
Isovitexin | C21 H20 O10 | 432.10562 | 6.007 | 431.0983 | ND | ND | 3,278,357.703 | ND | ND | neg |
Pelargonidin chloride | C15 H11 Cl O5 | 306.02892 | 6.223 | 305.0217 | ND | ND | ND | ND | ND | neg |
Pectolinarin | C29 H34 O15 | 622.1918 | 10.469 | 621.1845 | 1,634,093.99 | 3,236,392.594 | 1,918,622.412 | ND | 981,732.339 | neg |
Astilbin | C21 H22 O11 | 450.11592 | 4.901 | 449.1086 | ND | ND | ND | 3,294,421.57 | ND | neg |
Cyanidin chloride | C15 H11 Cl O6 | 322.0258 | 5.564 | 321.0185 | ND | ND | 2,971,429.103 | ND | ND | neg |
(−)-Catechin Gallate | C22 H18 O10 | 442.08978 | 4.971 | 423.0719 | ND | ND | ND | 3,956,997.454 | ND | neg |
6-Shogaol | C17 H24 O3 | 276.17204 | 7.294 | 275.1649 | ND | ND | 1,419,321.159 | ND | ND | neg |
Orientin | C21 H20 O11 | 448.10042 | 4.997 | 447.0931 | ND | ND | ND | ND | ND | neg |
Baohuoside I | C27 H30 O10 | 514.18345 | 1.851 | 513.1762 | ND | ND | 479,069.6341 | ND | ND | neg |
Tulipanin | C27 H31 O16 | 611.16334 | 4.729 | 610.1561 | ND | ND | ND | 1,155,753.351 | 807,483.1285 | neg |
Kuwanon A | C25 H24 O6 | 420.1573 | 1.995 | 419.15 | ND | 124,712.2319 | ND | 154,082.8984 | ND | neg |
Vitexin-2-O-rhaMnoside | C27 H30 O14 | 578.16401 | 2.963 | 577.1567 | ND | ND | ND | 341,012.0014 | 245,379.7201 | neg |
Quercetin 3-O-sophoroside | C27 H30 O17 | 626.14729 | 5.308 | 625.14 | 12,969,050 | 5,464,610,685 | 22,465,559.36 | 385,733,174.2 | 62,948,432.34 | neg |
Sinapyl Alcohol | C11 H14 O4 | 210.08836 | 5.613 | 209.0811 | ND | ND | 3,982,772.239 | 58,595,380.89 | 93,954,803.85 | neg |
Pyrogallol | C6 H6 O3 | 126.03056 | 3.136 | 125.0233 | 52,253,814.5 | 50,876,134.5 | 54,751,955.84 | 5,056,863,601 | 4,650,663,073 | neg |
Cyanidin 3-rutinoside | C27 H31 O15 | 595.16789 | 4.9 | 594.1606 | ND | ND | ND | 78,888,627.46 | 3,570,249.836 | neg |
Eriodictyol | C15 H12 O6 | 288.06298 | 6.017 | 269.0451 | 37,755,502.9 | 151,216,709.3 | 18,272,926.02 | 41,340,090.1 | 4,827,039.11 | neg |
Vaccarin | C32 H38 O19 | 726.19982 | 5.289 | 725.1928 | ND | 63,646,196.73 | ND | ND | 5,883,643.504 | neg |
6-Paradol | C17 H26 O3 | 278.1878 | 5.89 | 323.186 | 185,053,697 | 305,250,229.3 | 295,294,310.1 | 275,009,885.5 | 659,984,250.6 | neg |
Epigallocatechin | C15 H14 O7 | 306.07363 | 4.832 | 305.0664 | ND | ND | ND | 37,577,124.11 | 3,325,753.027 | neg |
Taxifolin | C15 H12 O7 | 304.05811 | 5.441 | 303.0505 | 3,570,091.41 | 16,824,267.62 | 21,717,034.58 | 7,035,144.266 | 2,900,749.473 | neg |
Quercetin 3-alpha-L-arabinofuranoside (Avicularin) | C20 H18 O11 | 434.08376 | 5.554 | 433.0765 | ND | 72,544,130.62 | 2,043,273.191 | 5,471,247.624 | ND | neg |
Ferulaldehyde | C10 H10 O3 | 178.06273 | 7.239 | 355.1183 | 20,749,154.8 | 22,025,828.83 | 4,208,647.71 | 7,550,227.058 | ND | neg |
Bee Pollen | DPPH (μg TE/mg) | FRAP (μg TE/mg) | ABTS (μg TE/mg) |
---|---|---|---|
Rapeseed | 76.03 ± 1.17 b | 123.82 ± 3.79 b | 177.31 ± 1.39 b |
Apricot | 31.36 ± 1.44 d | 56.04 ± 2.22 d | 174.30 ± 1.88 b |
Camellia | 60.03 ± 1.49 c | 96.34 ± 2.41 c | 166.14 ± 2.80 b |
Lotus | 2.50 ± 0.18 e | 8.29 ± 0.48 e | 13.80 ± 0.52 c |
Sunflower | 119.26 ± 2.17 a | 156.83 ± 4.62 a | 204.88 ± 1.89 a |
DPPH | FRAP | ABTS | TPC | TFC | Tyrosinase Inhibitory | Anti-Melanogenesis | |
---|---|---|---|---|---|---|---|
DPPH | 1 | ||||||
FRAP | 0.986 ** | 1 | |||||
ABTS | 0.800 | 0.849 | 1 | ||||
TPC | 0.879 * | 0.885 | 0.849 * | 1 | |||
TFC | 0.924 * | 0.939 * | 0.959 ** | 0.953 * | 1 | ||
Tyrosinase Inhibitory | 0.722 | 0.682 | 0.827 | 0.964 * | 0.866 | 1 | |
Anti-Melanogenesis | 0.675 | 0.633 | 0.811 | 0.940 * | 0.826 | 0.987 ** | 1 |
Pathway | Up-Regulated Proteins | Down-Regulated Proteins |
---|---|---|
MAPK | MAP2K1, NFKB2, RELB, RPS6KA3, CASP3, TRAF6, MAP2K5, MAPKAPK3 | |
cAMP | ADCY7, GRIN2A | MAP2K1 |
AMPK | CPT1A | STRADA, CCNA2, FASN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Wang, J.; Li, J.; Yang, W. Polyphenol Profile and Antioxidant, Antityrosinase, and Anti-Melanogenesis Activities of Ethanol Extract of Bee Pollen. Pharmaceuticals 2024, 17, 1634. https://doi.org/10.3390/ph17121634
He Q, Wang J, Li J, Yang W. Polyphenol Profile and Antioxidant, Antityrosinase, and Anti-Melanogenesis Activities of Ethanol Extract of Bee Pollen. Pharmaceuticals. 2024; 17(12):1634. https://doi.org/10.3390/ph17121634
Chicago/Turabian StyleHe, Qiang, Jie Wang, Jingjing Li, and Wenchao Yang. 2024. "Polyphenol Profile and Antioxidant, Antityrosinase, and Anti-Melanogenesis Activities of Ethanol Extract of Bee Pollen" Pharmaceuticals 17, no. 12: 1634. https://doi.org/10.3390/ph17121634
APA StyleHe, Q., Wang, J., Li, J., & Yang, W. (2024). Polyphenol Profile and Antioxidant, Antityrosinase, and Anti-Melanogenesis Activities of Ethanol Extract of Bee Pollen. Pharmaceuticals, 17(12), 1634. https://doi.org/10.3390/ph17121634