Cold-Pressed Sacha Inchi Oil: High in Omega-3 and Prevents Fat Accumulation in the Liver
Abstract
:1. Introduction
2. Results
2.1. Fatty Acid Compounds of Sacha Inchi Oil
2.2. Effect of Sacha Inchi Oil on Antioxidation
2.3. Effect of Sacha Inchi Oil on Body Composition in Rats
2.4. Effect of Sacha Inchi Oil on Serum Biochemical Parameters of Rats
2.5. Effect of Sacha Inchi Oil on Histopathology of Liver in Rats
2.6. Liver TG Accumulation in Response to Sacha Inchi Oil Supplementation
2.7. Safety of Sacha Inchi Oil on the Histology of Kidneys, Pancreas, and Spleen in Rats
3. Discussion
4. Materials and Methods
4.1. Oil Preparation
4.2. Fatty Acid Compound Analysis
4.3. DPPH and ABTS Scavenging Assays
4.4. Animals and Study Design
4.5. Biochemical Measurement
4.6. Histological Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Powell, E.E.; Wong, V.W.; Rinella, M. Non-Alcoholic Fatty Liver Disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Diehl, A.M.; Brunt, E.M.; Cusi, K.; Charlton, M.; Sanyal, A.J. The Diagnosis and Management of Non-Alcoholic Fatty Liver Disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology 2012, 55, 2005–2023. [Google Scholar] [CrossRef]
- Benedict, M.; Zhang, X. Non-Alcoholic Fatty Liver Disease: An Expanded Review. World J. Hepatol. 2017, 9, 715–732. [Google Scholar] [CrossRef] [PubMed]
- Green, C.J.; Hodson, L. The Influence of Dietary Fat on Liver Fat Accumulation. Nutrients 2014, 6, 5018–5033. [Google Scholar] [CrossRef] [PubMed]
- Górski, J.; Nowacka, M.; Namiot, Z.; Puch, U. Effect of Prolonged Exercise on the Level of Triglycerides in the Rat Liver. Eur. J. Appl. Physiol. 1988, 57, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Kiapidou, S.; Liava, C.; Kalogirou, M.; Akriviadis, E.; Sinakos, E. Chronic Kidney Disease in Patients with Non-Alcoholic Fatty Liver Disease: What the Hepatologist Should Know? Ann. Hepatol. 2020, 19, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Musso, G.; Gambino, R.; Tabibian, J.H.; Ekstedt, M.; Kechagias, S.; Hamaguchi, M.; Hultcrantz, R.; Hagström, H.; Yoon, S.K.; Charatcharoenwitthaya, P. Association of Non-Alcoholic Fatty Liver Disease with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. PLoS Med. 2014, 11, e1001680. [Google Scholar] [CrossRef]
- Váncsa, S.; Németh, D.; Hegyi, P.; Szakács, Z.; Hegyi, P.J.; Pécsi, D.; Mikó, A.; Erőss, B.; Erős, A.; Pár, G. Fatty Liver Disease and Non-Alcoholic Fatty Liver Disease Worsen the Outcome in Acute Pancreatitis: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020, 9, 2698. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, G.; Citro, V.; Capone, D. Nonalcoholic Fatty Liver Disease: A Challenge from Mechanisms to Therapy. J. Clin. Med. 2019, 9, 15. [Google Scholar] [CrossRef]
- Juárez-Hernández, E.; Chávez-Tapia, N.C.; Uribe, M.; Barbero-Becerra, V.J. Role of Bioactive Fatty Acids in Nonalcoholic Fatty Liver Disease. Nutr. J. 2015, 15, 72. [Google Scholar] [CrossRef]
- Stawarska, A.; Jelińska, M.; Czaja, J.; Pacześniak, E.; Bobrowska-Korczak, B. Oils’ Impact on Comprehensive Fatty Acid Analysis and Their Metabolites in Rats. Nutrients 2020, 12, 1232. [Google Scholar] [CrossRef] [PubMed]
- Laget, J.; Djohan, Y.F.; Jeanson, L.; Muyor, K.; Badia, E.; Cristol, J.P.; Coudray, C.; Feillet-Coudray, C.; Vigor, C.; Oger, C.; et al. Peripancreatic Adipose Tissue Remodeling and Inflammation during High Fat Intake of Palm Oils or Lard in Rats. Nutrients 2021, 13, 1134. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yan, S.; Xiao, H.; Zhou, H.; Liu, S.; Zeng, Y.; Liu, B.; Li, R.; Yuan, Z.; Wu, J. Anti-Obesity Effect of a Traditional Chinese Dietary Habit—Blending Lard with Vegetable Oil While Cooking. Sci. Rep. 2017, 7, 14689. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Zhao, F.; Song, S.; Li, Y.; Xu, X.; Zhou, G.; Li, C. Fish Oil, Lard and Soybean Oil Differentially Shape Gut Microbiota of Middle-Aged Rats. Sci. Rep. 2017, 7, 826. [Google Scholar] [CrossRef]
- Czyż, K.; Sokoła-Wysoczańska, E.; Bodkowski, R.; Cholewińska, P.; Wyrostek, A. Dietary Omega-3 Source Effect on the Fatty Acid Profile of Intramuscular and Perimuscular Fat—Preliminary Study on a Rat Model. Nutrients 2020, 12, 3382. [Google Scholar] [CrossRef] [PubMed]
- Fasciolo, G.; Napolitano, G.; Aprile, M.; Cataldi, S.; Costa, V.; Ciccodicola, A.; Di Meo, S.; Venditti, P. Hepatic Insulin Resistance in Hyperthyroid Rat Liver: Vitamin E Supplementation Highlights a Possible Role of ROS. Antioxidants 2022, 11, 1295. [Google Scholar] [CrossRef]
- Gorriti, A.; Arroyo, J.; Quispe, F.; Cisneros, B.; Condorhuamán, M.; Almora, Y.; Chumpitaz, V. Oral Toxicity at 60-Days of Sacha Inchi Oil (Plukenetia volubilis L.) and Linseed (Linum usitatissimum L.), and Determination of Lethal Dose 50 in Rodents. Rev. Peru. Med. Exp. Salud Publ. 2010, 27, 352–360. [Google Scholar] [CrossRef]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y. Secondary Metabolites of Plants and Their Role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Cárdenas, D.M.; Gómez Rave, L.J.; Soto, J.A. Biological Activity of Sacha Inchi (Plukenetia volubilis Linneo) and Potential Uses in Human Health: A Review. J. Food Technol. 2021, 59, 253–266. [Google Scholar] [CrossRef]
- Ambulay, J.P.; Rojas, P.A.; Timoteo, O.S.; Barreto, T.V.; Colarossi, A. Effect of the Emulsion of Sacha Inchi (Plukenetia huayabambana) Oil on Oxidative Stress and Inflammation in Rats Induced to Obesity. J. Funct. Foods 2020, 64, 103631. [Google Scholar] [CrossRef]
- Li, P.; Huang, J.; Xiao, N.; Cai, X.; Yang, Y.; Deng, J.; Zhang, L.-H.; Du, B. Sacha Inchi Oil Alleviates Gut Microbiota Dysbiosis and Improves Hepatic Lipid Dysmetabolism in High-Fat Diet-Fed Rats. Food Funct. 2020, 11, 5827–5841. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F.; Gonzales, C. A Randomized, Double-Blind Placebo-Controlled Study on Acceptability, Safety, and Efficacy of Oral Administration of Sacha Inchi Oil (Plukenetia volubilis L.) in Adult Human Subjects. Food Chem. Toxicol. 2014, 65, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, T.; Osman, H.-E.H.; El-Kenawy, A.E.-M.; Dashti, N. Ameliorative Effect of Virgin Olive Oil Against Nephrotoxicity Following Sub-Chronic Administration of Ethephon in Male Rats. Tradit. Complement. Med. 2020, 10, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Fukusato, T. Histopathology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. World J. Gastroenterol. 2014, 20, 15539. [Google Scholar] [CrossRef] [PubMed]
- Carrera-Quintanar, L.; Lopez Roa, R.I.; Quintero-Fabián, S.; Sánchez-Sánchez, M.A.; Vizmanos, B.; Ortuño-Sahagún, D. Phytochemicals That Influence Gut Microbiota as Prophylactics and for the Treatment of Obesity and Inflammatory Diseases. Mediat. Inflamm. 2018, 2018, 9734845. [Google Scholar] [CrossRef]
- Thuanthong, A.; Patchimpet, J.; Visessanguan, W.; Panyo, J.; Benjakul, S.; Zhang, Y.; Klomklao, S. Antioxidant Properties of Sacha Inchi (Plukenetia volubilis) Shell Extracts as Affected by Solvents Used for Prior Decolorization. ASEAN J. Sci. Technol. Rep. 2021, 24, 1–8. [Google Scholar] [CrossRef]
- Gutiérrez, L.F.; Rosada, L.M.; Jiménez, Á. Chemical Composition of Sacha Inchi (Plukenetia volubilis L.) Seeds and Characteristics of Their Lipid Fraction. Grasas Y Aceites 2011, 62, 76–83. [Google Scholar] [CrossRef]
- Louadj, L.; Giuffrè, A. Analytical Characteristics of Olive Oil Produced with Three Different Processes in Algeria. Riv. Ital. Delle Sostanze Grasse 2010, 87, 187–195. [Google Scholar]
- Revelou, P.-K.; Xagoraris, M.; Alexandropoulou, A.; Kanakis, C.D.; Papadopoulos, G.K.; Pappas, C.S.; Tarantilis, P.A. Chemometric Study of Fatty Acid Composition of Virgin Olive Oil from Four Widespread Greek Cultivars. Molecules 2021, 26, 4151. [Google Scholar] [CrossRef]
- Martínez, M.; Fuentes, M.; Franco, N.; Sánchez, J.; de Miguel, C. Fatty Acid Profiles of Virgin Olive Oils from the Five Olive-Growing Zones of Extremadura (Spain). J. Am. Oil Chem. Soc. 2014, 91, 1921–1929. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, F.; Kakuda, Y. Sacha Inchi (Plukenetia volubilis L.): Nutritional Composition, Biological Activity, and Uses. Food Chem. 2018, 265, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Singanusong, R.; Jiamyangyuen, S. Effects of Maturity on Chemical Composition and Antioxidant Activity of Sacha Inchi (Plukenetia volubilis L.) Cultivated in Northern Thailand. Walailak J. Sci. Technol. 2020, 17, 998–1009. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Akhilender Naidu, K.; Shang, X.; Keum, Y.-S. Omega-3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health Benefits—A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- Follegatti-Romero, L.A.; Piantino, C.R.; Grimaldi, R.; Cabral, F.A. Supercritical CO2 Extraction of Omega-3 Rich Oil from Sacha Inchi (Plukenetia volubilis L.) Seeds. J. Supercrit. Fluids 2009, 49, 323–329. [Google Scholar] [CrossRef]
- Gonzalez-Aspajo, G.; Belkhelfa, H.; Haddioui-Hbabi, L.; Bourdy, G.; Deharo, E. Sacha Inchi Oil (Plukenetia volubilis L.), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro. J. Ethnopharmacol. 2015, 171, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) Versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef] [PubMed]
- Orsavova, J.; Misurcova, L.; Vavra Ambrozova, J.; Vicha, R.; Mlcek, J. Fatty Acids Composition of Vegetable Oils and Its Contribution to Dietary Energy Intake and Dependence of Cardiovascular Mortality on Dietary Intake of Fatty Acids. Int. J. Mol. Sci. 2015, 16, 12871–12890. [Google Scholar] [CrossRef] [PubMed]
- Araya, J.; Rodrigo, R.; Videla, L.A.; Thielemann, L.; Orellana, M.; Pettinelli, P.; Poniachik, J. Increase in Long-Chain Polyunsaturated Fatty Acid n−6/n−3 Ratio in Relation to Hepatic Steatosis in Patients with Non-Alcoholic Fatty Liver Disease. Clin. Sci. 2004, 106, 635–643. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Mun, J.; Kim, S.; Yoon, H.-G.; You, Y.; Kim, O.-K.; Choi, K.-C.; Lee, Y.-H.; Lee, J.; Park, J.; Jun, W. Water Extract of Curcuma longa L. Ameliorates Non-Alcoholic Fatty Liver Disease. Nutrients 2019, 11, 2536. [Google Scholar] [CrossRef]
- Hu, B.; Wu, R.; Sun, J.; Shi, H.; Jia, C.; Liu, R.; Rong, J. Monitoring the Oxidation Process of Soybean Oil During Deep-Frying of Fish Cakes with 1H Nuclear Magnetic Resonance. Food Chem. 2023, 17, 100587. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, A.; Zappia, C.; Capocasale, M. Tomato Seed Oil: A Comparison of Extraction Systems and Solvents on Its Biodiesel and Edible Properties. Riv. Ital. Delle Sostanze Grasse 2017, 94, 149–160. [Google Scholar]
- Laulloo, S.J.; Bhowon, M.G.; Hoolash, A. Influence of Chemical Refining Processes on the Total Phenolics and Antioxidant Activity of Sunflower Oil. Int. J. Nutr. 2015, 1, 38–47. [Google Scholar] [CrossRef]
- Bueno-Borges, L.B.; Sartim, M.A.; Gil, C.C.; Sampaio, S.V.; Rodrigues, P.H.V.; Regitano-d’Arce, M.A.B. Sacha Inchi Seeds from Sub-Tropical Cultivation: Effects of Roasting on Antinutrients, Antioxidant Capacity and Oxidative Stability. J. Food Sci. Technol. 2018, 55, 4159–4166. [Google Scholar] [CrossRef] [PubMed]
- Cisneros, F.H.; Paredes, D.; Arana, A.; Cisneros-Zevallos, L. Chemical Composition, Oxidative Stability and Antioxidant Capacity of Oil Extracted from Roasted Seeds of Sacha-Inchi (Plukenetia volubilis L.). J. Agric. Food Chem. 2014, 62, 5191–5197. [Google Scholar] [CrossRef] [PubMed]
- Azzi, A. Molecular Mechanism of α-Tocopherol Action. Free Radic. Biol. Med. 2007, 43, 16–21. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Gan, R.Y.; Li, S.; Zhou, Y.; Li, A.N.; Xu, D.P.; Li, H.B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef]
- Chirinos, R.; Pedreschi, R.; Domínguez, G.; Campos, D. Comparison of the Physico-Chemical and Phytochemical Characteristics of the Oil of Two Plukenetia Species. Food Chem. 2015, 173, 1203–1206. [Google Scholar] [CrossRef]
- Chirinos, R.; Zuloeta, G.; Pedreschi, R.; Mignolet, E.; Larondelle, Y.; Campos, D. Sacha Inchi (Plukenetia volubilis): A Seed Source of Polyunsaturated Fatty Acids, Tocopherols, Phytosterols, Phenolic Compounds and Antioxidant Capacity. Food Chem. 2013, 141, 1732–1739. [Google Scholar] [CrossRef]
- Antonini, E.; Farina, A.; Scarpa, E.S.; Frati, A.; Ninfali, P. Quantity and Quality of Secoiridoids and Lignans in Extra Virgin Olive Oils: The Effect of Two-and Three-Way Decanters on Leccino and Raggiola Olive Cultivars. Int. J. Food Sci. Nutr. 2016, 67, 9–15. [Google Scholar] [CrossRef]
- Girgih, A.T.; Udenigwe, C.C.; Li, H.; Adebiyi, A.P.; Aluko, R.E. Kinetics of Enzyme Inhibition and Antihypertensive Effects of Hemp Seed (Cannabis sativa L.) Protein Hydrolysates. J. Am. Oil Chem. Soc. 2011, 88, 1767–1774. [Google Scholar] [CrossRef]
- Psomiadou, E.; Tsimidou, M.; Boskou, D. α-Tocopherol Content of Greek Virgin Olive Oils. J. Agric. Food Chem. 2000, 48, 1770–1775. [Google Scholar] [CrossRef]
- De Leonardis, A.; Macciola, V.; Lembo, G.; Aretini, A.; Nag, A. Studies on Oxidative Stabilisation of Lard by Natural Antioxidants Recovered from Olive-Oil Mill Wastewater. Food Chem. 2007, 100, 998–1004. [Google Scholar] [CrossRef]
- Ballus, C.A.; Meinhart, A.D.; de Souza Campos, F.A., Jr.; Godoy, H.T. Total Phenolics of Virgin Olive Oils Highly Correlate with the Hydrogen Atom Transfer Mechanism of Antioxidant Capacity. J. Am. Oil Chem. Soc. 2015, 92, 843–851. [Google Scholar] [CrossRef]
- Haman, N.; Bodner, M.; Ferrentino, G.; Scampicchio, M. Lipid Autoxidation of Fish, Lard, Corn and Linseed Oils by Isothermal Calorimetry. Ital. J. Food Sci. 2019, 31, 323–331. [Google Scholar] [CrossRef]
- Kim, H.J. Effect of α-, β-, γ-, and δ-Tocotrienol on the Oxidative Stability of Lard. J. Am. Oil Chem. Soc. 2014, 91, 777–782. [Google Scholar] [CrossRef]
- Pfalzgraf, A.; Frigg, M.; Steinhart, H. Alpha-Tocopherol Contents and Lipid Oxidation in Pork Muscle and Adipose Tissue during Storage. J. Agric. Food Chem. 1995, 43, 1339–1342. [Google Scholar] [CrossRef]
- Ghidurus, M.; Ilie, L.; Varga, M.; Mihalache, M. Review on Dietary Tocopherol Accumulation on Pork Tissues and Its Membrane Antioxidant Role Against Lipid Oxidation. AgroLife Sci. J. 2017, 6, 112–119. [Google Scholar]
- Martínez-Beamonte, R.; Navarro, M.A.; Acin, S.; Guillen, N.; Barranquero, C.; Arnal, C.; Surra, J.; Osada, J. Postprandial Changes in High Density Lipoproteins in Rats Subjected to Gavage Administration of Virgin Olive Oil. PLoS ONE 2013, 8, e55231. [Google Scholar] [CrossRef]
- Vitaglione, P.; Morisco, F.; Caporaso, N.; Fogliano, V. Dietary Antioxidant Compounds and Liver Health. Crit. Rev. Food Sci. Nutr. 2005, 44, 575–586. [Google Scholar] [CrossRef]
- Amato, R.; Canovai, A.; Melecchi, A.; Pezzino, S.; Corsaro, R.; Dal Monte, M.; Rusciano, D.; Bagnoli, P.; Cammalleri, M. Dietary Supplementation of Antioxidant Compounds Prevents Light-Induced Retinal Damage in a Rat Model. Biomedicines 2021, 9, 1177. [Google Scholar] [CrossRef]
- Negre-Salvayre, A.; Auge, N.; Ayala, V.; Basaga, H.; Boada, J.; Brenke, R.; Chapple, S.; Cohen, G.; Feher, J.; Grune, T. Pathological Aspects of Lipid Peroxidation. Free Radic. Res. 2010, 44, 1125–1171. [Google Scholar] [CrossRef]
- Smirne, C.; Croce, E.; Di Benedetto, D.; Cantaluppi, V.; Comi, C.; Sainaghi, P.P.; Minisini, R.; Grossini, E.; Pirisi, M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. Livers 2022, 2, 30–76. [Google Scholar] [CrossRef]
- Cunha, S.C.; Amaral, J.S.; Fernandes, J.O.; Oliveira, M.B.P. Quantification of Tocopherols and Tocotrienols in Portuguese Olive Oils Using HPLC with Three Different Detection Systems. J. Agric. Food Chem. 2006, 54, 3351–3356. [Google Scholar] [CrossRef] [PubMed]
- Flachs, P.; Mohamed-Ali, V.; Horakova, O.; Rossmeisl, M.; Hosseinzadeh-Attar, M.; Hensler, M.; Ruzickova, J.; Kopecky, J. Polyunsaturated Fatty Acids of Marine Origin Induce Adiponectin in Mice Fed a High-Fat Diet. Diabetologia 2006, 49, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Jilling, T.; Li, D.; Caplan, M.S. Polyunsaturated Fatty Acid Supplementation Alters Proinflammatory Gene Expression and Reduces the Incidence of Necrotizing Enterocolitis in a Neonatal Rat Model. Pediatr. Res. 2007, 61, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Ide, T. Dietary n-3 Fatty Acids Affect mRNA Level of Brown Adipose Tissue Uncoupling Protein 1, and White Adipose Tissue Leptin and Glucose Transporter 4 in the Rat. Br. J. Nutr. 2000, 84, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Flachs, P.; Horakova, O.; Brauner, P.; Rossmeisl, M.; Pecina, P.; Franssen-van Hal, N.; Ruzickova, J.; Sponarova, J.; Drahota, Z.; Vlcek, C. Polyunsaturated Fatty Acids of Marine Origin Upregulate Mitochondrial Biogenesis and Induce β-Oxidation in White Fat. Diabetologia 2005, 48, 2365–2375. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-W.; Chien, Y.-S.; Chen, Y.-J.; Ajuwon, K.M.; Mersmann, H.M.; Ding, S.-T. Role of n-3 Polyunsaturated Fatty Acids in Ameliorating the Obesity-Induced Metabolic Syndrome in Animal Models and Humans. Int. J. Mol. Sci. 2016, 17, 1689. [Google Scholar] [CrossRef] [PubMed]
- Pighin, D.; Karabatas, L.; Rossi, A.; Chicco, A.; Basabe, J.C.; Lombardo, Y.B. Fish Oil Affects Pancreatic Fat Storage, Pyruvate Dehydrogenase Complex Activity and Insulin Secretion in Rats Fed a Sucrose-Rich Diet. J. Nutr. 2003, 133, 4095–4101. [Google Scholar] [CrossRef]
- Guo, X.-F.; Sinclair, A.J.; Kaur, G.; Li, D. Differential Effects of EPA, DPA, and DHA on Cardio-Metabolic Risk Factors in High-Fat Diet Fed Mice. Prostaglandins Leukot. 2018, 136, 47–55. [Google Scholar] [CrossRef]
- Klop, B.; Elte, J.W.F.; Castro Cabezas, M. Dyslipidemia in Obesity: Mechanisms and Potential Targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef]
- Su, T.; Yang, Y.; Lai, S.; Jeong, J.; Jung, Y.; McConnell, M.; Utsumi, T.; Iwakiri, Y. Single-Cell Transcriptomics Reveals Zone-Specific Alterations of Liver Sinusoidal Endothelial Cells in Cirrhosis. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 1139–1161. [Google Scholar] [CrossRef]
- Ciubotariu, D.; Danciu, M.; Lupușoru, R.V.; Ghiciuc, C.M.; Cernescu, I.; Gheţu, N.; Lupei, M.; Lupușoru, C.E. Improvement in Serum Lipids and Liver Morphology after Supplementation of the Diet with Fish Oil is More Evident under Regular Feeding Conditions than Under High-Fat or Mixed Diets in Rats. Lipids Health Dis. 2020, 19, 162. [Google Scholar] [CrossRef]
- Kalupahana, N.S.; Claycombe, K.; Newman, S.J.; Stewart, T.; Siriwardhana, N.; Matthan, N.; Lichtenstein, A.H.; Moustaid-Moussa, N. Eicosapentaenoic Acid Prevents and Reverses Insulin Resistance in High-Fat Diet-Induced Obese Mice via Modulation of Adipose Tissue Inflammation. J. Nutr. 2010, 140, 1915–1922. [Google Scholar] [CrossRef] [PubMed]
- Miller, M. Dyslipidemia and Cardiovascular Risk: The Importance of Early Prevention. QJM 2009, 102, 657–667. [Google Scholar] [CrossRef]
- Martínez-Fernández, L.; Laiglesia, L.M.; Huerta, A.E.; Martínez, J.A.; Moreno-Aliaga, M.J. Omega-3 Fatty Acids and Adipose Tissue Function in Obesity and Metabolic Syndrome. Prostaglandins Other Lipid Mediat. 2015, 121, 24–41. [Google Scholar] [CrossRef]
- Abenavoli, L.; Milanović, M.; Milić, N.; Luzza, F.; Giuffrè, A.M. Olive Oil Antioxidants and Non-Alcoholic Fatty Liver Disease. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Ferramosca, A.; Zara, V. Modulation of Hepatic Steatosis by Dietary Fatty Acids. World J. Gastroenterol. 2014, 20, 1746. [Google Scholar] [CrossRef] [PubMed]
- Gorini, I.; Iorio, S.; Ciliberti, R.; Licata, M.; Armocida, G. Olive Oil in Pharmacological and Cosmetic Traditions. J. Cosmet. Dermatol. 2019, 18, 1575–1579. [Google Scholar] [CrossRef]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride Metabolism in the Liver. Compr. Physiol. 2017, 8, 1–22. [Google Scholar] [CrossRef]
- Zhan, Y.; Xu, T.; Tan, X. Two Parameters Reflect Lipid-Driven Inflammatory State in Acute Coronary Syndrome: Atherogenic Index of Plasma, Neutrophil–Lymphocyte Ratio. BMC Cardiovasc. Disord. 2016, 16, 96. [Google Scholar] [CrossRef]
- Naphatthalung, J.; Cing, L.S.; Kanokwiroon, K.; Radenahmad, N.; Jansakul, C. Effects of Six-Week Consumption of Lard or Palm Oil on Blood Pressure and Blood Vessel H2S in Middle-Aged Male Rats. Funct. Foods Health Dis. 2018, 8, 307–322. [Google Scholar] [CrossRef]
- Rasheed, R.A.; Elshikh, M.S.; Mohamed, M.O.; Darweesh, M.F.; Hussein, D.S.; Almutairi, S.M.; Embaby, A.S. Quercetin Mitigates the Adverse Effects of High Fat Diet on Pancreatic and Renal Tissues in Adult Male Albino Rats. J. King Saud Univ. Sci. 2022, 34, 101946. [Google Scholar] [CrossRef]
- Acosta-Montaño, P.; García-González, V. Effects of Dietary Fatty Acids in Pancreatic Beta Cell Metabolism, Implications in Homeostasis. Nutrients 2018, 10, 393. [Google Scholar] [CrossRef]
- Rabbani, P.I.; Alan, H.Z.; Chirtel, S.J.; Duvall, R.E.; Jackson, R.C.; Ruffin, G. Subchronic Toxicity of Fish Oil Concentrates in Male and Female Rats. J. Nutr. Sci. 2001, 47, 201–212. [Google Scholar] [CrossRef]
- Mopuri, R.; Kalyesubula, M.; Rosov, A.; Edery, N.; Moallem, U.; Dvir, H. Improved Folch Method for Liver-Fat Quantification. Front. Vet. Sci. 2021, 7, 594853. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.; Li, S.; Guo, F.; Li, A.; Wu, H.; Chen, J.; Pan, Q.; Liao, S.; Liu, H.-F. High-Fat Diet-Induced Renal Proximal Tubular Inflammatory Injury: Emerging Risk Factor of Chronic Kidney Disease. Front. Physiol. 2021, 12, 786599. [Google Scholar] [CrossRef]
- Lai, J.; Wang, H.L.; Zhang, X.; Wang, H.; Liu, X. Pathologic Diagnosis of Nonalcoholic Fatty Liver Disease. Arch. Pathol. Lab. Med. 2022, 146, 940–946. [Google Scholar] [CrossRef]
Peak No. | Retention Time (min) | Compounds | Peak Area (%) * | |
---|---|---|---|---|
A | 26.133 | Palmitic acid | C16:0 | 5.02 |
B | 32.724 | Stearic acid | C18:0 | 2.44 |
C | 33.952 | Oleic acid | C18:1 (ω-9) | 8.65 |
D | 36.388 | Linoleic acid | C18:2 (ω-6) | 35.17 |
E | 40.137 | Linolenic acid | C18:3 (ω-3) | 44.73 |
Identified Components (%) | 96.01 | |||
Unidentified Components (%) | 3.99 | |||
Total Saturated Fatty Acid (%) | 7.77 | |||
Total Unsaturated Fatty Acid (%) | 92.23 | |||
Monounsaturated fatty acids (%) | 9.01 | |||
Polyunsaturated fatty acids (%) | 83.22 | |||
Oleic: Linoleic acid (O/L) ratio (ω-9/ω-6) | 0.25 | |||
Linoleic: Linolenic acid (L/Ln) ratio (ω-6/ω-3) | 0.78 |
Variable | Control Group | Sacha Inchi Oil | Olive Oil | Lard Oil |
---|---|---|---|---|
General physical | ||||
Initial body weight (g) | 326.17 ± 7.28 | 325.00 ± 7.48 | 329.17 ± 9.43 | 327.83 ± 9.28 |
Final body weight (g) | 666.67 ± 49.72 | 641.80 ± 38.93 | 672.50 ± 58.97 | 685.00 ± 29.72 |
Total weight gain (g) | 340.50 ± 43.41 | 307.5 ± 34.41 | 333.33 ± 53.09 | 359.2 ± 26.31 |
Nasoanal length (cm) | 29.33 ± 0.61 | 28.60 ± 0.65 | 28.83 ± 0.98 | 29.00 ± 0.35 |
Lee index | 297.71 ± 7.58 | 301.63 ± 9.29 | 303.70 ± 2.92 | 303.95 ± 5.03 |
Serum biochemical parameters | ||||
Creatinine (mg/dL) | 0.35 ± 0.04 | 0.34 ± 0.04 | 0.34 ± 0.04 | 0.37 ± 0.04 |
BUN (mg/dL) | 16.30 ± 2.33 | 16.48 ± 1.16 | 16.57 ± 1.83 | 13.26 ± 2.38 |
ALT (U/L) | 24.50 ± 3.62 | 23.20 ± 3.83 | 25.80 ± 2.59 | 20.60 ± 2.30 |
AST (U/L) | 127.17 ± 37.36 | 93.00 ± 26.83 | 115.60 ± 21.84 | 106.80 ± 26.77 |
TC (mg/dL) | 51.50 ± 7.34 | 50.20 ± 2.59 | 62.83 ± 10.93 | 52.20 ± 7.56 |
TG (mg/dL) | 90.83 ± 30.20 | 81.40 ± 21.22 | 135.67 ± 58.40 | 79.80 ± 25.53 |
HDL-c (mg/dL) | 28.83 ± 4.79 | 29.80 ± 1.92 | 32.50 ± 7.58 | 29.00 ± 5.83 |
LDL-c (mg/dL) | 11.33 ± 2.07 | 11.40 ± 1.52 | 13.33 ± 3.78 | 10.80 ± 2.49 |
LDL-c/HDL-c ratio | 0.40 ± 0.07 | 0.34 ± 0.04 | 0.41 ± 0.04 | 0.38 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samrit, T.; Osotprasit, S.; Chaiwichien, A.; Suksomboon, P.; Chansap, S.; Athipornchai, A.; Changklungmoa, N.; Kueakhai, P. Cold-Pressed Sacha Inchi Oil: High in Omega-3 and Prevents Fat Accumulation in the Liver. Pharmaceuticals 2024, 17, 220. https://doi.org/10.3390/ph17020220
Samrit T, Osotprasit S, Chaiwichien A, Suksomboon P, Chansap S, Athipornchai A, Changklungmoa N, Kueakhai P. Cold-Pressed Sacha Inchi Oil: High in Omega-3 and Prevents Fat Accumulation in the Liver. Pharmaceuticals. 2024; 17(2):220. https://doi.org/10.3390/ph17020220
Chicago/Turabian StyleSamrit, Tepparit, Supawadee Osotprasit, Athit Chaiwichien, Phawiya Suksomboon, Supanan Chansap, Anan Athipornchai, Narin Changklungmoa, and Pornanan Kueakhai. 2024. "Cold-Pressed Sacha Inchi Oil: High in Omega-3 and Prevents Fat Accumulation in the Liver" Pharmaceuticals 17, no. 2: 220. https://doi.org/10.3390/ph17020220
APA StyleSamrit, T., Osotprasit, S., Chaiwichien, A., Suksomboon, P., Chansap, S., Athipornchai, A., Changklungmoa, N., & Kueakhai, P. (2024). Cold-Pressed Sacha Inchi Oil: High in Omega-3 and Prevents Fat Accumulation in the Liver. Pharmaceuticals, 17(2), 220. https://doi.org/10.3390/ph17020220