New Approaches to Overcoming Antimicrobial Resistance in Endophthalmitis
Abstract
:1. Introduction
2. Endophthalmitis: A Historical Perspective
3. Acute-Onset Postoperative Endophthalmitis
4. Endophthalmitis after Intravitreal Injections
5. Antimicrobial Resistance Associated with Endophthalmitis
6. Current Prophylactic Measures and Management Approaches
7. Stewardship in Ophthalmology
8. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. [Google Scholar]
- Das, T.; Joseph, J.; Simunovic, M.P.; Grzybowski, A.; Chen, K.-J.; Dave, V.P.; Sharma, S.; Staropoli, P.; Flynn, H. Consensus and Controversies in the Science of Endophthalmitis Management: Basic Research and Clinical Perspectives. Prog. Retin. Eye Res. 2023, 97, 101218. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Garcia, J.L.; Asencio-Duran, M.; Pastora-Salvador, N.; Vinciguerra, P.; Romano, M.R. Role of Inflammation in Endophthalmitis. Mediat. Inflamm. 2012, 2012, 196094. [Google Scholar] [CrossRef]
- Seamone, M.E.; Lewis, D.R.; Haidl, I.D.; Gupta, R.R.; O’ Brien, D.M.; Dickinson, J.; Samad, A.; Marshall, J.S.; Cruess, A.F. VEGF-A Is Increased in Exogenous Endophthalmitis. Can. J. Ophthalmol. 2017, 52, 277–282. [Google Scholar] [CrossRef]
- Schwartz, S.G.; Vaziri, K.; Kishor, K.; Flynn, H.W., Jr. Endophthalmitis: State of the Art. Clin. Ophthalmol. 2015, 95. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Relhan, N.; Forster, R.K.; Flynn, H.W. Endophthalmitis: Then and Now. Am. J. Ophthalmol. 2018, 187, xx–xxvii. [Google Scholar] [CrossRef] [PubMed]
- Endophthalmitis Vitrectomy Study Group. Results of the Endophthalmitis Vitrectomy Study. A Randomized Trial of Immediate Vitrectomy and of Intravenous Antibiotics for the Treatment of Postoperative Bacterial Endophthalmitis. Arch. Ophthalmol. 1995, 113, 1479–1496. [Google Scholar] [CrossRef]
- Grzybowski, A.; Turczynowska, M.; Schwartz, S.G.; Relhan, N.; Flynn, H.W. The Role of Systemic Antimicrobials in the Treatment of Endophthalmitis: A Review and an International Perspective. Ophthalmol. Ther. 2020, 9, 485–498. [Google Scholar] [CrossRef]
- Zafar, S.; Dun, C.; Srikumaran, D.; Wang, P.; Schein, O.D.; Makary, M.; Woreta, F. Endophthalmitis Rates among Medicare Beneficiaries Undergoing Cataract Surgery between 2011 and 2019. Ophthalmology 2022, 129, 250–257. [Google Scholar] [CrossRef]
- Chen, A.; Dun, C.; Schein, O.D.; Srikumaran, D.; Zafar, S.; Makary, M.; Woreta, F. Endophthalmitis Rates and Risk Factors, Following Intraocular Surgeries in the Medicare Population from 2016 to 2019. Br. J. Ophthalmol. 2023, 108, 232–237. [Google Scholar] [CrossRef]
- Du, D.; Wagoner, A.; Barone, S.B.; Zinderman, C.E.; Kelman, J.A.; Macurdy, T.E.; Forshee, R.A.; Worrall, C.M.; Izurieta, H.S. Incidence of Endophthalmitis after Corneal Transplant or Cataract Surgery in a Medicare Population. Ophthalmology 2014, 121, 290–298. [Google Scholar] [CrossRef]
- Keay, L.; Gower, E.W.; Cassard, S.D.; Tielsch, J.M.; Schein, O.D. Postcataract Surgery Endophthalmitis in the United States: Analysis of the Complete 2003 to 2004 Medicare Database of Cataract Surgeries. Ophthalmology 2012, 119, 914–922. [Google Scholar] [CrossRef]
- Stein, J.D.; Grossman, D.S.; Mundy, K.M.; Sugar, A.; Sloan, F.A. Severe Adverse Events after Cataract Surgery among Medicare Beneficiaries. Ophthalmology 2011, 118, 1716–1723. [Google Scholar] [CrossRef]
- Chiang, M.F.; Sommer, A.; Rich, W.L.; Lum, F.; Parke, D.W., II. The 2016 American Academy of Ophthalmology IRIS Registry (Intelligent Research in Sight) Database: Characteristics and Methods. Ophthalmology 2018, 125, 1143–1148. [Google Scholar] [CrossRef]
- Lacy, M.; Kung, T.P.H.; Owen, J.P.; Yanagihara, R.T.; Blazes, M.; Pershing, S.; Hyman, L.G.; Van Gelder, R.N.; Lee, A.Y.; Lee, C.S.; et al. Endophthalmitis Rate in Immediately Sequential versus Delayed Sequential Bilateral Cataract Surgery within the Intelligent Research in Sight (IRIS®) Registry Data. Ophthalmology 2022, 129, 129–138. [Google Scholar] [CrossRef]
- Kim, S.H.; Yu, M.H.; Lee, J.H.; Kim, S.W.; Rah, S.H. Endophthalmitis after Cataract Surgery in Korea: A Nationwide Study Evaluating Incidence and Risk Factors in a Korean Population. Yonsei Med. J. 2019, 60, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Roy, A.; Sharma, S. Endophthalmitis after Cataract Surgery: Epidemiology, Risk Factors, and Evidence on Protection. Curr. Opin. Ophthalmol. 2017, 28, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Althiabi, S.; Aljbreen, A.J.; Alshutily, A.; Althwiny, F.A. Postoperative Endophthalmitis after Cataract Surgery: An Update. Cureus 2022, 14, e22003. [Google Scholar] [CrossRef] [PubMed]
- Karimi, S.; Fakhri, N.; Ansari, I.; Hassanpour, K.; Safi, S. Incidence and Management of Acute Endophthalmitis after Intravitreal Injection of Bevacizumab. Int. Ophthalmol. 2022, 42, 1827–1833. [Google Scholar] [CrossRef] [PubMed]
- Torres-Costa, S.; Ramos, D.; Brandão, E.; Carneiro, Â.; Rosas, V.; Rocha-Sousa, A.; Falcão-Reis, F.; Falcão, M. Incidence of Endophthalmitis after Intravitreal Injection with and without Topical Antibiotic Prophylaxis. Eur. J. Ophthalmol. 2021, 31, 600–606. [Google Scholar] [CrossRef]
- Reibaldi, M.; Pulvirenti, A.; Avitabile, T.; Bonfiglio, V.; Russo, A.; Mariotti, C.; Bucolo, C.; Mastropasqua, R.; Parisi, G.; Longo, A. Pooled estimates of incidence of endophthalmitis after intravitreal injection of anti–vascular endothelial growth factor agents with and without topical antibiotic prophylaxis. Retina 2018, 38, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mishra, C.; Lalitha, P.; Rameshkumar, G.; Agrawal, R.; Balne, P.K.; Iswarya, M.; Kannan, N.B.; Ramasamy, K. Incidence of Endophthalmitis after Intravitreal Injections: Risk Factors, Microbiology Profile, and Clinical Outcomes. Ocul. Immunol. Inflamm. 2018, 26, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Bergamo, V.C.; Nakayama, L.F.; De Moraes, N.S.B.; Yu, M.C.Z.; Höfling-Lima, A.L.; Maia, M. Bacterial Endophthalmitis Following Anti-VEGF Intravitreal Injections: A Retrospective Case Series. Int. J. Retina Vitreous 2023, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Yannuzzi, N.A.; Gregori, N.Z.; Rosenfeld, P.J.; Relhan, N.; Patel, N.A.; Si, N.; Miller, D.; Dubovy, S.R.; Smiddy, W.E.; Schwartz, S.G.; et al. Endophthalmitis Associated with Intravitreal Injections of Anti-VEGF Agents at a Tertiary Referral Center: In-House and Referred Cases. Ophthalmic Surg. Lasers Imaging Retina 2018, 49, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.N.; Storey, P.P.; Kim, J.S.; Obeid, A.; Pancholy, M.; Hsu, J.; Garg, S.J. Systemic Immunosuppression and Risk of Endophthalmitis after Intravitreal Anti-Vascular Endothelial Growth Factor Injections. Ophthalmic Surg. Lasers Imaging Retina 2021, 52, S17–S22. [Google Scholar] [CrossRef] [PubMed]
- Stem, M.S.; Rao, P.; Lee, I.J.; Woodward, M.A.; Faia, L.J.; Wolfe, J.D.; Capone, A.; Covert, D.; Dass, A.B.; Drenser, K.A.; et al. Predictors of Endophthalmitis after Intravitreal Injection: A Multivariable Analysis Based on Injection Protocol and Povidone Iodine Strength. Ophthalmol. Retina 2019, 3, 3–7. [Google Scholar] [CrossRef]
- Bavinger, J.C.; Yu, Y.; VanderBeek, B.L. Comparative Risk of Endophthalmitis after Intravitreal Injection with Bevacizumab, Aflibercept, and Ranibizumab. Retina 2019, 39, 2004–2011. [Google Scholar] [CrossRef]
- Finkelstein, M.; Katz, G.; Zur, D.; Rubowitz, A.; Moisseiev, E. The Effect of Syringe-Filling Technique on the Risk for Endophthalmitis after Intravitreal Injection of Anti-VEGF Agents. Ophthalmologica 2022, 245, 34–40. [Google Scholar] [CrossRef]
- Piscitello, S.; Vadalà, M. Postoperative Endophthalmitis Incidence after Intravitreal Therapy: A Comparison of Two Different Preoperative Antibiotic Prophylaxis. Int. Ophthalmol. 2017, 37, 787–794. [Google Scholar] [CrossRef]
- Veritti, D.; Sarao, V.; Chhablani, J.; Loewenstein, A.; Lanzetta, P.; Bandello, F.; Midena, E.; Nicolò, M.; Parravano, M.; Pilotto, E.; et al. The Ideal Intravitreal Injection Setting: Office, Ambulatory Surgery Room or Operating Theatre? A Narrative Review and International Survey. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 3299–3306. [Google Scholar] [CrossRef]
- Morioka, M.; Takamura, Y.; Nagai, K.; Yoshida, S.; Mori, J.; Takeuchi, M.; Sawada, T.; Sone, K.; Fukuyama, H.; Kusuhara, S.; et al. Incidence of Endophthalmitis after Intravitreal Injection of an Anti-VEGF Agent with or without Topical Antibiotics. Sci. Rep. 2020, 10, 22122. [Google Scholar] [CrossRef]
- Li, A.L.; Wykoff, C.C.; Wang, R.; Chen, E.; Benz, M.S.; Fish, R.H.; Wong, T.P.; Major, J.C.; Brown, D.M.; Schefler, A.C.; et al. Endophthalmitis after Intravitreal Injection Role of Prophylactic Topical Ophthalmic Antibiotics. Retina 2016, 36, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Biswas, P.; Batra, S.; Gurha, N.; Maksane, N. Emerging Antimicrobial Resistance and Need for Antimicrobial Stewardship for Ocular Infections in India: A Narrative Review. Indian J. Ophthalmol. 2022, 70, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Kunkler, A.L.; Sengillo, J.D.; Al-Khersan, H.; Fan, K.C.; Laura, D.M.; Miller, D.; Donaldson, K.E.; Yoo, S.H.; Yannuzzi, N.A.; Sridhar, J.; et al. Acute-Onset Postoperative Endophthalmitis after Cataract Surgery Performed by Resident and Attending Physicians at a University Teaching Hospital. J. Cataract Refract. Surg. 2022, 48, 1312–1317. [Google Scholar] [CrossRef]
- Staropoli, P.C.; Flynn, H.W.; Miller, D.; Persad, P.J.; Vanner, E.A. Endophthalmitis Caused by Streptococcus: Clinical Outcomes and Antimicrobial Susceptibilities 2014–2019. Ophthalmic Surg. Lasers Imaging Retina 2021, 52, 182–189. [Google Scholar] [CrossRef]
- McDermott, A.M. Antimicrobial Compounds in Tears. Exp. Eye Res. 2013, 117, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Ranjith, K.; Sharma, S.; Shivaji, S. Microbes of the Human Eye: Microbiome, Antimicrobial Resistance and Biofilm Formation. Exp. Eye Res. 2021, 205, 108476. [Google Scholar] [CrossRef]
- Grzybowski, A.; Brona, P.; Kim, S.J. Microbial Flora and Resistance in Ophthalmology: A Review. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Relhan, N.; Pathengay, A.; Schwartz, S.G.; Flynn, H.W. Emerging Worldwide Antimicrobial Resistance, Antibiotic Stewardship and Alternative Intravitreal Agents for the Treatment of Endophthalmitis. Retina 2017, 37, 811–818. [Google Scholar] [CrossRef]
- Iwasaki, T.; Nejima, R.; Miyata, K. Ocular Surface Flora and Prophylactic Antibiotics for Cataract Surgery in the Age of Antimicrobial Resistance. Jpn. J. Ophthalmol. 2022, 66, 111–118. [Google Scholar] [CrossRef]
- Zegans, M.E.; Van Gelder, R.N. Considerations in Understanding the Ocular Surface Microbiome. Am. J. Ophthalmol. 2014, 158, 420–422. [Google Scholar] [CrossRef]
- Lodha, D.; Karolia, R.; Sharma, S.; Joseph, J.; Das, T.; Dave, V. Biofilm Formation and Its Effect on the Management of Culture-Positive Bacterial Endophthalmitis. Indian J. Ophthalmol. 2022, 70, 472. [Google Scholar] [CrossRef]
- Bari, A.; Chawla, R.; Mishra, D.; Das, U.; Hasan, N.; Satpathy, G.; Velpandian, T.; Azad, S.; Venkatesh, P.; Vohra, R.; et al. Real-Life Comparison of Three Intravitreal Antibiotic Drug Regimens in Endophthalmitis. Indian J. Ophthalmol. 2022, 70, 1696. [Google Scholar] [CrossRef] [PubMed]
- Bispo, P.J.M.; Sahm, D.F.; Asbell, P.A. A Systematic Review of Multi-Decade Antibiotic Resistance Data for Ocular Bacterial Pathogens in the United States. Ophthalmol. Ther. 2022, 11, 503–520. [Google Scholar] [CrossRef]
- Asbell, P.A.; Colby, K.A.; Deng, S.; McDonnell, P.; Meisler, D.M.; Raizman, M.B.; Sheppard, J.D.; Sahm, D.F. Ocular TRUST: Nationwide Antimicrobial Susceptibility Patterns in Ocular Isolates. Am. J. Ophthalmol. 2008, 145, 951–958.e1. [Google Scholar] [CrossRef] [PubMed]
- Asbell, P.A.; Sanfilippo, C.M.; Sahm, D.F.; DeCory, H.H. Trends in Antibiotic Resistance among Ocular Microorganisms in the United States from 2009 to 2018. JAMA Ophthalmol. 2020, 138, 439. [Google Scholar] [CrossRef] [PubMed]
- Rameshkumar, G.; Dhandapani, R.; Lalitha, P.; Rajapandian, S.G.K.; Palanivel, V.; Thangavelu, S.; Alyousef, A.A.; Albalawi, T.; Alam, P.; Zubair, M.; et al. Prevalence and Molecular Characterization of Metallo β-Lactamase Producing Gram-Negative Pathogens Causing Eye Infections. Front. Public. Health 2022, 10, 870354. [Google Scholar] [CrossRef]
- Dogra, M.; Sharma, M.; Katoch, D.; Dogra, M. Management of Multi Drug Resistant Endogenous Klebsiella Pneumoniae Endophthalmitis with Intravitreal and Systemic Colistin. Indian J. Ophthalmol. 2018, 66, 596. [Google Scholar] [CrossRef]
- Ozcimen, M.; Ozcimen, S.; Sakarya, Y.; Sakarya, R.; Goktas, S.; Alpfidan, I.; Erdogan, E. Ocular Penetration of Intravenously Administered Colistin in Rabbit Uveitis Model. J. Ocul. Pharmacol. Ther. 2014, 30, 681–685. [Google Scholar] [CrossRef]
- Nation, R.L.; Li, J.; Cars, O.; Couet, W.; Dudley, M.N.; Kaye, K.S.; Mouton, J.W.; Paterson, D.L.; Tam, V.H.; Theuretzbacher, U.; et al. Framework for Optimisation of the Clinical Use of Colistin and Polymyxin B: The Prato Polymyxin Consensus. Lancet Infect. Dis. 2015, 15, 225–234. [Google Scholar] [CrossRef]
- Asbell, P.A.; Sanfilippo, C.M.; Mah, F.S. Antibiotic Susceptibility of Bacterial Pathogens Isolated from the Aqueous and Vitreous Humour in the Antibiotic Resistance Monitoring in Ocular MicRoorganisms (ARMOR) Surveillance Study: 2009–2020 Update. J. Glob. Antimicrob. Resist. 2022, 29, 236–240. [Google Scholar] [CrossRef]
- Asbell, P.A.; Sanfilippo, C.M.; DeCory, H.H. Antibiotic Resistance of Bacterial Pathogens Isolated from the Conjunctiva in the Antibiotic Resistance Monitoring in Ocular MicRoorganisms (ARMOR) Surveillance Study (2009–2021). Diagn. Microbiol. Infect. Dis. 2024, 108, 116069. [Google Scholar] [CrossRef]
- Han, D.P.; Wisniewski, S.R.; Wilson, L.A.; Barza, M.; Vine, A.K.; Doft, B.H.; Kelsey, S.F. Spectrum and susceptibilities of microbiologic isolates in the Endophthalmitis Vitrectomy Study. Am. J. Ophthalmol. 1996, 122, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, L.J.; Dawkins, R.C.H.; Sheorey, H.; McGuinness, M.B.; Hurley, A.H.; Allen, P.J. Gram-negative Endophthalmitis: A Prospective Study Examining the Microbiology, Clinical Associations and Visual Outcomes Following Infection. Clin. Exp. Ophthalmol. 2020, 48, 813–820. [Google Scholar] [CrossRef]
- Wang, T.; Jain, S.; Glidai, Y.; Dua, P.; Dempsey, K.S.; Shakin, E.; Chu, D.S.; Epstein, M.; Ha, L.G. Extensively Drug-Resistant Pseudomonas Aeruginosa Panophthalmitis from Contaminated Artificial Tears. IDCases 2023, 33, e01839. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Outbreak of Extensively Drug-Resistant Pseudomonas Aeruginosa Associated with Artificial Tears. Available online: https://www.cdc.gov/hai/outbreaks/crpa-artificial-tears.html (accessed on 8 January 2024).
- Shoji, M.K.; Gutkind, N.E.; Meyer, B.I.; Yusuf, R.; Sengillo, J.D.; Amescua, G.; Miller, D. Multidrug-Resistant Pseudomonas aeruginosa Keratitis Associated with Artificial Tear Use. JAMA Ophthalmol. 2023, 141, 499. [Google Scholar] [CrossRef] [PubMed]
- Das, A.V.; Joseph, J. The Landscape of Bacterial Antibiotic Susceptibility in a Multi-Tier Ophthalmology Network in India: An Electronic Medical Record Driven Analytics Report. J. Med. Microbiol. 2022, 71, 001598. [Google Scholar] [CrossRef]
- Gentile, R.C.; Shukla, S.; Shah, M.; Ritterband, D.C.; Engelbert, M.; Davis, A.; Hu, D.-N. Microbiological Spectrum and Antibiotic Sensitivity in Endophthalmitis. Ophthalmology 2014, 121, 1634–1642. [Google Scholar] [CrossRef]
- Joseph, J.; Karoliya, R.; Sheba, E.; Sharma, S.; Bagga, B.; Garg, P. Trends in the Microbiological Spectrum of Nonviral Keratitis at a Single Tertiary Care Ophthalmic Hospital in India: A Review of 30 Years. Cornea 2023, 42, 837–846. [Google Scholar] [CrossRef]
- Alter, S.J.; Sanfilippo, C.M.; Asbell, P.A.; DeCory, H.H. Antibiotic Resistance among Pediatric-Sourced Ocular Pathogens: 8-Year Findings from the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) Surveillance Study. Pediatr. Infect. Dis. J. 2019, 38, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Yap, A.; Muttaiyah, S.; Welch, S.; Niederer, R.L. Role of Antimicrobial Resistance in Outcomes of Acute Endophthalmitis. Antibiotics 2023, 12, 1246. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-J.; Sun, M.-H.; Hou, C.-H.; Chen, H.-C.; Chen, Y.-P.; Wang, N.-K.; Liu, L.; Wu, W.-C.; Chou, H.-D.; Kang, E.Y.-C.; et al. Susceptibility of Bacterial Endophthalmitis Isolates to Vancomycin, Ceftazidime, and Amikacin. Sci. Rep. 2021, 11, 15878. [Google Scholar] [CrossRef] [PubMed]
- Dave, V.P.; Pathengay, A.; Braimah, I.Z.; Panchal, B.; Sharma, S.; Pappuru, R.R.; Mathai, A.; Tyagi, M.; Narayanan, R.; Jalali, S.; et al. Enterococcus Endophthalmitis: Clinical Settings, Antimicrobial Susceptibility, and Management Outcomes. Retina 2020, 40, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Haas, W.; Pillar, C.M.; Torres, M.; Morris, T.W.; Sahm, D.F. Monitoring Antibiotic Resistance in Ocular Microorganisms: Results From the Antibiotic Resistance Monitoring in Ocular MicRorganisms (ARMOR) 2009 Surveillance Study. Am. J. Ophthalmol. 2011, 152, 567–574.e3. [Google Scholar] [CrossRef]
- Relhan, N.; Albini, T.A.; Pathengay, A.; Kuriyan, A.E.; Miller, D.; Flynn, H.W. Endophthalmitis Caused by Gram-Positive Organisms with Reduced Vancomycin Susceptibility: Literature Review and Options for Treatment. Br. J. Ophthalmol. 2016, 100, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Nanayakkara, U.; Khan, M.A.; Hargun, D.K.; Sivagnanam, S.; Samarawickrama, C. Ocular Streptococcal Infections: A Clinical and Microbiological Review. Surv. Ophthalmol. 2023, 68, 678–696. [Google Scholar] [CrossRef] [PubMed]
- Shivaramaiah, H.S.; Relhan, N.; Pathengay, A.; Mohan, N.; Flynn, H.W. Endophthalmitis Caused by Gram-Positive Bacteria Resistant to Vancomycin: Clinical Settings, Causative Organisms, Antimicrobial Susceptibilities, and Treatment Outcomes. Am. J. Ophthalmol. Case Rep. 2018, 10, 211–214. [Google Scholar] [CrossRef]
- Ranjan, R.; Agarwal, M.; Singh, S.; Mayor, R.; Paul, L.; Gandhi, A.; Sapra, N. Microbiological and Antibiotic Sensitivity Profile of Postoperative Endophthalmitis in a Tertiary Eye Care Hospital of North India. Nepal. J. Ophthalmol. 2021, 13, 3–10. [Google Scholar] [CrossRef]
- Rangel, C.M.; Parra, M.M.; Corrales, M.I.; Garcia, D.; Sánchez-Ávila, R.; Varón, C.L.; Villarreal, D.; Tello, A.; Galvis, V. Endophthalmitis in Ophthalmological Referral Centre in Colombia: Aetiology and Microbial Resistance. Czech Slovak Ophthalmol. 2022, 78, 160–173. [Google Scholar] [CrossRef]
- Dave, V.P.; Pathengay, A.; Nishant, K.; Pappuru, R.R.; Sharma, S.; Sharma, P.; Narayanan, R.; Jalali, S.; Mathai, A.; Das, T. Clinical Presentations, Risk Factors and Outcomes of Ceftazidime-resistant Gram-negative Endophthalmitis. Clin. Exp. Ophthalmol. 2017, 45, 254–260. [Google Scholar] [CrossRef]
- Thomas, R.K.; Melton, R.; Vollmer, P.M.; Asbell, P.A. In Vitro Antibiotic Resistance among Bacteria from the Cornea in the Antibiotic Resistance Monitoring in Ocular MicRoorganisms Surveillance Study. Optom. Vis. Sci. 2021, 98, 1113–1121. [Google Scholar] [CrossRef]
- Benz, M.S.; Scott, I.U.; Flynn, H.W.; Unonius, N.; Miller, D. Endophthalmitis Isolates and Antibiotic Sensitivities: A 6-Year Review of Culture-Proven Cases. Am. J. Ophthalmol. 2004, 137, 38–42. [Google Scholar] [CrossRef]
- Simina, D.S.; Ilie, L.; Costeliu, O.; Ana Cristina, G.; Liliana, M.V.; Aurelian, M.G. The Ocular Surface Bacterial Contamination and Its Management in the Prophylaxis of Post Cataract Surgery Endophthalmitis. Rom. J. Ophthalmol. 2021, 65, 2–9. [Google Scholar] [CrossRef]
- Ciulla, T.A.; Starr, M.B.; Masket, S. Bacterial Endophthalmitis Prophylaxis for Cataract Surgery. Ophthalmology 2002, 109, 13–24. [Google Scholar] [CrossRef]
- Inoue, Y.; Usui, M.; Ohashi, Y.; Shiota, H.; Yamazaki, T. Preoperative Disinfection of the Conjunctival Sac with Antibiotics and Iodine Compounds: A Prospective Randomized Multicenter Study. Jpn. J. Ophthalmol. 2008, 52, 151–161. [Google Scholar] [CrossRef]
- Zaharia, A.-C.; Dumitrescu, O.-M.; Rogoz, R.-E.; Dimirache, A.E.; Zemba, M. Preoperative Antisepsis in Ophthalmic Surgery (A Review). Rom. J. Ophthalmol. 2021, 65, 120–124. [Google Scholar] [CrossRef]
- Wu, P.-C.; Li, M.; Chang, S.-J.; Teng, M.-C.; Yow, S.-G.; Shin, S.-J.; Kuo, H.-K. Risk of Endophthalmitis After Cataract Surgery Using Different Protocols for Povidone– Iodine Preoperative Disinfection. J. Ocul. Pharmacol. Ther. 2006, 22, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Barry, P.; Cordoves, L.; Gardner, S. ESCRS Guidelines for Prevention and Treatment of Endophthalmitis Following Cataract Surgery: Data, Dilemmas and Conclusions; ESCRS: London, UK, 2018. [Google Scholar]
- Carrim, Z.I.; Mackie, G.; Gallacher, G.; Wykes, W.N. The Efficacy of 5% Povidone-Iodine for 3 Minutes Prior to Cataract Surgery. Eur. J. Ophthalmol. 2009, 19, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Steinsapir, K.D.; Woodward, J.A. Chlorhexidine Keratitis: Safety of Chlorhexidine as a Facial Antiseptic. Dermatol. Surg. 2017, 43, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.M.; Oetting, T.A.; Tweeten, J.P.; Carter, K.; Lee, B.S.; Lin, S.; Nanji, A.A.; Shorstein, N.H.; Musch, D.C. Cataract in the Adult Eye Preferred Practice Pattern®. Ophthalmology 2022, 129, P1–P126. [Google Scholar] [CrossRef] [PubMed]
- Peyman, A.; Hosseini, M.; Narimani, T. Comparison of the Effects of Povidone-Iodine 5%, Polyhexamethylene Biguanide, and Chlorhexidine as a Preoperative Antiseptic in Endophthalmitis Prophylaxis in Patients Undergoing Phacoemulsification Cataract Surgery. Adv. Biomed. Res. 2020, 9, 15. [Google Scholar] [CrossRef]
- Halachimi-Eyal, O.; Lang, Y.; Keness, Y.; Miron, D. Preoperative Topical Moxifloxacin 0.5% and Povidone–Iodine 5.0% versus Povidone–Iodine 5.0% Alone to Reduce Bacterial Colonization in the Conjunctival Sac. J. Cataract Refract. Surg. 2009, 35, 2109–2114. [Google Scholar] [CrossRef] [PubMed]
- Felfeli, T.; Miranda, R.N.; Kaur, J.; Chan, C.C.; Naimark, D.M.J. Cost-Effectiveness of Preoperative Topical Antibiotic Prophylaxis for Endophthalmitis Following Cataract Surgery. Am. J. Ophthalmol. 2023, 247, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Herrinton, L.J.; Shorstein, N.H.; Paschal, J.F.; Liu, L.; Contreras, R.; Winthrop, K.L.; Chang, W.J.; Melles, R.B.; Fong, D.S. Comparative Effectiveness of Antibiotic Prophylaxis in Cataract Surgery. Ophthalmology 2016, 123, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Shorstein, N.H.; Myers, W.G. Drop-Free Approaches for Cataract Surgery. Curr. Opin. Ophthalmol. 2020, 31, 67–73. [Google Scholar] [CrossRef]
- Assil, K.K.; Greenwood, M.D.; Gibson, A.; Vantipalli, S.; Metzinger, J.L.; Goldstein, M.H. Dropless Cataract Surgery: Modernizing Perioperative Medical Therapy to Improve Outcomes and Patient Satisfaction. Curr. Opin. Ophthalmol. 2021, 32, S1–S12. [Google Scholar] [CrossRef]
- Lindstrom, R.; Galloway, M.; Grzybowski, A.; Liegner, J. Dropless Cataract Surgery: An Overview. Curr. Pharm. Des. 2017, 23, 558–564. [Google Scholar] [CrossRef]
- Chang, D.F.; Rhee, D.J. Antibiotic Prophylaxis of Postoperative Endophthalmitis after Cataract Surgery: Results of the 2021 ASCRS Member Survey. J. Cataract Refract. Surg. 2022, 48, 3–7. [Google Scholar] [CrossRef]
- Endophthalmitis Study Group. European Society of Cataract & Refractive Surgeons Prophylaxis of Postoperative Endophthalmitis Following Cataract Surgery: Results of the ESCRS Multicenter Study and Identification of Risk Factors. J. Cataract Refract. Surg. 2007, 33, 978–988. [Google Scholar] [CrossRef]
- Melega, M.V.; Alves, M.; Lira, R.P.C.; da Silva, I.C.; Ferreira, B.G.; Filho, H.L.G.A.; Chaves, F.R.P.; Martini, A.A.F.; Freire, L.M.D.; dos Reis, R.; et al. Safety and Efficacy of Intracameral Moxifloxacin for Prevention of Post-Cataract Endophthalmitis: Randomized Controlled Clinical Trial. J. Cataract Refract. Surg. 2019, 45, 343–350. [Google Scholar] [CrossRef]
- Romero, P.; Méndez, I.; Salvat, M.; Fernández, J.; Almena, M. Intracameral Cefazolin as Prophylaxis against Endophthalmitis in Cataract Surgery. J. Cataract Refract. Surg. 2006, 32, 438–441. [Google Scholar] [CrossRef]
- Matsuura, K.; Miyoshi, T.; Suto, C.; Akura, J.; Inoue, Y. Efficacy and Safety of Prophylactic Intracameral Moxifloxacin Injection in Japan. J. Cataract Refract. Surg. 2013, 39, 1702–1706. [Google Scholar] [CrossRef]
- Beselga, D.; Campos, A.; Castro, M.; Fernandes, C.; Carvalheira, F.; Campos, S.; Mendes, S.; Neves, A.; Campos, J.; Violante, L.; et al. Postcataract Surgery Endophthalmitis after Introduction of the ESCRS Protocol: A 5-Year Study. Eur. J. Ophthalmol. 2014, 24, 516–519. [Google Scholar] [CrossRef]
- Haripriya, A.; Chang, D.F.; Namburar, S.; Smita, A.; Ravindran, R.D. Efficacy of Intracameral Moxifloxacin Endophthalmitis Prophylaxis at Aravind Eye Hospital. Ophthalmology 2016, 123, 302–308. [Google Scholar] [CrossRef]
- Li, A.; Shao, J.; Gans, R.; Bena, J.; Goshe, J. Postoperative Endophthalmitis Before and After Preferred Utilization of Prophylactic Intracameral Antibiotics for Phacoemulsification Cataract Surgeries at Cole Eye Institute. Eye Contact Lens Sci. Clin. Pract. 2019, 45, 306–309. [Google Scholar] [CrossRef]
- Bowen, R.C.; Zhou, A.X.; Bondalapati, S.; Lawyer, T.W.; Snow, K.B.; Evans, P.R.; Bardsley, T.; McFarland, M.; Kliethermes, M.; Shi, D.; et al. Comparative Analysis of the Safety and Efficacy of Intracameral Cefuroxime, Moxifloxacin and Vancomycin at the End of Cataract Surgery: A Meta-Analysis. Br. J. Ophthalmol. 2018, 102, 1268–1276. [Google Scholar] [CrossRef]
- de Sousa Casavechia, L.N.; Meireles, A.C.; Schapira, E.; Fernandes, R.A.B.; Fernandes, A.G. The Impact of Antibiotic Prophylaxis with Intracameral Cefuroxime on Postoperative Infectious Endophthalmitis Rates in a High-Volume Cataract Surgery Center. Sci. Rep. 2023, 13, 18031. [Google Scholar] [CrossRef]
- Dave, V.; Singh, V.; Reddy, J.; Sharma, S.; Joseph, J.; Das, T. Clinical Features and Microbiology of Post-Cataract Surgery Endophthalmitis with and without Intracameral Moxifloxacin Prophylaxis: Endophthalmitis Prophylaxis Study Report 3. Indian J. Ophthalmol. 2022, 70, 158. [Google Scholar] [CrossRef]
- Moser, C.L.; Lecumberri Lopez, M.; Garat, M.; Martín-Baranera, M. Prophylactic Intracameral Cefazolin and Postoperative Topical Moxifloxacin after Cataract Surgery: Endophthalmitis Risk Reduction and Safety Results in a 16-Year Study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 2185–2191. [Google Scholar] [CrossRef]
- Rathi, V.; Sharma, S.; Das, T.; Khanna, R. Endophthalmitis Prophylaxis Study, Report 2: Intracameral Antibiotic Prophylaxis with or without Postoperative Topical Antibiotic in Cataract Surgery. Indian J. Ophthalmol. 2020, 68, 2451. [Google Scholar] [CrossRef]
- Kato, A.; Horita, N.; Namkoong, H.; Nomura, E.; Masuhara, N.; Kaneko, T.; Mizuki, N.; Takeuchi, M. Prophylactic Antibiotics for Postcataract Surgery Endophthalmitis: A Systematic Review and Network Meta-Analysis of 6.8 Million Eyes. Sci. Rep. 2022, 12, 17416. [Google Scholar] [CrossRef]
- Kessel, L.; Flesner, P.; Andresen, J.; Erngaard, D.; Tendal, B.; Hjortdal, J. Antibiotic Prevention of Postcataract Endophthalmitis: A Systematic Review and Meta-analysis. Acta Ophthalmol. 2015, 93, 303–317. [Google Scholar] [CrossRef]
- Haripriya, A.; Chang, D.F.; Ravindran, R.D. Endophthalmitis Reduction with Intracameral Moxifloxacin in Eyes with and without Surgical Complications: Results from 2 Million Consecutive Cataract Surgeries. J. Cataract Refract. Surg. 2019, 45, 1226–1233. [Google Scholar] [CrossRef]
- Haripriya, A.; Chang, D.F.; Ravindran, R.D. Endophthalmitis Reduction with Intracameral Moxifloxacin Prophylaxis. Ophthalmology 2017, 124, 768–775. [Google Scholar] [CrossRef]
- Daien, V.; Papinaud, L.; Gillies, M.C.; Domerg, C.; Nagot, N.; Lacombe, S.; Daures, J.P.; Carriere, I.; Villain, M. Effectiveness and Safety of an Intracameral Injection of Cefuroxime for the Prevention of Endophthalmitis after Cataract Surgery with or without Perioperative Capsular Rupture. JAMA Ophthalmol. 2016, 134, 810. [Google Scholar] [CrossRef]
- Lundström, M.; Friling, E.; Montan, P. Risk Factors for Endophthalmitis after Cataract Surgery: Predictors for Causative Organisms and Visual Outcomes. J. Cataract Refract. Surg. 2015, 41, 2410–2416. [Google Scholar] [CrossRef]
- Murphy, C.C.; Nicholson, S.; Quah, S.A.; Batterbury, M.; Neal, T.; Kaye, S.B. Pharmacokinetics of Vancomycin Following Intracameral Bolus Injection in Patients Undergoing Phacoemulsification Cataract Surgery. Br. J. Ophthalmol. 2007, 91, 1350–1353. [Google Scholar] [CrossRef]
- Titiyal, J.; Kaur, M. Role of Intracameral Antibiotics in Endophthalmitis Prophylaxis Following-Cataract Surgery. Indian. J. Ophthalmol. 2020, 68, 688. [Google Scholar] [CrossRef]
- Arshinoff, S.A.; Modabber, M. Dose and Administration of Intracameral Moxifloxacin for Prophylaxis of Postoperative Endophthalmitis. J. Cataract Refract. Surg. 2016, 42, 1730–1741. [Google Scholar] [CrossRef]
- Arshinoff, S.A.; Felfeli, T.; Modabber, M. Aqueous Level Abatement Profiles of Intracameral Antibiotics: A Comparative Mathematical Model of Moxifloxacin, Cefuroxime, and Vancomycin with Determination of Relative Efficacies. J. Cataract Refract. Surg. 2019, 45, 1568–1574. [Google Scholar] [CrossRef]
- Gautam, M.; Gupta, R.; Singh, P.; Verma, V.; Verma, S.; Mittal, P.; Karkhur, S.; Sampath, A.; Mohan, R.R.; Sharma, B. Intracameral Drug Delivery: A Review of Agents, Indications, and Outcomes. J. Ocul. Pharmacol. Ther. 2023, 39, 102–116. [Google Scholar] [CrossRef]
- Chang, D.F.; Prajna, N.V.; Szczotka-Flynn, L.B.; Benetz, B.A.; Lass, J.H.; O’Brien, R.C.; Menegay, H.J.; Gardner, S.; Shekar, M.; Rajendrababu, S.; et al. Comparative Corneal Endothelial Cell Toxicity of Differing Intracameral Moxifloxacin Doses after Phacoemulsification. J. Cataract Refract. Surg. 2020, 46, 355–359. [Google Scholar] [CrossRef]
- Peñaranda-Henao, M.; Reyes-Guanes, J.; Muñoz-Ortiz, J.; Gutiérrez, N.M.; De-La-Torre, A. Anterior Uveitis Due to Intracameral Moxifloxacin: A Case Report. Ocul. Immunol. Inflamm. 2021, 29, 1366–1369. [Google Scholar] [CrossRef]
- Moisseiev, E.; Levinger, E. Anaphylactic Reaction Following Intracameral Cefuroxime Injection during Cataract Surgery. J. Cataract Refract. Surg. 2013, 39, 1432–1434. [Google Scholar] [CrossRef]
- Delyfer, M.-N.; Rougier, M.-B.; Leoni, S.; Zhang, Q.; Dalbon, F.; Colin, J.; Korobelnik, J.-F. Ocular Toxicity after Intracameral Injection of Very High Doses of Cefuroxime during Cataract Surgery. J. Cataract Refract. Surg. 2011, 37, 271–278. [Google Scholar] [CrossRef]
- Ma, B.; Liu, Y.; Liu, S.; Luo, M. Evaluation of the Effect of Intracameral Cefuroxime on Macular and Subfoveal Choroidal Thickness and Macular Sensitivity in Diabetic Patients after Cataract Surgery. J. Cataract Refract. Surg. 2017, 43, 201–206. [Google Scholar] [CrossRef]
- Nicholson, L.B.; Kim, B.T.; Jardón, J.; Townsend-Pico, W.; Santos, C.; Moshfeghi, A.A.; Albini, T.A.; Eliott, D.; Sobrin, L. Severe Bilateral Ischemic Retinal Vasculitis Following Cataract Surgery. Ophthalmic Surg. Lasers Imaging Retin. 2014, 45, 338–342. [Google Scholar] [CrossRef]
- Witkin, A.J.; Chang, D.F.; Jumper, J.M.; Charles, S.; Eliott, D.; Hoffman, R.S.; Mamalis, N.; Miller, K.M.; Wykoff, C.C. Vancomycin-Associated Hemorrhagic Occlusive Retinal Vasculitis. Ophthalmology 2017, 124, 583–595. [Google Scholar] [CrossRef]
- Schwartz, S.G.; Relhan, N.; O’Brien, T.P.; Flynn, H.W. A New Complication Associated with the Use of Prophylactic Intracameral Antibiotics: Hemorrhagic Occlusive Retinal Vasculitis. Ophthalmology 2017, 124, 578–579. [Google Scholar] [CrossRef]
- Galvis, V.; Prada, A.M.; Tello, A.; Parra, M.M.; Camacho, P.A.; Polit, M.P. Safety of Intracameral Application of Moxifloxacin and Dexamethasone (Vigadexa®) after Phacoemulsification Surgery. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 3215–3221. [Google Scholar] [CrossRef]
- Grzybowski, A.; Brona, P.; Zeman, L.; Stewart, M.W. Commonly Used Intracameral Antibiotics for Endophthalmitis Prophylaxis: A Literature Review. Surv. Ophthalmol. 2021, 66, 98–108. [Google Scholar] [CrossRef]
- Kelkar, A.S.; Sharma, N.; Verma, L.; Chandorkar, S.A.; Saxena, R.; Mishra, D.; Kelkar, J.A.; Sengupta, S. Antibiotic Prophylaxis for Cataract Surgery—Practice Patterns amongst Indian Ophthalmologists. Indian J. Ophthalmol. 2023, 71, 3235–3241. [Google Scholar] [CrossRef]
- Topete, A.; Serro, A.P.; Saramago, B. Dual Drug Delivery from Intraocular Lens Material for Prophylaxis of Endophthalmitis in Cataract Surgery. Int. J. Pharm. 2019, 558, 43–52. [Google Scholar] [CrossRef]
- Topete, A.; Saramago, B.; Serro, A.P. Intraocular Lenses as Drug Delivery Devices. Int. J. Pharm. 2021, 602, 120613. [Google Scholar] [CrossRef]
- Ma, X.; Xie, L.; Huang, Y. Intraoperative Cefuroxime Irrigation Prophylaxis for Acute-Onset Endophthalmitis After Phacoemulsification Surgery. Infect. Drug Resist. 2020, 13, 1455–1463. [Google Scholar] [CrossRef]
- Li, M.; Xu, J.-W.; Li, J.; Wang, W.; Luo, C.; Han, H.; Xu, Z.-K.; Yao, K. A Novel Gatifloxacin-Loaded Intraocular Lens for Prophylaxis of Postoperative Endophthalmitis. Bioact. Mater. 2023, 20, 271–285. [Google Scholar] [CrossRef]
- Ma, W.; Hou, G.; Wang, J.; Liu, T.; Tian, F. Evaluation of the Effect of Gentamicin in Surgical Perfusion Solution on Cataract Postoperative Endophthalmitis. BMC Ophthalmol. 2022, 22, 410. [Google Scholar] [CrossRef]
- Filipe, H.P.; Bozukova, D.; Pimenta, A.; Vieira, A.P.; Oliveira, A.S.; Galante, R.; Topete, A.; Masson, M.; Alves, P.; Coimbra, P.; et al. Moxifloxacin-Loaded Acrylic Intraocular Lenses: In Vitro and in Vivo Performance. J. Cataract Refract. Surg. 2019, 45, 1808–1817. [Google Scholar] [CrossRef]
- Kang-Mieler, J.J.; Rudeen, K.M.; Liu, W.; Mieler, W.F. Advances in Ocular Drug Delivery Systems. Eye 2020, 34, 1371–1379. [Google Scholar] [CrossRef]
- Al-Omari, A.; Al Mutair, A.; Alhumaid, S.; Salih, S.; Alanazi, A.; Albarsan, H.; Abourayan, M.; Al Subaie, M. The Impact of Antimicrobial Stewardship Program Implementation at Four Tertiary Private Hospitals: Results of a Five-Years Pre-Post Analysis. Antimicrob. Resist. Infect. Control 2020, 9, 95. [Google Scholar] [CrossRef]
- García-Rodríguez, J.F.; Bardán-García, B.; Peña-Rodríguez, M.F.; Álvarez-Díaz, H.; Mariño-Callejo, A. Meropenem Antimicrobial Stewardship Program: Clinical, Economic, and Antibiotic Resistance Impact. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 161–170. [Google Scholar] [CrossRef]
- Lee, C.F.; Cowling, B.J.; Feng, S.; Aso, H.; Wu, P.; Fukuda, K.; Seto, W.H. Impact of Antibiotic Stewardship Programmes in Asia: A Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2018, 73, 844–851. [Google Scholar] [CrossRef]
- Septimus, E.J. Antimicrobial Resistance. Med. Clin. N. Am. 2018, 102, 819–829. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Core Elements of Antibiotic Stewardship for Health Departments. Available online: https://www.cdc.gov/antibiotic-use/core-elements/health-departments.html (accessed on 27 December 2023).
- Bremond-Gignac, D.; Chiambaretta, F.; Milazzo, S. A European Perspective on Topical Ophthalmic Antibiotics: Current and Evolving Options. Ophthalmol. Eye Dis. 2011, 3, OED.S4866. [Google Scholar] [CrossRef]
- Fintelmann, R.E.; Hoskins, E.N.; Lietman, T.M.; Keenan, J.D.; Gaynor, B.D.; Cevallos, V.; Acharya, N.R. Topical Fluoroquinolone Use as a Risk Factor for In Vitro Fluoroquinolone Resistance in Ocular Cultures. Arch. Ophthalmol. 2011, 129, 399. [Google Scholar] [CrossRef]
- Grzybowski, A.; Turczynowska, M. More Antisepsis, Less Antibiotics Whenever Possible. Asia-Pac. J. Ophthalmol. 2018, 7, 72–75. [Google Scholar]
- CDC Issues Recommendations for Preventing Spread of Vancomycin Resistance. Am. J. Health-Syst. Pharm. 1995, 52, 1272–1274. [CrossRef]
- Lin, P.L.; Oram, R.J.; Lauderdale, D.S.; Dean, R.; Daum, R.S. Knowledge of Centers for Disease Control and Prevention Guidelines for the Use of Vancomycin at a Large Tertiary Care Children’s Hospital. J. Pediatr. 2000, 137, 694–700. [Google Scholar] [CrossRef]
- Mursalin, M.H.; Astley, R.; Coburn, P.S.; Bagaruka, E.; Hunt, J.J.; Fischetti, V.A.; Callegan, M.C. Therapeutic Potential of Bacillus Phage Lysin PlyB in Ocular Infections. mSphere 2023, 8, e0004423. [Google Scholar] [CrossRef]
- Patil, R.; Dehari, D.; Chaudhuri, A.; Kumar, D.N.; Kumar, D.; Singh, S.; Nath, G.; Agrawal, A.K. Recent Advancements in Nanotechnology-Based Bacteriophage Delivery Strategies against Bacterial Ocular Infections. Microbiol. Res. 2023, 273, 127413. [Google Scholar] [CrossRef]
- Ranjith, K.; Ramchiary, J.; Prakash, J.S.S.; Arunasri, K.; Sharma, S.; Shivaji, S. Gene Targets in Ocular Pathogenic Escherichia Coli for Mitigation of Biofilm Formation to Overcome Antibiotic Resistance. Front. Microbiol. 2019, 10, 1308. [Google Scholar] [CrossRef] [PubMed]
- Silva, N.C.; Sarmento, B.; Pintado, M. The Importance of Antimicrobial Peptides and Their Potential for Therapeutic Use in Ophthalmology. Int. J. Antimicrob. Agents 2013, 41, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Vivero-Lopez, M.; Muras, A.; Silva, D.; Serro, A.P.; Otero, A.; Concheiro, A.; Alvarez-Lorenzo, C. Resveratrol-Loaded Hydrogel Contact Lenses with Antioxidant and Antibiofilm Performance. Pharmaceutics 2021, 13, 532. [Google Scholar] [CrossRef] [PubMed]
- Giannaccare, G.; Comis, S.; Jannuzzi, V.; Camposampiero, D.; Ponzin, D.; Cambria, S.; Santocono, M.; Pallozzi Lavorante, N.; Del Noce, C.; Scorcia, V.; et al. Effect of Liposomal-Lactoferrin-Based Eye Drops on the Conjunctival Microflora of Patients Undergoing Cataract Surgery. Ophthalmol. Ther. 2023, 12, 1315–1326. [Google Scholar] [CrossRef]
- Teh, S.; Mok, P.; Abd Rashid, M.; Bastion, M.-L.; Ibrahim, N.; Higuchi, A.; Murugan, K.; Mariappan, R.; Subbiah, S. Recent Updates on Treatment of Ocular Microbial Infections by Stem Cell Therapy: A Review. Int. J. Mol. Sci. 2018, 19, 558. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural Products as Platforms to Overcome Antibiotic Resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef] [PubMed]
- Arip, M.; Selvaraja, M.; Tan, L.F.; Leong, M.Y.; Tan, P.L.; Yap, V.L.; Chinnapan, S.; Tat, N.C.; Abdullah, M.; Jubair, N.; et al. Review on Plant-Based Management in Combating Antimicrobial Resistance—Mechanistic Perspective. Front. Pharmacol. 2022, 13, 879495. [Google Scholar] [CrossRef]
- Lee, A.E.; Niruttan, K.; Rawson, T.M.; Moore, L.S.P. Antibacterial Resistance in Ophthalmic Infections: A Multi-Centre Analysis across UK Care Settings. BMC Infect. Dis. 2019, 19, 768. [Google Scholar] [CrossRef]
CLINICAL STRATEGIES |
Strict adherence to sterile surgical protocols. |
Use of povidone-iodine as an antiseptic. |
Minimizing polypharmacy when feasible. |
Obtaining early culture samples in cases of clinically suspected infection. |
Tailoring antibiotic therapy based on culture results and de-escalation of antibiotic regimen. |
Avoiding long-term use of antimicrobials. |
Reducing the prophylactic use of antimicrobials in uncomplicated procedures. |
Developing specific guidelines for antimicrobial use in ophthalmic conditions to promote evidence-based prescribing practices. |
PUBLIC HEALTH STRATEGIES |
Identifying region-specific bacterial susceptibility and local antimicrobial resistance patterns for ocular infections. |
Analyzing current prescription trends (from eye-care providers, primary physicians, and pharmacies) to identify areas for intervention. |
Investing in research for alternative non-antibiotics antimicrobial strategies (bacteriophages, antimicrobial peptides, gene-targeting strategies). |
Establishing antimicrobial stewardship programs. |
Educating patients about the importance of completing prescribed antimicrobial courses, avoiding self-medication, and adhering to hygiene practices to help in preventing the spread of resistant strains. |
Encouraging global collaboration to implement effective antibiotic stewardship programs and combating antimicrobial resistance worldwide. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia O’Farrill, N.; Abi Karam, M.; Villegas, V.M.; Flynn, H.W., Jr.; Grzybowski, A.; Schwartz, S.G. New Approaches to Overcoming Antimicrobial Resistance in Endophthalmitis. Pharmaceuticals 2024, 17, 321. https://doi.org/10.3390/ph17030321
Garcia O’Farrill N, Abi Karam M, Villegas VM, Flynn HW Jr., Grzybowski A, Schwartz SG. New Approaches to Overcoming Antimicrobial Resistance in Endophthalmitis. Pharmaceuticals. 2024; 17(3):321. https://doi.org/10.3390/ph17030321
Chicago/Turabian StyleGarcia O’Farrill, Noraliz, Mariana Abi Karam, Victor M. Villegas, Harry W. Flynn, Jr., Andrzej Grzybowski, and Stephen G. Schwartz. 2024. "New Approaches to Overcoming Antimicrobial Resistance in Endophthalmitis" Pharmaceuticals 17, no. 3: 321. https://doi.org/10.3390/ph17030321
APA StyleGarcia O’Farrill, N., Abi Karam, M., Villegas, V. M., Flynn, H. W., Jr., Grzybowski, A., & Schwartz, S. G. (2024). New Approaches to Overcoming Antimicrobial Resistance in Endophthalmitis. Pharmaceuticals, 17(3), 321. https://doi.org/10.3390/ph17030321