Transcriptomics Reveals Effect of Pulsatilla Decoction Butanol Extract in Alleviating Vulvovaginal Candidiasis by Inhibiting Neutrophil Chemotaxis and Activation via TLR4 Signaling
Abstract
:1. Introduction
2. Results
2.1. Main Components of BEPD
2.2. BEPD Improved the Symptoms of VVC
2.3. BEPD Alleviated Vaginal Histopathology
2.4. BEPD Reduced the Levels of Pro-Inflammatory Cytokines from the Vagina
2.5. Effect of BEPD on the Transcriptomics Profile of VVC Mice
2.6. Effect of BEPD on Neutrophil Activity in the Vaginal Mucosal Tissue of VVC Mice
2.7. Effect of BEPD on Chemokines in the Vaginal Mucosal Tissue of VVC Mice
2.8. BEPD Downregulated the TLR4/MyD88/NF-κB Signaling Pathway in VVC Mice
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Strains and Drugs
4.3. Preparation of n-Butanol Alcohol Extract from Pulsatilla Decoction
4.4. Qualitative Analysis of BEPD Extract via HPLC
4.5. Experimental Animals
4.6. Establishment and Treatment of the VVC Model
4.7. Gram Staining
4.8. Vaginal Local Characteristics and CFU Count
4.9. Neutrophil Count of the Vaginal Lavage Fluid
4.10. Histopathology Analysis
4.11. ELISA
4.12. IHC
4.13. IF
4.14. Transcriptome Sequencing
4.15. Western Blot
4.16. Quantitative Real-Time PCR Analysis
4.17. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, L.; Zhang, W.; Yuan, Y.; Zhu, W.; Shang, A. Vaginal microecological characteristics of women in different physiological and pathological period. Front. Cell. Infect. Microbiol. 2022, 12, 959793. [Google Scholar] [CrossRef] [PubMed]
- Kenno, S.; Speth, C.; Rambach, G.; Binder, U.; Chatterjee, S.; Caramalho, R.; Haas, H.; Lass-Flörl, C.; Shaughnessy, J.; Ram, S.; et al. Candida albicans Factor H Binding Molecule Hgt1p–A Low Glucose-Induced Transmembrane Protein Is Trafficked to the Cell Wall and Impairs Phagocytosis and Killing by Human Neutrophils. Front. Microbiol. 2019, 9, 3319. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, B.; Ferreira, C.; Alves, C.T.; Henriques, M.; Azeredo, J.; Silva, S. Vulvovaginal candidiasis: Epidemiology, microbiology and risk factors. Crit. Rev. Microbiol. 2016, 42, 905–927. [Google Scholar] [CrossRef] [PubMed]
- Farr, A.; Effendy, I.; Frey Tirri, B.; Hof, H.; Mayser, P.; Petricevic, L.; Ruhnke, M.; Schaller, M.; Schaefer, A.P.; Sustr, V.; et al. Guideline: Vulvovaginal candidosis (AWMF 015/072, level S2k). Mycoses 2021, 64, 583–602. [Google Scholar] [CrossRef] [PubMed]
- Denning, D.W.; Kneale, M.; Sobel, J.D.; Rautemaa-Richardson, R. Global burden of recurrent vulvovaginal candidiasis: A systematic review. Lancet Infect. Dis. 2018, 18, e339–e347. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.L.; Limon, J.J.; Underhill, D.M. Immunity to Commensal Fungi: Detente and Disease. Annu. Rev. Pathol.-Mech. Dis. 2017, 12, 359–385. [Google Scholar] [CrossRef] [PubMed]
- Naglik, J.R.; König, A.; Hube, B.; Gaffen, S.L. Candida albicans-epithelial interactions and induction of mucosal innate immunity. Curr. Opin. Microbiol. 2017, 40, 104. [Google Scholar] [CrossRef] [PubMed]
- Roselletti, E.; Perito, S.; Gabrielli, E.; Mencacci, A.; Pericolini, E.; Sabbatini, S.; Cassone, A.; Vecchiarelli, A. NLRP3 inflammasome is a key player in human vulvovaginal disease caused by Candida albicans. Sci. Rep. 2017, 7, 17877. [Google Scholar] [CrossRef] [PubMed]
- Yano, J.; Noverr, M.C.; Fidel, P.L., Jr. Vaginal Heparan Sulfate Linked to Neutrophil Dysfunction in the Acute Inflammatory Response Associated with Experimental Vulvovaginal Candidiasis. mBio 2017, 8, e00211-17. [Google Scholar] [CrossRef]
- Kaur, S.; Kaur, S. Recent Advances in Vaginal Delivery for the Treatment of Vulvovaginal Candidiasis. Curr. Mol. Pharmacol. 2021, 14, 281–291. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, K.; Shi, G.; Ma, K.; Wang, B.; Shao, J.; Wang, T.; Wang, C. Berberine Inhibits the Adhesion of Candida albicans to Vaginal Epithelial Cells. Front. Pharmacol. 2022, 13, 814883. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Jiang, X.; Zhang, J.; Xia, D.; Wu, D.; Shao, J.; Wang, T.; Wang, C. Effect of Pulsatilla decoction on vulvovaginal candidiasis in mice. Evidences for its mechanisms of action. Phytomedicine 2024, 128, 155515. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Luo, H.; Fan, L.; Su, Z.; Yu, S.; Cao, S.; Wu, X. Exploration of the immuno-adjuvant effect and mechanism of Anemoside B4 through network pharmacology and experiment verification. Phytomedicine 2024, 124, 155302. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zheng, M.; Yi, Y.; Patel, A.; Song, Z.; Li, Y. Inhibition of berberine hydrochloride on Candida albicans biofilm formation. Biotechnol. Lett. 2020, 42, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, S.; Li, R.; Ma, C.; Zhang, Q.; Xia, F.; Zhou, B.; Xie, Z.; Liao, Z. Berberine alleviates inflammation and suppresses PLA2-COX-2-PGE2-EP2 pathway through targeting gut microbiota in DSS-induced ulcerative colitis. Biochem. Biophys. Res. Commun. 2024, 695, 149411. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Sun, C.; Zhong, Y.; Shi, Y.; Zhuang, L.; Liu, B.; Liu, Z. Fraxini cortex: Progresses in phytochemistry, pharmacology and ethnomedicinal uses. J. Ethnopharmacol. 2024, 325, 117849. [Google Scholar] [CrossRef]
- Yano, J.; Lilly, E.; Barousse, M.; Fidel, P.L., Jr. Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect. Immun. 2010, 78, 5126–5137. [Google Scholar] [CrossRef]
- Shroff, A.; Sequeira, R.; Patel, V.; Reddy, K. Knockout of autophagy gene, ATG5 in mice vaginal cells abrogates cytokine response and pathogen clearance during vaginal infection of Candida albicans. Cell. Immunol. 2018, 324, 59–73. [Google Scholar] [CrossRef]
- Peters, B.M.; Palmer, G.E.; Nash, A.K.; Lilly, E.A.; Fidel, P.L., Jr.; Noverr, M.C. Fungal morphogenetic pathways are required for the hallmark inflammatory response during Candida albicans vaginitis. Infect. Immun. 2014, 82, 532–543. [Google Scholar] [CrossRef]
- Yano, J.; Palmer, G.E.; Eberle, K.E.; Peters, B.M.; Vogl, T.; McKenzie, A.N.; Fidel, P.L., Jr. Vaginal epithelial cell-derived S100 alarmins induced by Candida albicans via pattern recognition receptor interactions are sufficient but not necessary for the acute neutrophil response during experimental vaginal candidiasis. Infect. Immun. 2014, 82, 783–792. [Google Scholar] [CrossRef]
- Zhu, C.J.; Yang, W.G.; Li, D.J.; Song, Y.-D.; Chen, S.-Y.; Wang, Q.-F.; Liu, Y.-N.; Zhang, Y.; Cheng, B.; Wu, Z.-W.; et al. Calycosin attenuates severe acute pancreatitis-associated acute lung injury by curtailing high mobility group box 1-induced inflammation. World J. Gastroenterol. 2021, 27, 7669–7686. [Google Scholar] [CrossRef] [PubMed]
- Su, V.Y.; Chen, W.C.; Yu, W.K.; Wu, H.H.; Chen, H.; Yang, K.Y. The main e-cigarette component vegetable glycerin enhances neutrophil migration and fibrosis in endotoxin-induced lung injury via p38 MAPK activation. Respir. Res. 2023, 24, 9. [Google Scholar] [CrossRef]
- Gabrielli, E.; Pericolini, E.; Luciano, E.; Sabbatini, S.; Roselletti, E.; Perito, S.; Kasper, L.; Hube, B.; Vecchiarelli, A. Induction of caspase-11 by aspartyl proteinases of Candida albicans and implication in promoting inflammatory response. Infect. Immun. 2015, 83, 1940–1948. [Google Scholar] [CrossRef]
- Foell, D.; Wittkowski, H.; Ren, Z.; Sabbatini, S.; Roselletti, E.; Perito, S.; Kasper, L.; Hube, B.; Vecchiarelli, A. Phagocyte-specific S100 proteins are released from affected mucosa and promote immune responses during inflammatory bowel disease. J. Pathol. A J. Pathol. Soc. Great Br. Irel. 2008, 216, 183–192. [Google Scholar] [CrossRef]
- Ryckman, C.; Vandal, K.; Rouleau, P.; Talbot, M.; Tessier, P.A. Proinflammatory activities of S100: Proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. J. Immunol. 2003, 170, 3233–3242. [Google Scholar] [CrossRef] [PubMed]
- Weindl, G.; Naglik, J.R.; Kaesler, S.; Biedermann, T.; Hube, B.; Korting, H.C.; Schaller, M. Human epithelial cells establish direct antifungal defense through TLR4-mediated signaling. J. Clin. Investig. 2007, 117, 3664–3672. [Google Scholar] [CrossRef]
- Brown, J.; Wang, H.; Hajishengallis, G.N.; Martin, M. TLR-signaling networks: An integration of adaptor molecules, kinases, and cross-talk. J. Dent. Res. 2011, 90, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Ge, G.; Yang, Z.; Li, D.; Zhang, N.; Chen, B.; Shi, D. Distinct host immune responses in recurrent vulvovaginal candidiasis and vulvovaginal candidiasis. Front. Immunol. 2022, 13, 959740. [Google Scholar] [CrossRef]
- Kresina, T.F.; Mathieson, B. Human immunodeficiency virus type 1 infction, mucosalimmunity, and pathogenesis and extramural research programs at the national institutesof health. J. Infect. Dis. 1999, 179 (Suppl. S3), S392–S396. [Google Scholar] [CrossRef]
- Liepke, C.; Baxmann, S.; Heine, C.; Breithaupt, N.; Ständker, L.; Forssmann, W.G. Human hemlgiderived ptics ekibi aimiroiai aciya class of host defense peptides. J. Chromatogr. 2003, 791, 345–356. [Google Scholar]
- Mak, P. Hemocidins: A functional and structural context of human antimicrobial activity peptides. Front. Biosci. 2008, 13, 6859–6871. [Google Scholar] [CrossRef] [PubMed]
- Swidsinski, A.; Guschin, A.; Tang, Q.; Dörffel, Y.; Verstraelen, H.; Tertychnyy, A.; Khayrullina, G.; Luo, X.; Sobel, J.D.; Jiang, X. Vulvovaginal candidiasis: Histologic lesions are primarily polymicrobial and invasive and do not contain biofilms. Am. J. Obstet. Gynecol. 2019, 220, 91.e1–91.e8. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, F.V.; Kubes, P. Neutrophils and NETS in modulating acute and chronic inflammation. Blood 2019, 133, 2178–2185. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Han, Q.; Wang, L.; Wang, B.; Chen, J.; Cai, B.; Wu, C.; Zhu, X.; Liu, F.; Han, D.; et al. Jinhua Qinggan granules attenuates acute lung injury by promotion of neutrophil apoptosis and inhibition of TLR4/MyD88/NF-κB pathway. J. Ethnopharmacol. 2023, 301, 115763. [Google Scholar] [CrossRef]
- Huang, E.; Liu, R.; Lu, Z.; Liu, J.; Liu, X.; Zhang, D.; Chu, Y. NKT cells mediate the recruitment of neutrophils by stimulating epithelial chemokine secretion during colitis. Biochem. Biophys. Res. Commun. 2016, 474, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Peters, B.M.; Yano, J.; Noverr, M.C. Candida Vaginitis: When Opportunism Knocks, the Host Responds. PLoS Pathog. 2014, 10, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Junko, Y.; Kolls, J.K.; Happel, K.I.; Wormley, F.; Wozniak, K.L. The Acute Neutrophil Response Mediated by S100 Alarmins during Vaginal Candida Infections Is Independent of the Th17-Pathway. PLoS ONE 2012, 7, e46311. [Google Scholar]
- Richardson, J.P.; Willems, H.M.E.; Moyes, D.L.; Shoaie, S.; Barker, K.S.; Tan, S.L.; Palmer, G.E.; Hube, B.; Naglik, J.R.; Peters, B.M. Candidalysin drives epithelial signaling, neutrophil recruitment, and immunopathology at the vaginal mucosa. Infect. Immun. 2018, 78, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Zhang, H.; Shi, G.; Wang, B.; Wu, D.; Shao, J.; Wang, T.; Wang, C. Effects of n-butanol extract of pulsatilla decoction on the NLRP3 inflammasome in macrophages infected with Candida albicans. J. Ethnopharmacol. 2023, 304, 116041. [Google Scholar] [CrossRef]
- Farahyar, S.; Izadi, S.; Razmjou, E.; Falahati, M.; Roudbary, M.; Ashrafi-Khozani, M.; Ansari, S.; Fattahi, A.; Ghahri-Mobaser, Z.; Rahimi, M. Low prevalence of antifungal resistant Candida africana, in the C. albicans complex causing vulvovaginal candidiasis. Heliyon 2020, 6, e03619. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, H.; Hu, K.; Shi, G.; Wu, D.; Shao, J.; Wang, T.; Wang, C. Longdan Xiegan decoction ameliorates vulvovaginal candidiasis by inhibiting the NLRP3 inflammasome via the Toll-like receptor /MyD88 pathway. J. Ethnopharmacol. 2024, 318 Pt A, 116869. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Yao, M.; Liu, Z.; Zhang, S.; Wang, B.; Han, Y.; Gao, J.; Wu, D.; Wang, X. Metabolomic Analysis of Stephania tetrandra-Astragalus membranaceus Herbal Pair-Improving Nephrotic Syndrome Identifies Activation of IL-13/STAT6 Signaling Pathway. Pharmaceuticals 2023, 16, 88. [Google Scholar] [CrossRef] [PubMed]
- Zha, Z.X.; Lin, Y.; Wang, K.X.; Zhang, Y.L.; Li, D.; Xu, G.Q.; Xu, Q.M.; Liu, Y.L. Hederacoside C ameliorates colitis via restoring impaired intestinal barrier through moderating S100A9/MAPK and neutrophil recruitment inactivation. Acta Pharmacol. Sin. 2023, 44, 105–119. [Google Scholar] [CrossRef] [PubMed]
Name | Retention Time (min) | Peak Area (mAU×min) | Content (ug/g) |
---|---|---|---|
Anemoside B4 | 12.748 | 17.402 | 41,196.0197 |
Phellodendrine | 12.803 | 7.650 | 7564.5979 |
Esculin | 6.374 | 269.097 | 67,965.3986 |
Esculetin | 11.821 | 0.364 | 83.8578 |
Epiberberine | 12.047 | 5.78 | 1852.2891 |
Berberine | 18.013 | 94.903 | 66,113.7401 |
Jatrorrhizine | 18.496 | 92.993 | 15,401.7182 |
Gene | Primer Sequences |
---|---|
mouse- CXCL1 | Forward (5′-3′): ACCCGCTCGCTTCTCTGTG |
Reverse (5′-3′): GCTCTGGATGTTCTTGAGGTGAATC | |
mouse- CXCL3 | Forward (5′-3′): ACTGGTCCTGCTGCTGCTG |
Reverse (5′-3′): TCACCGTCAAGCTCTGGATGG | |
mouse- CXCL5 | Forward (5′-3′): CGGTTCCATCTCGCCATTCATG |
Reverse (5′-3′): GGAGTTACGGTTAAGCAAACACAAC | |
mouse- S100A8 | Forward (5′-3′): TGCCCTCTACAAGAATGACTTCAAG |
Reverse (5′-3′): TTTATCACCATCGCAAGGAACTCC | |
mouse- S100A9 | Forward (5′-3′): CGCAGCATAACCACCATCATCG |
Reverse (5′-3′): AGGGCTTCATTTCTCTTCTCTTTCTTC | |
mouse- GAPDH | Forward (5′-3′): GAAGCAGGGATTAAAGTG |
Reverse (5′-3′): TTCTTCTCGAAACCCTGATA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Li, C.; Wang, Y.; Zhang, M.; Wu, D.; Shao, J.; Wang, T.; Wang, C. Transcriptomics Reveals Effect of Pulsatilla Decoction Butanol Extract in Alleviating Vulvovaginal Candidiasis by Inhibiting Neutrophil Chemotaxis and Activation via TLR4 Signaling. Pharmaceuticals 2024, 17, 594. https://doi.org/10.3390/ph17050594
Wu H, Li C, Wang Y, Zhang M, Wu D, Shao J, Wang T, Wang C. Transcriptomics Reveals Effect of Pulsatilla Decoction Butanol Extract in Alleviating Vulvovaginal Candidiasis by Inhibiting Neutrophil Chemotaxis and Activation via TLR4 Signaling. Pharmaceuticals. 2024; 17(5):594. https://doi.org/10.3390/ph17050594
Chicago/Turabian StyleWu, Hui, Can Li, Yemei Wang, Mengxiang Zhang, Daqiang Wu, Jing Shao, Tianming Wang, and Changzhong Wang. 2024. "Transcriptomics Reveals Effect of Pulsatilla Decoction Butanol Extract in Alleviating Vulvovaginal Candidiasis by Inhibiting Neutrophil Chemotaxis and Activation via TLR4 Signaling" Pharmaceuticals 17, no. 5: 594. https://doi.org/10.3390/ph17050594
APA StyleWu, H., Li, C., Wang, Y., Zhang, M., Wu, D., Shao, J., Wang, T., & Wang, C. (2024). Transcriptomics Reveals Effect of Pulsatilla Decoction Butanol Extract in Alleviating Vulvovaginal Candidiasis by Inhibiting Neutrophil Chemotaxis and Activation via TLR4 Signaling. Pharmaceuticals, 17(5), 594. https://doi.org/10.3390/ph17050594