Substance Addiction Rehabilitation Drugs
Abstract
:1. Introduction
2. Dopamine Transporter Hypothesis
3. D3 Dopamine Receptor Hypothesis
3.1. D3R Antagonists
3.2. D3R Partial Agonists
4. Drugs for Serotoninergic Neurons
5. Drugs for GABAergic Neurons
6. Drugs for Synaptic Plasticity
7. Drugs for Neuroinflammation
8. BBB-Penetrable Drug Delivery Methods
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-HT | 5-hydroxytryptamine |
BBB | blood–brain barrier |
BDNF | brain-derived neurotrophic factor |
Ccl2 | C-C motif chemokine ligand 2 |
D2R | D2 dopamine receptor |
D3R | D3 dopamine receptor |
DAT | dopamine transporter |
FDA | Food and Drug Administration |
GABA | γ-aminobutyric acid |
GABA-AT | GABA aminotransferase |
GDNF | glial cell line-derived neurotrophic factor |
H3Q5dop | histone H3 glutamine 5 dopaminylation |
KOR | kappa opioid receptor |
NAc | nucleus accumbens |
NMDA | N-methyl-D-aspartic acid |
NMDAR | NMDA receptor |
PET | positron emission tomography |
PPAR | peroxisome proliferator-activated receptor |
ROCK | Rho-associated protein kinase |
SERT | serotonin transporter |
TBG | tabernanthalog |
TNF-α | tumor necrosis factor-α |
VRAC | volume-regulated anion channel |
VTA | ventral tegmental area |
References
- World Drug Report 2023. Available online: https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2023.html (accessed on 1 February 2024).
- Hagemeier, N.E. Introduction to the opioid epidemic: The economic burden on the healthcare system and impact on quality of life. Am. J. Manag. Care 2018, 24 (Suppl. S10), S200–S206. [Google Scholar] [PubMed]
- Stewart, S.A.; Copeland, A.L.; Cherry, K.E. Risk factors for substance use across the lifespan. J. Genet. Psychol. 2023, 184, 145–162. [Google Scholar] [CrossRef] [PubMed]
- Merikangas, K.R.; Kalaydjian, A. Magnitude and impact of comorbidity of mental disorders from epidemiologic surveys. Curr. Opin. Psychiatry 2007, 20, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Verdejo-Garcia, A.; Lorenzetti, V.; Manning, V.; Piercy, H.; Bruno, R.; Hester, R.; Pennington, D.; Tolomeo, S.; Arunogiri, S.; Bates, M.E.; et al. A roadmap for integrating neuroscience into addiction treatment: A consensus of the neuroscience interest group of the International Society of Addiction Medicine. Front. Psychiatry 2019, 10, 877. [Google Scholar] [CrossRef] [PubMed]
- Frawley, P.J.; Smith, J.W. One-year follow-up after multimodal inpatient treatment for cocaine and methamphetamine dependencies. J. Subst. Abuse Treat. 1992, 9, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Kassani, A.; Niazi, M.; Hassanzadeh, J.; Menati, R. Survival analysis of drug abuse relapse in addiction treatment centers. Int. J. High Risk Behav. Addict. 2015, 4, e23402. [Google Scholar] [CrossRef] [PubMed]
- Monroe, S.C.; Radke, A.K. Opioid withdrawal: Role in addiction and neural mechanisms. Psychopharmacology 2023, 240, 1417–1433. [Google Scholar] [CrossRef] [PubMed]
- Tabanelli, R.; Brogi, S.; Calderone, V. Targeting opioid receptors in addiction and drug withdrawal: Where are we going? Int. J. Mol. Sci. 2023, 24, 10888. [Google Scholar] [CrossRef] [PubMed]
- Ciucă Anghel, D.M.; Nițescu, G.V.; Tiron, A.T.; Guțu, C.M.; Baconi, D.L. Understanding the mechanisms of action and effects of drugs of abuse. Molecules 2023, 28, 4969. [Google Scholar] [CrossRef] [PubMed]
- Padhan, M.; Maiti, R.; Mohapatra, D.; Mishra, B.R. Efficacy and safety of tramadol in the treatment of opioid withdrawal: A meta-analysis of randomized controlled trials. Addict. Behav. 2023, 147, 107815. [Google Scholar] [CrossRef]
- Volkow, N.D.; Morales, M. The brain on drugs: From reward to addiction. Cell 2015, 162, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Bayassi-Jakowicka, M.; Lietzau, G.; Czuba, E.; Steliga, A.; Waśkow, M.; Kowiański, P. Neuroplasticity and multilevel system of connections determine the integrative role of nucleus accumbens in the brain reward system. Int. J. Mol. Sci. 2021, 22, 9806. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Haghighi, S.; Chavoshinezhad, S.; Mozafari, R.; Noorbakhsh, F.; Borhani-Haghighi, A.; Haghparast, A. Neuroinflammatory response in reward-associated psychostimulants and opioids: A review. Cell. Mol. Neurobiol. 2023, 43, 649–682. [Google Scholar] [CrossRef] [PubMed]
- Rezayof, A.; Ghasemzadeh, Z.; Sahafi, O.H. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem. Int. 2023, 169, 105572. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, F.; Le, Q.; Ma, L. Cellular and molecular basis of drug addiction: The role of neuronal ensembles in addiction. Curr. Opin. Neurobiol. 2023, 83, 102813. [Google Scholar] [CrossRef] [PubMed]
- Ru, Q.; Wang, Y.; Zhou, E.; Chen, L.; Wu, Y. The potential therapeutic roles of Rho GTPases in substance dependence. Front. Mol. Neurosci. 2023, 16, 1125277. [Google Scholar] [CrossRef] [PubMed]
- Støier, J.F.; Konomi-Pilkati, A.; Apuschkin, M.; Herborg, F.; Gether, U. Amphetamine-induced reverse transport of dopamine does not require cytosolic Ca2+. J. Biol. Chem. 2023, 299, 105063. [Google Scholar] [CrossRef] [PubMed]
- Saunders, C.; Galli, A. Insights in how amphetamine ROCKs (Rho-associated containing kinase) membrane protein trafficking. Proc. Natl. Acad. Sci. USA 2015, 112, 15538–15539. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, D.S.; Underhill, S.M.; Stolz, D.B.; Murdoch, G.H.; Thiels, E.; Romero, G.; Amara, S.G. Amphetamine activates Rho GTPase signaling to mediate dopamine transporter internalization and acute behavioral effects of amphetamine. Proc. Natl. Acad. Sci. USA 2015, 112, E7138–E7147. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhao, C.; Wu, Y.; Yang, Q.; Shao, A.; Wang, T.; Wu, J.; Yin, Y.; Li, Y.; Hou, J.; et al. Identification of a Vav2-dependent mechanism for GDNF/Ret control of mesolimbic DAT trafficking. Nat. Neurosci. 2015, 18, 1084–1093. [Google Scholar] [CrossRef] [PubMed]
- Refai, O.; Aggarwal, S.; Cheng, M.H.; Gichi, Z.; Salvino, J.M.; Bahar, I.; Blakely, R.D.; Mortensen, O.V. Allosteric modulator KM822 attenuates behavioral actions of amphetamine in Caenorhabditis elegans through interactions with the dopamine transporter DAT-1. Mol. Pharmacol. 2022, 101, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ji, G.; Zhao, M.; Wang, Y. Candidate l-methionine target piRNA regulatory networks analysis response to cocaine-conditioned place preference in mice. Brain Behav. 2021, 11, e2272. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, L.; Zhou, H.; Zhang, K.; Zhao, M. Identification of miRNA-mediated gene regulatory networks in L-methionine exposure counteracts cocaine-conditioned place preference in mice. Front. Genet. 2023, 13, 1076156. [Google Scholar] [CrossRef] [PubMed]
- Wright, K.N.; Hollis, F.; Duclot, F.; Dossat, A.M.; Strong, C.E.; Francis, T.C.; Mercer, R.; Feng, J.; Dietz, D.M.; Lobo, M.K.; et al. Methyl supplementation attenuates cocaine-seeking behaviors and cocaine-induced c-Fos activation in a DNA methylation-dependent manner. J. Neurosci. 2015, 35, 8948–8958. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, L.R.; Wu, S.; Kearney, P.; Bellvé, K.D.; Standley, C.; Fogarty, K.E.; Melikian, H.E. Dopamine transporter endocytic trafficking in striatal dopaminergic neurons: Differential dependence on dynamin and the actin cytoskeleton. J. Neurosci. 2013, 33, 17836–17846. [Google Scholar] [CrossRef] [PubMed]
- Swanson, A.M.; DePoy, L.M.; Gourley, S.L. Inhibiting Rho kinase promotes goal-directed decision making and blocks habitual responding for cocaine. Nat. Commun. 2017, 8, 1861. [Google Scholar] [CrossRef] [PubMed]
- Bagalkot, T.; Sorkin, A. Amphetamine induces sex-dependent loss of the striatal dopamine transporter in sensitized mice. eNeuro 2024, 11, ENEURO.0491-23.2023. [Google Scholar] [CrossRef] [PubMed]
- Tatenhorst, L.; Eckermann, K.; Dambeck, V.; Fonseca-Ornelas, L.; Walle, H.; Lopes da Fonseca, T.; Koch, J.C.; Becker, S.; Tönges, L.; Bähr, M.; et al. Fasudil attenuates aggregation of alpha-synuclein in models of Parkinson’s disease. Acta Neuropathol. Commun. 2016, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Abedi, F.; Hayes, A.W.; Reiter, R.; Karimi, G. Acute lung injury: The therapeutic role of Rho kinase inhibitors. Pharmacol. Res. 2020, 155, 104736. [Google Scholar] [CrossRef]
- Xueyang, D.; Zhanqiang, M.; Chunhua, M.; Kun, H. Fasudil, an inhibitor of Rho-associated coiled-coil kinase, improves cognitive impairments induced by smoke exposure. Oncotarget 2016, 7, 78764–78772. [Google Scholar] [CrossRef] [PubMed]
- Galaj, E.; Ananthan, S.; Saliba, M.; Ranaldi, R. The effects of the novel DA D3 receptor antagonist SR 21502 on cocaine reward, cocaine seeking and cocaine-induced locomotor activity in rats. Psychopharmacology 2014, 231, 501–510. [Google Scholar] [CrossRef]
- Pribiag, H.; Shin, S.; Wang, E.H.; Sun, F.; Datta, P.; Okamoto, A.; Guss, H.; Jain, A.; Wang, X.Y.; De Freitas, B.; et al. Ventral pallidum DRD3 potentiates a pallido-habenular circuit driving accumbal dopamine release and cocaine seeking. Neuron 2021, 109, 2165–2182.e10. [Google Scholar] [CrossRef] [PubMed]
- Segal, D.M.; Moraes, C.T.; Mash, D.C. Up-regulation of D3 dopamine receptor mRNA in the nucleus accumbens of human cocaine fatalities. Brain Res. Mol. Brain Res. 1997, 45, 335–339. [Google Scholar] [CrossRef]
- Matuskey, D.; Gallezot, J.D.; Pittman, B.; Williams, W.; Wanyiri, J.; Gaiser, E.; Lee, D.E.; Hannestad, J.; Lim, K.; Zheng, M.Q.; et al. Dopamine D3 receptor alterations in cocaine-dependent humans imaged with [¹¹C](+)PHNO. Drug Alcohol Depend. 2014, 139, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Czoty, P.W.; Tryhus, A.M.; Solingapuram Sai, K.K.; Nader, S.H.; Epperly, P.M. Association of dopamine D2-like and D3 receptor function with initial sensitivity to cocaine reinforcement in male rhesus monkeys. Brain Res. 2023, 1807, 148323. [Google Scholar] [CrossRef] [PubMed]
- Cortés, A.; Moreno, E.; Rodríguez-Ruiz, M.; Canela, E.I.; Casadó, V. Targeting the dopamine D3 receptor: An overview of drug design strategies. Expert Opin. Drug Discov. 2016, 11, 641–664. [Google Scholar] [CrossRef]
- Kumar, V.; Bonifazi, A.; Ellenberger, M.P.; Keck, T.M.; Pommier, E.; Rais, R.; Slusher, B.S.; Gardner, E.; You, Z.B.; Xi, Z.X.; et al. Highly selective dopamine D3 receptor (D3R) antagonists and partial agonists based on eticlopride and the D3R crystal structure: New leads for opioid dependence treatment. J. Med. Chem. 2016, 59, 7634–7650. [Google Scholar] [CrossRef] [PubMed]
- Manvich, D.F.; Petko, A.K.; Branco, R.C.; Foster, S.L.; Porter-Stransky, K.A.; Stout, K.A.; Newman, A.H.; Miller, G.W.; Paladini, C.A.; Weinshenker, D. Selective D2 and D3 receptor antagonists oppositely modulate cocaine responses in mice via distinct postsynaptic mechanisms in nucleus accumbens. Neuropsychopharmacology 2019, 44, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.X.; Li, X.; Li, J.; Peng, X.Q.; Song, R.; Gaál, J.; Gardner, E.L. Blockade of dopamine D3 receptors in the nucleus accumbens and central amygdale inhibits incubation of cocaine craving in rats. Addict. Biol. 2013, 18, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Botz-Zapp, C.A.; Foster, S.L.; Pulley, D.M.; Hempel, B.; Bi, G.H.; Xi, Z.X.; Newman, A.H.; Weinshenker, D.; Manvich, D.F. Effects of the selective dopamine D3 receptor antagonist PG01037 on morphine-induced hyperactivity and antinociception in mice. Behav. Brain Res. 2021, 415, 113506. [Google Scholar] [CrossRef]
- Newman, A.H.; Blaylock, B.L.; Nader, M.A.; Bergman, J.; Sibley, D.R.; Skolnick, P. Medication discovery for addiction: Translating the dopamine D3 receptor hypothesis. Biochem. Pharmacol. 2012, 84, 882–890. [Google Scholar] [CrossRef] [PubMed]
- Leggio, G.M.; Bucolo, C.; Platania, C.B.; Salomone, S.; Drago, F. Current drug treatments targeting dopamine D3 receptor. Pharmacol. Ther. 2016, 165, 164–177. [Google Scholar] [CrossRef]
- Bergman, J.; Roof, R.A.; Furman, C.A.; Conroy, J.L.; Mello, N.K.; Sibley, D.R.; Skolnick, P. Modification of cocaine self-administration by buspirone (buspar®): Potential involvement of D3 and D4 dopamine receptors. Int. J. Neuropsychopharmacol. 2013, 16, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Leggio, G.M.; Camillieri, G.; Platania, C.B.; Castorina, A.; Marrazzo, G.; Torrisi, S.A.; Nona, C.N.; D’Agata, V.; Nobrega, J.; Stark, H.; et al. Dopamine D3 receptor is necessary for ethanol consumption: An approach with buspirone. Neuropsychopharmacology 2014, 39, 2017–2028. [Google Scholar] [CrossRef] [PubMed]
- Appel, N.M.; Li, S.H.; Holmes, T.H.; Acri, J.B. Dopamine D3 receptor antagonist (GSK598809) potentiates the hypertensive effects of cocaine in conscious, freely-moving dogs. J. Pharmacol. Exp. Ther. 2015, 354, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Winhusen, T.M.; Kropp, F.; Lindblad, R.; Douaihy, A.; Haynes, L.; Hodgkins, C.; Chartier, K.; Kampman, K.M.; Sharma, G.; Lewis, D.F.; et al. Multisite, randomized, double-blind, placebo-controlled pilot clinical trial to evaluate the efficacy of buspirone as a relapse-prevention treatment for cocaine dependence. J. Clin. Psychiatry 2014, 75, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, X.; Tocker, A.M.; Huang, P.; Reith, M.E.; Liu-Chen, L.Y.; Smith, A.B., 3rd; Kortagere, S. Functional characterization of a novel series of biased signaling dopamine D3 receptor agonists. ACS Chem. Neurosci. 2017, 8, 486–500. [Google Scholar] [CrossRef]
- Xu, W.; Reith, M.E.A.; Liu-Chen, L.Y.; Kortagere, S. Biased signaling agonist of dopamine D3 receptor induces receptor internalization independent of β-arrestin recruitment. Pharmacol. Res. 2019, 143, 48–57. [Google Scholar] [CrossRef]
- Min, C.; Zheng, M.; Zhang, X.; Caron, M.G.; Kim, K.M. Novel roles for β-arrestins in the regulation of pharmacological sequestration to predict agonist-induced desensitization of dopamine D3 receptors. Br. J. Pharmacol. 2013, 170, 1112–1129. [Google Scholar] [CrossRef] [PubMed]
- Slosky, L.M.; Bai, Y.; Toth, K.; Ray, C.; Rochelle, L.K.; Badea, A.; Chandrasekhar, R.; Pogorelov, V.M.; Abraham, D.M.; Atluri, N.; et al. β-arrestin-biased allosteric modulator of NTSR1 selectively attenuates addictive behaviors. Cell 2020, 181, 1364–1379.e14. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Li, Y.; Cheng, D.; He, G.; Liu, X.; Ma, L. β-Arrestin-biased β-adrenergic signaling promotes extinction learning of cocaine reward memory. Sci. Signal. 2018, 11, eaam5402. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, N.; Zheng, M.; Kim, K.M. Clathrin-mediated endocytosis is responsible for the lysosomal degradation of dopamine D3 receptor. Biochem. Biophys. Res. Commun. 2016, 476, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Keck, T.M.; John, W.S.; Czoty, P.W.; Nader, M.A.; Newman, A.H. Identifying medication targets for psychostimulant addiction: Unravelling the dopamine D3 receptor hypothesis. J. Med. Chem. 2015, 58, 5361–5380. [Google Scholar] [CrossRef] [PubMed]
- Kiss, B.; Krámos, B.; Laszlovszky, I. Potential mechanisms for why not all antipsychotics are able to occupy dopamine D3 receptors in the brain in vivo. Front. Psychiatry 2022, 13, 785592. [Google Scholar] [CrossRef]
- Moritz, A.E.; Free, R.B.; Weiner, W.S.; Akano, E.O.; Gandhi, D.; Abramyan, A.; Keck, T.M.; Ferrer, M.; Hu, X.; Southall, N.; et al. Discovery, optimization, and characterization of ML417: A novel and highly selective D3 dopamine receptor agonist. J. Med. Chem. 2020, 63, 5526–5567. [Google Scholar] [CrossRef] [PubMed]
- Kuzhikandathil, E.V.; Kortagere, S. Identification and characterization of a novel class of atypical dopamine receptor agonists. Pharm. Res. 2012, 29, 2264–2275. [Google Scholar] [CrossRef] [PubMed]
- Galaj, E.; Newman, A.H.; Xi, Z.X. Dopamine D3 receptor-based medication development for the treatment of opioid use disorder: Rationale, progress, and challenges. Neurosci. Biobehav. Rev. 2020, 114, 38–52. [Google Scholar] [CrossRef]
- Kiss, B.; Laszlovszky, I.; Krámos, B.; Visegrády, A.; Bobok, A.; Lévay, G.; Lendvai, B.; Román, V. Neuronal dopamine D3 receptors: Translational implications for preclinical research and CNS disorders. Biomolecules 2021, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Kivastik, T.; Vuorikallas, K.; Piepponen, T.P.; Zharkovsky, A.; Ahtee, L. Morphine- and cocaine-induced conditioned place preference: Effects of quinpirole and preclamol. Pharmacol. Biochem. Behav. 1996, 54, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Gogarnoiu, E.S.; Vogt, C.D.; Sanchez, J.; Bonifazi, A.; Saab, E.; Shaik, A.B.; Soler-Cedeño, O.; Bi, G.H.; Klein, B.; Xi, Z.X.; et al. Dopamine D3/D2 receptor ligands based on cariprazine for the treatment of psychostimulant use disorders that may be dual diagnosed with affective disorders. J. Med. Chem. 2023, 66, 1809–1834. [Google Scholar] [CrossRef] [PubMed]
- Simmler, L.D.; Anacker, A.M.J.; Levin, M.H.; Vaswani, N.M.; Gresch, P.J.; Nackenoff, A.G.; Anastasio, N.C.; Stutz, S.J.; Cunningham, K.A.; Wang, J.; et al. Blockade of the 5-HT transporter contributes to the behavioural, neuronal and molecular effects of cocaine. Br. J. Pharmacol. 2017, 174, 2716–2738. [Google Scholar] [CrossRef] [PubMed]
- Simmler, L.D.; Blakely, R.D. The SERT Met172 mouse: An engineered model to elucidate the contributions of serotonin signaling to cocaine action. ACS Chem. Neurosci. 2019, 10, 3053–3060. [Google Scholar] [CrossRef] [PubMed]
- Yuen, J.; Goyal, A.; Rusheen, A.E.; Kouzani, A.Z.; Berk, M.; Kim, J.H.; Tye, S.J.; Blaha, C.D.; Bennet, K.E.; Lee, K.H.; et al. Cocaine increases stimulation-evoked serotonin efflux in the nucleus accumbens. J. Neurophysiol. 2022, 127, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Simmler, L.D.; Van Zessen, R.; Flakowski, J.; Wan, J.X.; Deng, F.; Li, Y.L.; Nautiyal, K.M.; Pascoli, V.; Lüscher, C. Synaptic mechanism underlying serotonin modulation of transition to cocaine addiction. Science 2021, 373, 1252–1256. [Google Scholar] [CrossRef]
- Collins, G.T.; France, C.P. Effects of lorcaserin and buspirone, administered alone and as a mixture, on cocaine self-administration in male and female rhesus monkeys. Exp. Clin. Psychopharmacol. 2018, 26, 488–496. [Google Scholar] [CrossRef]
- Brown, C.R.; Foster, J.D. Palmitoylation regulates human serotonin transporter activity, trafficking, and expression and is modulated by escitalopram. ACS Chem. Neurosci. 2023, 14, 3431–3443. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Kim, H.J.; Kim, H.J.; Choi, S.H.; Kim, J.W.; Kim, J.M.; Shin, K.H. Effect of desipramine and citalopram treatment on forced swimming test-induced changes in cocaine- and amphetamine-regulated transcript (CART) immunoreactivity in mice. Neurochem. Res. 2014, 39, 961–972. [Google Scholar] [CrossRef] [PubMed]
- Suchting, R.; Green, C.E.; de Dios, C.; Vincent, J.; Moeller, F.G.; Lane, S.D.; Schmitz, J.M. Citalopram for treatment of cocaine use disorder: A Bayesian drop-the-loser randomized clinical trial. Drug Alcohol Depend. 2021, 228, 109054. [Google Scholar] [CrossRef] [PubMed]
- Pomrenze, M.B.; Cardozo Pinto, D.F.; Neumann, P.A.; Llorach, P.; Tucciarone, J.M.; Morishita, W.; Eshel, N.; Heifets, B.D.; Malenka, R.C. Modulation of 5-HT release by dynorphin mediates social deficits during opioid withdrawal. Neuron 2022, 110, 4125–4143.e6. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Michaelides, M.; Baler, R. The neuroscience of drug reward and addiction. Physiol. Rev. 2019, 99, 2115–2140. [Google Scholar] [CrossRef] [PubMed]
- Vega-Villar, M.; Horvitz, J.C.; Nicola, S.M. NMDA receptor-dependent plasticity in the nucleus accumbens connects reward-predictive cues to approach responses. Nat. Commun. 2019, 10, 4429. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Chen, H.; Chen, S.R.; Pan, H.L. α2δ-1 protein drives opioid-induced conditioned reward and synaptic NMDA receptor hyperactivity in the nucleus accumbens. J. Neurochem. 2023, 164, 143–157. [Google Scholar] [CrossRef]
- Anderson, E.M.; Reeves, T.; Kapernaros, K.; Neubert, J.K.; Caudle, R.M. Phosphorylation of the N-methyl-d-aspartate receptor is increased in the nucleus accumbens during both acute and extended morphine withdrawal. J. Pharmacol. Exp. Ther. 2015, 355, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Gu, S.M.; Lee, H.; Kim, D.E.; Hong, J.T.; Yun, J.; Cha, H.J. Prenatal ketamine exposure impairs prepulse inhibition via arginine vasopressin receptor 1A-mediated GABAergic neuronal dysfunction in the striatum. Biomed. Pharmacother. 2023, 160, 114318. [Google Scholar] [CrossRef] [PubMed]
- Simmler, L.D.; Li, Y.; Hadjas, L.C.; Hiver, A.; van Zessen, R.; Lüscher, C. Dual action of ketamine confines addiction liability. Nature 2022, 608, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Al-Hasani, R.; Gowrishankar, R.; Schmitz, G.P.; Pedersen, C.E.; Marcus, D.J.; Shirley, S.E.; Hobbs, T.E.; Elerding, A.J.; Renaud, S.J.; Jing, M.; et al. Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nat. Neurosci. 2021, 24, 1414–1428. [Google Scholar] [CrossRef] [PubMed]
- Moshiri, M.; Chaeideh, B.; Ebrahimi, M.; Dadpour, B.; Ghodsi, A.; Haghighizadeh, A.; Etemad, L. Buprenorphine induced opioid withdrawal syndrome relieved by adjunctive Magnesium: A clinical trial. J. Subst. Use Addict. Treat. 2024, 160, 209307. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, J.; Liu, Y.; Chen, K.H.; Baraban, J.M.; Qiu, Z. Ventral tegmental area astrocytes modulate cocaine reward by tonically releasing GABA. Neuron 2023, 111, 1104–1117.e6. [Google Scholar] [CrossRef]
- Zhou, J.L.; de Guglielmo, G.; Ho, A.J.; Kallupi, M.; Pokhrel, N.; Li, H.R.; Chitre, A.S.; Munro, D.; Mohammadi, P.; Carrette, L.L.G.; et al. Single-nucleus genomics in outbred rats with divergent cocaine addiction-like behaviors reveals changes in amygdala GABAergic inhibition. Nat. Neurosci. 2023, 26, 1868–1879. [Google Scholar] [CrossRef]
- Peng, X.Q.; Li, X.; Gilbert, J.G.; Pak, A.C.; Ashby Jr, C.R.; Brodie, J.D.; Dewey, S.L.; Gardner, E.L.; Xi, Z.X. Gamma-vinyl GABA inhibits cocaine-triggered reinstatement of drug-seeking behavior in rats by a non-dopaminergic mechanism. Drug Alcohol Depend. 2008, 97, 216–225. [Google Scholar] [CrossRef]
- Williams, J.; Collins, L.; Norman, A.; O’Neill, H.; Lloyd-Jones, M.; Ogden, E.; Bonomo, Y.; Pastor, A. A placebo-controlled randomized trial of vigabatrin in the management of acute alcohol withdrawal. Alcohol Alcohol. 2023, 58, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Juncosa, J.I.; Takaya, K.; Le, H.V.; Moschitto, M.J.; Weerawarna, P.M.; Mascarenhas, R.; Liu, D.; Dewey, S.L.; Silverman, R.B. Design and mechanism of (S)-3-amino-4-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic acid, a highly potent γ-aminobutyric acid aminotransferase inactivator for the treatment of addiction. J. Am. Chem. Soc. 2018, 140, 2151–2164. [Google Scholar] [CrossRef] [PubMed]
- Somoza, E.C.; Winship, D.; Gorodetzky, C.W.; Lewis, D.; Ciraulo, D.A.; Galloway, G.P.; Segal, S.D.; Sheehan, M.; Roache, J.D.; Bickel, W.K.; et al. A multisite, double-blind, placebo-controlled clinical trial to evaluate the safety and efficacy of vigabatrin for treating cocaine dependence. JAMA Psychiatry 2013, 70, 630–637. [Google Scholar] [CrossRef]
- Wasko, M.J.; Witt-Enderby, P.A.; Surratt, C.K. DARK classics in chemical neuroscience: Ibogaine. ACS Chem. Neurosci. 2018, 9, 2475–2483. [Google Scholar] [CrossRef] [PubMed]
- Noller, G.E.; Frampton, C.M.; Yazar-Klosinski, B. Ibogaine treatment outcomes for opioid dependence from a twelve-month follow-up observational study. Am. J. Drug Alcohol Abuse 2018, 44, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Marton, S.; González, B.; Rodríguez-Bottero, S.; Miquel, E.; Martínez-Palma, L.; Pazos, M.; Prieto, J.P.; Rodríguez, P.; Sames, D.; Seoane, G.; et al. Ibogaine administration modifies GDNF and BDNF expression in brain regions involved in mesocorticolimbic and nigral dopaminergic circuits. Front. Pharmacol. 2019, 10, 193. [Google Scholar] [CrossRef]
- Cameron, L.P.; Tombari, R.J.; Lu, J.; Pell, A.J.; Hurley, Z.Q.; Ehinger, Y.; Vargas, M.V.; McCarroll, M.N.; Taylor, J.C.; Myers-Turnbull, D.; et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature 2021, 589, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Lepack, A.E.; Werner, C.T.; Stewart, A.F.; Fulton, S.L.; Zhong, P.; Farrelly, L.A.; Smith, A.C.W.; Ramakrishnan, A.; Lyu, Y.; Bastle, R.M.; et al. Dopaminylation of histone H3 in ventral tegmental area regulates cocaine seeking. Science 2020, 368, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.F.; Lepack, A.E.; Fulton, S.L.; Safovich, P.; Maze, I. Histone H3 dopaminylation in nucleus accumbens, but not medial prefrontal cortex, contributes to cocaine-seeking following prolonged abstinence. Mol. Cell. Neurosci. 2023, 125, 103824. [Google Scholar] [CrossRef] [PubMed]
- Vaillancourt, K.; Chen, G.G.; Fiori, L.; Maussion, G.; Yerko, V.; Théroux, J.F.; Ernst, C.; Labonté, B.; Calipari, E.; Nestler, E.J.; et al. Methylation of the tyrosine hydroxylase gene is dysregulated by cocaine dependence in the human striatum. iScience 2021, 24, 103169. [Google Scholar] [CrossRef] [PubMed]
- Poisel, E.; Zillich, L.; Streit, F.; Frank, J.; Friske, M.M.; Foo, J.C.; Mechawar, N.; Turecki, G.; Hansson, A.C.; Nöthen, M.M.; et al. DNA methylation in cocaine use disorder-An epigenome-wide approach in the human prefrontal cortex. Front. Psychiatry 2023, 14, 1075250. [Google Scholar] [CrossRef] [PubMed]
- Lacagnina, M.J.; Rivera, P.D.; Bilbo, S.D. Glial and neuroimmune mechanisms as critical modulators of drug use and abuse. Neuropsychopharmacology 2017, 42, 156–177. [Google Scholar] [CrossRef] [PubMed]
- Beardsley, P.M.; Hauser, K.F. Glial modulators as potential treatments of psychostimulant abuse. Adv. Pharmacol. 2014, 69, 1–69. [Google Scholar] [PubMed]
- Correia, C.; Romieu, P.; Olmstead, M.C.; Befort, K. Can cocaine-induced neuroinflammation explain maladaptive cocaine-associated memories? Neurosci. Biobehav. Rev. 2020, 111, 69–83. [Google Scholar] [CrossRef]
- Zhu, Y.; Yan, P.; Wang, R.; Lai, J.; Tang, H.; Xiao, X.; Yu, R.; Bao, X.; Zhu, F.; Wang, K.; et al. Opioid-induced fragile-like regulatory T cells contribute to withdrawal. Cell 2023, 186, 591–606.e23. [Google Scholar] [CrossRef]
- Li, Y.; Shu, Y.; Ji, Q.; Liu, J.; He, X.; Li, W. Attenuation of morphine analgesic tolerance by rosuvastatin in naïve and morphine tolerance rats. Inflammation 2015, 38, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Nozu, F.; Kusama, K.; Imawari, M. Cholecystokinin stimulates the recruitment of the Src-RhoA-phosphoinositide 3-kinase pathway by Vav-2 downstream of G(alpha13) in pancreatic acini. Biochem. Biophys. Res. Commun. 2006, 339, 271–276. [Google Scholar] [CrossRef]
- Bulhak, A.; Roy, J.; Hedin, U.; Sjöquist, P.O.; Pernow, J. Cardioprotective effect of rosuvastatin in vivo is dependent on inhibition of geranylgeranyl pyrophosphate and altered RhoA membrane translocation. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H3158–H3163. [Google Scholar] [CrossRef]
- Wingard, C.J.; Moukdar, F.; Prasad, R.Y.; Cathey, B.L.; Wilkinson, L. Reversal of voltage-dependent erectile responses in the Zucker obese-diabetic rat by rosuvastatin-altered RhoA/Rho-kinase signaling. J. Sex Med. 2009, 6 (Suppl. S3), 269–278. [Google Scholar] [CrossRef]
- Ingrand, I.; Solinas, M.; Ingrand, P.; Dugast, E.; Saulnier, P.J.; Pérault-Pochat, M.C.; Lafay-Chebassier, C. Lack of effects of simvastatin on smoking cessation in humans: A double-blind, randomized, placebo-controlled clinical study. Sci. Rep. 2018, 8, 3836. [Google Scholar] [CrossRef] [PubMed]
- Loftis, J.M.; Ramani, S.; Firsick, E.J.; Hudson, R.; Le-Cook, A.; Murnane, K.S.; Vandenbark, A.; Shirley, R.L. Immunotherapeutic treatment of inflammation in mice exposed to methamphetamine. Front. Psychiatry 2023, 14, 1259041. [Google Scholar] [CrossRef] [PubMed]
- Worley, M.J.; Heinzerling, K.G.; Roche, D.J.; Shoptaw, S. Ibudilast attenuates subjective effects of methamphetamine in a placebo-controlled inpatient study. Drug Alcohol Depend. 2016, 162, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Kusui, Y.; Izuo, N.; Tokuhara, R.; Asano, T.; Nitta, A. Neuronal activation of nucleus accumbens by local methamphetamine administration induces cognitive impairment through microglial inflammation in mice. J. Pharmacol. Sci. 2024, 154, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Sofuoglu, M.; Mooney, M.; Kosten, A.T.; Waters, K. Hashimoto, Minocycline attenuates subjective rewarding effects of dextroamphetamine in humans. Psychopharmacology 2011, 213, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Maeda, T.; Kiguchi, N.; Fukazawa, Y.; Yamamoto, A.; Ozaki, M.; Kishioka, S. Peroxisome proliferator-activated receptor gamma activation relieves expression of behavioral sensitization to methamphetamine in mice. Neuropsychopharmacology 2007, 32, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, J.M.; Green, C.E.; Hasan, K.M.; Vincent, J.; Suchting, R.; Weaver, M.F.; Moeller, F.G.; Narayana, P.A.; Cunningham, K.A.; Dineley, K.T.; et al. PPAR-gamma agonist pioglitazone modifies craving intensity and brain white matter integrity in patients with primary cocaine use disorder: A double-blind randomized controlled pilot trial. Addiction 2017, 112, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.; Comer, S.D.; Metz, V.E.; Manubay, J.M.; Mogali, S.; Ciccocioppo, R.; Martinez, S.; Mumtaz, M.; Bisaga, A. Pioglitazone, a PPARgamma agonist, reduces nicotine craving in humans, with marginal effects on abuse potential. Pharmacol. Biochem. Behav. 2017, 163, 90–100. [Google Scholar] [CrossRef]
- Nair, M.; Jayant, R.D.; Kaushik, A.; Sagar, V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv. Drug Deliv. Rev. 2016, 103, 202–217. [Google Scholar] [CrossRef] [PubMed]
- Nair, K.G.; Ramaiya, V.; Sukumaran, S.K. Enhancement of drug permeability across blood brain barrier using nanoparticles in meningitis. Inflammopharmacology 2018, 26, 675–784. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Chen, Y.; Zhang, W.; Xia, X.; Li, H.; Qin, M.; Gao, H. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. J. Control. Release 2024, 366, 519–534. [Google Scholar] [CrossRef]
- Huang, Q.; Chen, X.; Yu, S.; Gong, G.; Shu, H. Research progress in brain-targeted nasal drug delivery. Front. Aging Neurosci. 2024, 15, 1341295. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Liu, Y.; Peng, C.; Muluh, T.A.; Anayyat, U.; Liang, L. Recent advancement in inhaled nano-drug delivery for pulmonary, nasal, and nose-to-brain diseases. Curr. Drug. Deliv. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhang, S.; Lee, J.H.; Dong, H.; Mourgkos, G.; Terwilliger, G.; Kraus, A.; Geraldo, L.H.; Poulet, M.; Fischer, S.; et al. Compartmentalized ocular lymphatic system mediates eye-brain immunity. Nature 2024, 628, 204–211. [Google Scholar] [CrossRef] [PubMed]
Drug Name (Administration Form) | Therapeutic Mechanisms | Evidence in Animal Experiments of Addiction | Evidence from Human Clinical Trials to Addiction | Refs. |
---|---|---|---|---|
L-methionine (oral or injection) | Down-regulating Vav2 gene and influencing DNA methylation in NAc | Inhibiting cocaine dependence in mice and rats | None | [23,24,25] |
Fasudil/Ripasudil (oral or injection) | ROCK inhibitor; promoting DAT recycling | Ameliorating spatial learning and memory disorders induced by smoking in mice | None | [31] |
Buspirone (oral) | D3R antagonist; 5-HT1A receptor partial agonist | Abolishing cocaine and alcohol primed reinstatement in mice, dogs, and monkeys | Ineffectiveness to relapse to cocaine | [44,45,46,47] |
Quinpirole (injection) | D3R partial agonist | No significant effect on the place preference induced by cocaine or morphine in rats | None | [60] |
Cariprazine (oral or injection) | D3R partial agonist | Decreasing cocaine self-administration in rats | None | [61] |
Citalopram/Escitalopram (oral or injection) | Serotonin reuptake inhibitor | Decreasing compulsive cocaine self-administration in mice | A high dose showed positive effects on the longest duration of cocaine abstinence | [65,68,69] |
Vigabatrin (oral or injection) | GABA transaminase inhibitor | Attenuating the acute rewarding effects of cocaine in rats | Alleviating alcohol addiction; ineffectiveness for cocaine dependence | [81,82,84] |
Rosuvastatin/Simvastatin (oral) | Anti-neuro-inflammation; inhibiting Rho GTPases activation | Reversing the tolerance to morphine-induced analgesia in rats | Ineffectiveness for smoking cessation | [97,101] |
Ibudilast (oral) | Anti-inflammatory drug | Attenuating methamphetamine addiction in mice | A high dose reduced methamphetamine self-administration and craving | [102,103] |
Minocycline (oral or injection) | Anti-inflammatory drug | Ameliorating cognitive impairment induced by methamphetamine in mice | Reducing amphetamine induced subjective rewarding effects | [104,105] |
Pioglitazone (oral) | Anti-inflammatory drug | Attenuating behavioral sensitization during the withdrawal of methamphetamine in mice | Reducing craving for cocaine; showing marginal effects to nicotine addiction | [106,107,108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Jiang, S.-C.; Zhang, Z.-W.; Li, Z.-L.; Hu, J. Substance Addiction Rehabilitation Drugs. Pharmaceuticals 2024, 17, 615. https://doi.org/10.3390/ph17050615
Yuan S, Jiang S-C, Zhang Z-W, Li Z-L, Hu J. Substance Addiction Rehabilitation Drugs. Pharmaceuticals. 2024; 17(5):615. https://doi.org/10.3390/ph17050615
Chicago/Turabian StyleYuan, Shu, Si-Cong Jiang, Zhong-Wei Zhang, Zi-Lin Li, and Jing Hu. 2024. "Substance Addiction Rehabilitation Drugs" Pharmaceuticals 17, no. 5: 615. https://doi.org/10.3390/ph17050615