Dynamic Changes in Adiponectin and Resistin Drive Remission of Cardiometabolic Risk Biomarkers in Individuals with Obesity Following Bariatric Surgery
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Ministry of Health (Brazil). Vigitel Brazil 2021: Surveillance of Risk and Protective Factors for Chronic Diseases by Telephone Survey: Estimates of Frequency and Sociodemographic Distribution of Risk and Protective Factors for Chronic Diseases in the Capitals of the 26 Brazilian States and the Federal District in 2021. Brasília, 2021. Ministry of Health, Brasília, 2020. 128p. ISBN 978-65-5993-195-8. Publisher MS – OS 2022/0088. Available online: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/svsa/vigitel/vigitel-brasil-2021-estimativas-sobre-frequencia-e-distribuicao-sociodemografica-de-fatores-de-risco-e-protecao-para-doencas-cronicas (accessed on 17 January 2023).
- Faienza, M.F.; Wang, D.Q.H.; Frühbeck, G.; Garruti, G.; Portincasa, P. The dangerous link between childhood and adulthood predictors of obesity and metabolic syndrome. Intern. Emerg. Med. 2016, 11, 175–182. [Google Scholar] [CrossRef]
- Feijóo-Bandín, S.; Aragón-Herrera, A.; Moraña-Fernández, S.; Anido-Varela, L.; Tarazón, E.; Roselló-Lletí, E.; Portolés, M.; Moscoso, I.; Gualillo, O.; González-Juanatey, J.R.; et al. Adipokines and Inflammation: Focus on Cardiovascular Diseases. Int. J. Mol. Sci. 2020, 21, 7711. [Google Scholar] [CrossRef]
- Mayoral, L.P.-C.; Andrade, G.M.; Mayoral, E.P.-C.; Huerta, T.H.; Canseco, S.P.; Canales, F.J.R.; Cabrera-Fuentes, H.A.; Cruz, M.M.; Santiago, A.D.P.; Alpuche, J.J.; et al. Obesity subtypes, related biomarkers & heterogeneity. Indian J. Med. Res. 2020, 151, 11. [Google Scholar]
- Phillips, B.T.; Shikora, S.A. The history of metabolic and bariatric surgery: Development of standards for patient safety and efficacy. Metabolism 2018, 79, 97–107. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol.-Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med. 2021, 136, 104754. [Google Scholar]
- McLaughlin, T.; Lamendola, C.; Liu, A.; Abbasi, F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab. 2011, 96, E1756–E1760. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.S.; Paniagua, S.M.; Zarbafian, S.; Hoffman, U.; Long, M.T.; Hwang, S.; Courchesne, P.; Yao, C.; Ma, J.; Larson, M.G.; et al. Cardiovascular biomarkers of obesity and overlap with cardiometabolic dysfunction. J. Am. Heart Assoc. 2021, 10, e020215. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.-K.; Tse, H.-F. Circulating biomarkers for cardiovascular disease risk prediction in patients with cardiovascular disease. Front. Cardiovasc. Med. 2021, 8, 713191. [Google Scholar] [CrossRef] [PubMed]
- Roberts, L.D.; Gerszten, R.E. Toward new biomarkers of cardiometabolic diseases. Cell Metab. 2013, 18, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Khoramipour, K.; Chamari, K.; Hekmatikar, A.A.; Ziyaiyan, A.; Taherkhani, S.; Elguindy, N.M.; Bragazzi, N.L. Adiponectin: Structure, physiological functions, role in diseases, and effects of nutrition. Nutrients 2021, 13, 1180. [Google Scholar] [CrossRef]
- Taouis, M.; Benomar, Y. Is resistin the master link between inflammation and inflammation-related chronic diseases? Mol. Cell. Endocrinol. 2021, 533, 111341. [Google Scholar] [CrossRef]
- Perdomo, C.M.; Cohen, R.V.; Sumithran, P.; Clément, K.; Frühbeck, G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 2023, 401, 1116–1130. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, D.A.; Patti, M.E. Glucose metabolism after bariatric surgery: Implications for T2DM remission and hypoglycaemia. Nat. Rev. Endocrinol. 2023, 19, 164–176. [Google Scholar] [CrossRef]
- Valenzano, A.; Tartaglia, N.; Ambrosi, A.; Tafuri, D.; Monda, M.; Messina, A.; Sessa, F.; Campanozzi, A.; Monda, V.; Cibelli, G.; et al. The metabolic rearrangements of bariatric surgery: Focus on orexin-A and the adiponectin system. J. Clin. Med. 2020, 9, 3327. [Google Scholar] [CrossRef] [PubMed]
- Unamuno, X.; Izaguirre, M.; Gómez-Ambrosi, J.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Valentí, V.; Moncada, R.; Silva, C.; Salvador, J.; et al. Increase of the adiponectin/leptin ratio in patients with obesity and type 2 diabetes after Roux-en-Y gastric bypass. Nutrients 2019, 11, 2069. [Google Scholar] [CrossRef] [PubMed]
- Askarpour, M.; Alizadeh, S.; Hadi, A.; Symonds, M.E.; Miraghajani, M.; Sheikhi, A.; Ghaedi, E. Effect of bariatric surgery on the circulating level of adiponectin, chemerin, plasminogen activator inhibitor-1, leptin, resistin, and visfatin: A systematic review and meta-analysis. Horm. Metab. Res. 2020, 52, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Pappachan, J.M.; Viswanath, A.K. Medical management of diabesity: Do we have realistic targets? Curr. Diabetes Rep. 2017, 17, 4. [Google Scholar] [CrossRef]
- Tajeu, G.S.; Johnson, E.; Buccilla, M.; Gadegbeku, C.A.; Janick, S.; Rubin, D.; Soans, R.; Eddy, V.J.; Sarwer, D.B. Changes in antihypertensive medication following bariatric surgery. Obes. Surg. 2022, 32, 1312–1324. [Google Scholar] [CrossRef]
- Dillon, C.; Peddle, J.; Twells, L.; Lester, K.; Midodzi, W.; Manning, K.; Murphy, R.; Pace, D.; Smith, C.; Boone, D.; et al. Rapid reduction in use of antidiabetic medication after laparoscopic sleeve gastrectomy: The Newfoundland and Labrador Bariatric Surgery Cohort (BaSCo) Study. Can. J. Hosp. Pharm. 2015, 68, 113. [Google Scholar] [CrossRef]
- Welbourn, R.; Hollyman, M.; Kinsman, R.; Dixon, J.; Liem, R.; Ottosson, J.; Ramos, A.; Våge, V.; Al-Sabah, S.; Brown, W.; et al. Bariatric surgery worldwide: Baseline demographic description and one-year outcomes from the fourth IFSO global registry report 2018. Obes. Surg. 2019, 29, 782–795. [Google Scholar] [CrossRef]
- Lager, C.J.; Esfandiari, N.H.; Luo, Y.; Subauste, A.R.; Kraftson, A.T.; Brown, M.B.; Varban, O.A.; Meral, R.; Cassidy, R.B.; Nay, C.K.; et al. Metabolic parameters, weight loss, and comorbidities 4 years after Roux-en-Y gastric bypass and sleeve gastrectomy. Obes. Surg. 2018, 28, 3415–3423. [Google Scholar] [CrossRef]
- Pezzin, I.M.; Fioresi, M.; Furieri, L.B.; Romero, W.G.; Fiorin, B.H.; Bolsoni-Lopes, A. Risk of infection and dysfunctional gastrointestinal motility: Most frequent diagnostics in the post-operatory of bariatric surgery. Enferm. Foco 2020, 11, 126–134. [Google Scholar]
- O’Kane, M.; Parretti, H.M.; Pinkney, J.; Welbourn, R.; Hughes, C.A.; Mok, J.; Walker, N.; Thomas, D.; Devin, J.; Coulman, K.D.; et al. British Obesity and Metabolic Surgery Society Guidelines on perioperative and postoperative biochemical monitoring and micronutrient replacement for patients undergoing bariatric surgery—2020 update. Obes. Rev. 2020, 21, e13087. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; Mouton, A.J.; da Silva, A.A.; Omoto, A.C.M.; Wang, Z.; Li, X.; Carmo, J.M.D. Obesity, kidney dysfunction, and inflammation: Interactions in hypertension. Cardiovasc. Res. 2021, 117, 1859–1876. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef]
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of ‘early health risk’: Simpler and more predictive than using a ‘matrix’based on BMI and waist circumference. BMJ Open 2016, 6, e010159. [Google Scholar] [CrossRef] [PubMed]
- Burhans, M.S.; Hagman, D.K.; Kuzma, J.N.; Schmidt, K.A.; Kratz, M. Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus. Compr. Physiol. 2018, 9, 1. [Google Scholar] [PubMed]
- Jung, S.H.; Ha, K.H.; Kim, D.J. Visceral fat mass has stronger associations with diabetes and prediabetes than other anthropometric obesity indicators among Korean adults. Yonsei Med. J. 2016, 57, 674–680. [Google Scholar] [CrossRef]
- Chait, A.; Den Hartigh, L.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef]
- Achari, A.E.; Jain, S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Palanivel, R.; Cresser, J.; Schram, K.; Ganguly, R.; Thong, F.S.L.; Tuinei, J.; Xu, A.; Abel, E.D.; Sweeney, G. An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. Am. J. Physiol.-Endocrinol. Metab. 2010, 299, E721–E729. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Ouchi, N.; Kihara, S.; Walsh, K.; Kumada, M.; Abe, Y.; Funahashi, T.; Matsuzawa, Y. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ. Res. 2004, 94, e27–e31. [Google Scholar] [CrossRef]
- Tamura, Y.; Kawao, N.; Yano, M.; Okada, K.; Matsuo, O.; Kaji, H. Plasminogen activator inhibitor-1 deficiency ameliorates insulin resistance and hyperlipidemia but not bone loss in obese female mice. Endocrinology 2014, 155, 1708–1717. [Google Scholar] [CrossRef] [PubMed]
- Kaji, H. Adipose tissue-derived plasminogen activator inhibitor-1 function and regulation. Compr. Physiol. 2011, 6, 1873–1896. [Google Scholar]
- Hamsten, A.; Walldius, G.; Szamosi, A.; Blombäck, M.; Faire, U.; Dahlén, G.; Landou, C.; Wiman, B. Plasminogen activator inhibitor in plasma: Risk factor for recurrent myocardial infarction. Lancet 1987, 330, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ambrosi, J.; Salvador, J.; Rotellar, F.; Silva, C.; Catalán, V.; Rodríguez, A.; Gil, M.J.; Frühbeck, G. Increased serum amyloid A concentrations in morbid obesity decrease after gastric bypass. Obes. Surg. 2006, 16, 262–269. [Google Scholar] [CrossRef]
- Gómez-Ambrosi, J.; Salvador, J.; Páramo, J.A.; Orbe, J.; de Irala, J.; Diez-Caballero, A.; Gil, M.J.; Cienfuegos, J.A.; Frühbeck, G. Involvement of leptin in the association between percentage of body fat and cardiovascular risk factors. Clin. Biochem. 2002, 35, 315–320. [Google Scholar] [CrossRef]
- Catalán, V.; Gómez-Ambrosi, J.; Rodríguez, A.; Ramírez, B.; Rotellar, F.; Valentí, V.; Silva, C.; Gil, M.J.; Fernández-Real, J.M.; Salvador, J.; et al. Increased levels of calprotectin in obesity are related to macrophage content: Impact on inflammation and effect of weight loss. Mol. Med. 2011, 17, 1157–1167. [Google Scholar] [CrossRef]
- Viana, E.C.; Araujo-Dasilio, K.L.; Miguel, G.P.S.; Bressan, J.; Lemos, E.M.; Moyses, M.R.; de Abreu, G.R.; de Azevedo, J.L.M.C.; Carvalho, P.S.; Passos-Bueno, M.R.S.; et al. Gastric bypass and sleeve gastrectomy: The same impact on IL-6 and TNF-α. Prospective clinical trial. Obes. Surg. 2013, 23, 1252–1261. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.-M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Gordon, D.; Copeland, T.; D’Agostino, D.; et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N. Engl. J. Med. 2019, 380, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Lespessailles, E.; Toumi, H. Vitamin D alteration associated with obesity and bariatric surgery. Exp. Biol. Med. 2017, 242, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Riedt, C.S.; Brolin, R.E.; Sherrell, R.M.; Field, M.P.; Shapses, S.A. True fractional calcium absorption is decreased after Roux-en-Y gastric bypass surgery. Obesity 2006, 14, 1940–1948. [Google Scholar] [CrossRef]
- Almeida, C.d.G.d.; Viana, E.C.; Moreira, A.V.B.; Miguel, G.P.S.; Pedra, F.S.G.; Oliveira, F.E.; Quimquim, T.N.; Bissoli, N.S.; Alves, R.D.M.; Bressan, J. The fatty acid profile of adipose tissue as a predictor of the ponderal and inflammatory response in adult women six years after bariatric surgery. Lipids Health Dis. 2020, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- S Ministry of Health (Brazil). Ordinance N° 424, March 19, 2013. Redefines the Guidelines for the Organization of Prevention and Treatment of Overweight and Obesity as a Priority Care Pathway within the Health Care Network for People with Chronic Diseases. 2013. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/gm/2013/prt0424_19_03_2013.html (accessed on 17 January 2023).
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Braga, G.B.; Bortoli, A.M.; Brito, B.B.d.; Salaroli, L.B.; Lopes, A.B.; Haraguchi, F.K.; Abreu, L.C. Roux-en-y gastric bypass reduces body parameters but does not alter diet quality during six months follow-up. J. Hum. Growth Dev. (Impresso) 2023, 33, 164–172. [Google Scholar]
- Manoel, R.; Venâncio, F.A.; Miguel, G.P.S.; Haraguchi, F.K.; Pedrosa, R.G. A Higher Phase Angle Is Associated with Greater Metabolic Equivalents in Women 1 Year After Bariatric Surgery. Obes. Surg. 2022, 32, 2003–2009. [Google Scholar] [CrossRef]
Variable | n | % |
---|---|---|
36 | 100 | |
Gender | ||
Female | 32 | 89 |
Male | 4 | 11 |
Marital status | ||
Married | 26 | 72.2 |
Non married | 10 | 27.8 |
Level of education | ||
<6 Years | 6 | 16.7 |
6–12 Years | 22 | 61.1 |
>12 Years | 8 | 22.2 |
Age group | ||
20–29 years | 2 | 5.6 |
30–39 years | 15 | 41.7 |
40–49 years | 11 | 30.6 |
50–59 years | 4 | 11.1 |
≥60 years | 4 | 11.1 |
Preoperative | After Surgery (2 Months) | After Surgery (6 Months) | ||||||
Mean ± SD | Mean ± SD | Mean ± SD | p Value | |||||
Body weight (kg) | 119.5 a ± 22.0 | 98.8 b ± 16.4 | 87.0 c ± 17.9 | <0.001 | ||||
Anthropometric Data | Fat mass (kg) | 60.2 a ± 14.2 | 44.7 b ± 12.0 | 31.9 c ± 12.9 | <0.001 | |||
Waist circumference (cm) | 123 a ± 15.7 | 110 b ± 14.8 | 101 c ± 15.8 | <0.001 | ||||
Waist-to-height ratio (cm/cm) | 0.75 a ± 0.09 | 0.67 b ± 0.09 | 0.59 c ± 0.07 | <0.001 | ||||
Preoperative | After Surgery (2 Months) | After Surgery (6 Months) | ||||||
n | % | n | % | n | % | |||
BMI | Eutrophic (18.5 to 24.9 kg/m2) | 0 | 0 | 0 | 0 | 2 | 6.7 | |
Overweight (25 to 29.9 kg/m2) | 0 | 0 | 1 | 2.8 | 9 | 30 | ||
Class I obesity (30 to 34.9 kg/m2) | 0 | 0 | 17 | 47.2 | 12 | 40 | ||
Class II obesity (35 to 39.9 kg/m2) | 9 | 25 | 10 | 27.8 | 3 | 10 | ||
Class III obesity (≥40 kg/m2) | 27 | 75 | 8 | 22.2 | 4 | 13.3 | ||
Fat mass loss | 10 kg or less | - | - | 7 | 19.4 | 1 | 3.3 | |
10.1 kg to 20 kg | - | - | 23 | 63.8 | 4 | 13.3 | ||
20.1 kg to 30 kg | - | - | 5 | 13.8 | 17 | 56.6 | ||
30.1 kg to 40 kg | - | - | 1 | 2.7 | 6 | 20.0 | ||
40.1 kg or more | - | - | 0 | 0.0 | 2 | 6.6 |
Preoperative | After Surgery 2 Months | After Surgery 6 Months | p Value | |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||
Adiponectin (μg/mL) | 5.4 a ± 4.1 | 8.5 b ± 5.5 | 11.3 c ±7.0 | 0.002 |
Resistin (ng/mL) | 36.4 a ± 10.2 | 32.9 b ± 10.4 | 32.0 b ± 9.2 | 0.009 |
PAI-1 (ng/mL) | 6.5 a ± 1.1 | 6.1 a,b ± 1.0 | 5.8 b ± 0.4 | 0.04 |
TNF-α (pg/mL) | 87.9 a ± 47.7 | 60.3 b ± 36.1 | 57.2 b ± 27.4 | <0.001 |
Glucose (mg/dL) | 111.3 a ± 25.2 | 92.1 b ± 11.0 | 87.3 b ± 11.4 | <0.001 |
Insulin (μIU/mL) | 26.1 a ± 19.0 | 16.1 a,b ± 17.1 | 9.9 b ± 3.3 | <0.001 |
CRP (mg/dL) | 15.0 a ± 17.1 | 5.1 b ± 4.5 | 3.5 b ± 4.1 | <0.001 |
Troponin I (ng/mL) | 0.05 a ± 0.1 | - | 0.05 a ± 0.02 | 0.49 |
Total cholesterol (mg/dL) | 183 a ± 37.2 | 153 b ± 37.8 | 151 b ± 32.2 | <0.001 |
LDL (mg/dL) | 114 a ± 34.7 | 92 b ± 26.5 | 81 b ± 23.8 | <0.001 |
HDL (mg/dL) | 43 a ± 10.1 | 40 a ± 9.2 | 47 a ± 13.3 | 0.005 |
Triglycerides (mg/dL) | 153.9 a ± 91.0 | 108.5 a,b ± 47.6 | 88.8 c ± 41.6 | <0.001 |
Vitamin D (ng/mL) | 49.9 a ± 12.0 | 44.0 a,b ± 12.1 | 40.9 b ± 12.3 | <0.001 |
Dependent Variables | Independent Variables | r | p Value | 95% CI | |
---|---|---|---|---|---|
Lower Limit | Upper Limit | ||||
Δ Adiponectin (μg/mL) | Δ Fat mass | −0.291 | 0.16 | −0.6291 | 0.1398 |
Δ WC | −0.485 | 0.008 | −0.7324 | −0.1260 | |
Δ Resistin (ng/mL) | Δ Fat mass | 0.33 | 0.12 | −0.1073 | 0.6611 |
Δ WC | 0.079 | 0.76 | −0.4296 | 0.5506 | |
Δ PAI-1 (ng/mL) | Δ Fat mass | 0.452 | 0.002 | 0.05802 | 0.7252 |
Δ WC | 0.418 | 0.04 | 0.0052 | 0.7149 | |
Δ TNF-α (pg/mL) | Δ Fat mass | −0.098 | 0.70 | −0.5637 | 0.4144 |
Δ WC | 0.484 | 0.04 | −0.0106 | 0.7887 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorotti, A.M.; Gomes, A.C.A.; Bortoli, A.M.; Brito, B.B.d.; Nunes, K.Z.; Haraguchi, F.K.; Bolsoni-Lopes, A. Dynamic Changes in Adiponectin and Resistin Drive Remission of Cardiometabolic Risk Biomarkers in Individuals with Obesity Following Bariatric Surgery. Pharmaceuticals 2024, 17, 215. https://doi.org/10.3390/ph17020215
Fiorotti AM, Gomes ACA, Bortoli AM, Brito BBd, Nunes KZ, Haraguchi FK, Bolsoni-Lopes A. Dynamic Changes in Adiponectin and Resistin Drive Remission of Cardiometabolic Risk Biomarkers in Individuals with Obesity Following Bariatric Surgery. Pharmaceuticals. 2024; 17(2):215. https://doi.org/10.3390/ph17020215
Chicago/Turabian StyleFiorotti, Amanda Machado, Amanda Cristina Araújo Gomes, Amanda Motta Bortoli, Beatriz Bobbio de Brito, Karolini Zuqui Nunes, Fabiano Kenji Haraguchi, and Andressa Bolsoni-Lopes. 2024. "Dynamic Changes in Adiponectin and Resistin Drive Remission of Cardiometabolic Risk Biomarkers in Individuals with Obesity Following Bariatric Surgery" Pharmaceuticals 17, no. 2: 215. https://doi.org/10.3390/ph17020215
APA StyleFiorotti, A. M., Gomes, A. C. A., Bortoli, A. M., Brito, B. B. d., Nunes, K. Z., Haraguchi, F. K., & Bolsoni-Lopes, A. (2024). Dynamic Changes in Adiponectin and Resistin Drive Remission of Cardiometabolic Risk Biomarkers in Individuals with Obesity Following Bariatric Surgery. Pharmaceuticals, 17(2), 215. https://doi.org/10.3390/ph17020215