Technology Readiness Level Roadmap for Developing Innovative Herbal Medicinal Products
Abstract
:1. Introduction
2. Results and Discussion
2.1. TRLs for Herbal Medicinal Products
2.1.1. TRL-1
2.1.2. TRL-2
2.1.3. TRL-3
2.1.4. TRL-4
2.1.5. TRL-5
2.1.6. TRL-6
2.1.7. TRL-7
2.1.8. TRL-8
2.1.9. TRL-9
2.2. TRL Domains and Boundaries
2.2.1. Herbal Substance
2.2.2. Herbal Preparation
Herbal Preparation Concepts in Europe and Brazil
2.2.3. Herbal Medicinal Product
2.2.4. Analytical Development
2.2.5. Non-Clinical Assays
Allometric Dose Conversion
Killer Experiment
- a.
- Demonstration of low efficacy in doses suitable for humans after allometric calculation in the gold-standard model of the target disease.
- b.
- Demonstration of efficacy/toxicity balance worse than a comparator under development or already in the market, even after optimization. Note: if the MoA is different from the available comparators, the product may still be viable, even if the potency is lower or the toxicity is higher, because it might work in cases not responsive to the comparator.
- c.
- Demonstration that a component responsible for a large part of the effect does not reach an effective concentration in the target tissue/organ in a dose suitable for humans after formulation optimization.
- d.
- Demonstration of active components’ instability, except for unmet medical needs. For these cases, the search for stable related compounds is advisable.
- e.
- Demonstration of manufacturing costs incompatible with the therapeutic indication.
2.2.6. Clinical Trials
Special Issues on Clinical Trials of Herbal Medicinal Products
Ethnopharmacological Information, Traditional Use
3. Materials and Methods
4. Concluding Remarks
Future Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.W.; Vederas, J.C. Drug discovery and natural products: End of an era or an endless frontier? Science 2009, 325, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Firn, R.D.; Jones, C.G. Natural products—A simple model to explain chemical diversity. Nat. Prod. Rep. 2003, 20, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Davison, E.K.; Brimble, M.A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol. 2019, 52, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Larsson, J.; Gottfries, J.; Muresan, S.; Backlund, A. ChemGPS-NP: Tuned for navigation in biologically relevant chemical space. J. Nat. Prod. 2007, 70, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Bruder, M.; Polo, G.; Trivella, D.B.B. Natural allosteric modulators and their biological targets: Molecular signatures and mechanisms. Nat. Prod. Rep. 2020, 37, 488–514. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Drews, J. Drug discovery: A historical perspective. Science 2000, 287, 1960–1964. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T.; Koch, E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr. Drug Targets 2011, 12, 122–132. [Google Scholar]
- Fibigr, J.; Satinsky, D.; Solich, P. Current trends in the analysis and quality control of food supplements based on plant extracts. Anal. Chim. Acta 2018, 1036, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Koeberle, A.; Werz, O. Multi-target approach for natural products in inflammation. Drug Discov. Today 2014, 19, 1871–1882. [Google Scholar] [CrossRef]
- Stasilowicz, A.; Tomala, A.; Podolak, I.; Cielecka-Piontek, J. Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment. Int. J. Mol. Sci. 2021, 22, 778. [Google Scholar] [CrossRef]
- Stockfleth, E.; Meyer, T. The use of sinecatechins (polyphenon E) ointment for treatment of external genital warts. Expert Opin. Biol. Ther. 2012, 12, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Noor, F.; Tahir Ul Qamar, M.; Ashfaq, U.A.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals 2022, 15, 572. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Traditional Medicine Strategy: 2014–2023; Institutional repository for information sharing; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- WHO. Operational Guidance: Information Needed to Support Clinical Trials of Herbal Products; Institutional repository for information sharing; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Liang, Z.; Hu, H.; Li, J.; Yao, D.; Wang, Y.; Ung, C.O.L. Advancing the Regulation of Traditional and Complementary Medicine Products: A Comparison of Five Regulatory Systems on Traditional Medicines with a Long History of Use. Evid. Based Complement. Altern. Med. 2021, 2021, 5833945. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, C.A.; Vikhe, D.N.; Jadhav, R.S. Global and domestic market of herbal medicines: A review. Res. J. Sci. Technol. 2020, 12, 327–330. [Google Scholar] [CrossRef]
- Grabher, C. A Governança e a Sustentabilidade Do Extrativismo Do Jaborandi Na Amazônia e Transição Para o Cerrado e a Caatinga. In Faculdade de Ciências Econômicas. Programa de Pós-Graduação em Desenvolvimento Rural; Universidade Federal do Rio Grande do Sul: Porto Alegre, Brazil, 2015. [Google Scholar]
- WFO. World Flora Online. 2024. Available online: https://www.worldfloraonline.org/ (accessed on 4 January 2024).
- Theodoridis, S.; Drakou, E.G.; Hickler, T.; Thines, M.; Nogues-Bravo, D. Evaluating natural medicinal resources and their exposure to global change. Lancet Planet. Health 2023, 7, e155–e163. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed]
- Seile, B.P.; Bareetseng, S.; Koitsiwe, M.T.; Aremu, A.O. Indigenous Knowledge on the Uses, Sustainability and Conservation of African Ginger (Siphonochilus aethiopicus) among Two Communities in Mpumalanga Province, South Africa. Diversity 2022, 14, 192. [Google Scholar] [CrossRef]
- Pasdaran, A.; Naychov, Z.; Batovska, D.; Kerr, P.; Favre, A.; Dimitrov, V.; Aneva, I.; Hamedi, A.; Kozuharova, E. Some European Gentiana Species Are Used Traditionally to Cure Wounds: Bioactivity and Conservation Issues. Diversity 2023, 15, 467. [Google Scholar] [CrossRef]
- Balkrishna, A.; Singh, R.; Gohel, V.; Arora, S.; Dev, R.; Bhattacharya, K.; Varshney, A. Enteric-Coated Cologrit Tablet Exhibit Robust Anti-Inflammatory Response in Ulcerative Colitis-like In-Vitro Models by Attuning NFkappaB-Centric Signaling Axis. Pharmaceuticals 2022, 16, 63. [Google Scholar] [CrossRef]
- Pan American Health Organization. Country Profiles. 2024. Available online: https://tcim-globalsummit.bvsalud.org/regulations-and-policies/ (accessed on 4 January 2024).
- Geck, M.S.; Cristians, S.; Berger-Gonzalez, M.; Casu, L.; Heinrich, M.; Leonti, M. Traditional Herbal Medicine in Mesoamerica: Toward Its Evidence Base for Improving Universal Health Coverage. Front. Pharmacol. 2020, 11, 1160. [Google Scholar] [CrossRef]
- Heinrich, M.; Scotti, F.; Andrade-Cetto, A.; Berger-Gonzalez, M.; Echeverria, J.; Friso, F.; Garcia-Cardona, F.; Hesketh, A.; Hitziger, M.; Maake, C.; et al. Access and Benefit Sharing Under the Nagoya Protocol-Quo Vadis? Six Latin American Case Studies Assessing Opportunities and Risk. Front. Pharmacol. 2020, 11, 765. [Google Scholar] [CrossRef] [PubMed]
- Convention on Biological Diversity, United Nations. Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits Arising from Their Utilization to the Convention on Biological Diversity; Convention on Biological Diversity, United Nations: Rio de Janeiro, Brazil; New York, NY, YSA, 2011. [Google Scholar]
- Castro Braga, F. Brazilian traditional medicine: Historical basis, features and potentialities for pharmaceutical development. J. Tradit. Chin. Med. Sci. 2021, 8, S44–S50. [Google Scholar] [CrossRef]
- Presidência da República. Lei No 13.123, de 20 de Maio de 2015; Diário Oficial; Republica Federativa do Brasil IN; Governo do Brasil: Brasília, Brazil, 2015. [Google Scholar]
- Knoess, W.; Wiesner, J. The Globalization of Traditional Medicines: Perspectives Related to the European Union Regulatory Environment. Engineering 2019, 5, 22–31. [Google Scholar] [CrossRef]
- Mankins, J.C. Technology Readiness Level: A White Paper; ResearchGate: Berlin, Germany, 1995. [Google Scholar]
- Héder, M. From NASA to EU: The evolution of the TRL scale in Public Sector Innovation. Innov. J. 2017, 22, 1–23. [Google Scholar]
- BIRAC. 1. Drugs (Including Drug Delivery). BIRAC-TRLs: Technology Readiness Levels by BIRAC Across Areas under Biotechnology 2018. Available online: https://www.birac.nic.in/webcontent/birac_trl_doc1_drug_12_09_2018.pdf (accessed on 16 May 2024).
- IA. Description of Technology Readiness Levels (TRL). tia.org.za. 2019. Available online: https://www.tia.org.za/core/uploads/2019/12/TRL-1.pdf (accessed on 17 November 2022).
- Notander, G. Technology Readiness Levels—TRL—NASA’s Contribution to Horizon 2020. 2020. Available online: https://www.wmahsn.org/storage/resources/documents/EIT_Health_KIC_A_guide_to_TRL-EIT_health.pdf (accessed on 5 July 2023).
- MedicalCountermeasures.gov. Integrated Technology Readiness Levels (TRLS) for Medical Countermeasure Products (Drugs and Biologics); MedicalCountermeasures.gov: Bethesda, MD, USA, 2024. [Google Scholar]
- European Commission. Horizon 2020 Work Programme 2018–2020; General Annexes; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Buchner, G.A.; Stepputat, K.J.; Zimmermann, A.W.; Schomäcker, R. Specifying Technology Readiness Levels for the Chemical Industry. Ind. Eng. Chem. Res. 2019, 58, 6957–6969. [Google Scholar] [CrossRef]
- European Medicines Agency (Ed.) Guideline on Declaration of Herbal Substances and Herbal Preparations in Herbal Medicinal Products/Traditional Herbal Medicinal Products; EMA: Amsterdam, The Netherlands, 2010. [Google Scholar]
- EMA. European Union Monographs and List Entries. Human Regulatory Herbal Products 2022; The Committee on Herbal Medicinal Products (HMPC) Compiles and Assesses Scientific Data on Herbal Substances, Preparations and Combinations with a Focus on Safety and Efficacy. This Work Supports the Harmonisation of the European Market: National Competent Authorities Are Able to Refer to One Unique Set of Information on a Herbal Substance or Preparation When Evaluating Marketing Applications. Available online: https://www.ema.europa.eu/en/human-regulatory/herbal-products/european-union-monographs-list-entries (accessed on 4 January 2023).
- European Medicines Agency (Ed.) Herbal Medicinal Products; EMA: Amsterdam, The Netherlands, 2024. [Google Scholar]
- European Commission. A Guideline on Summary of Product Characteristics (SmPC) Revision 2; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- EMA. Guideline on Specifications: Test Procedures and Acceptance Criteria for Herbal Substances, Herbal Preparations and Herbal Medicinal Products/Traditional Herbal Medicinal Products; EMA: Amsterdam, The Netherlands, 2022. [Google Scholar]
- EMA. Guideline on Quality of Herbal Medicinal Products/Traditional Herbal Medicinal Products; EMA: Amsterdam, The Netherlands, 2022. [Google Scholar]
- WHO. WHO Guidelines on Good Herbal Processing Practices for Herbal Medicines; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Mankins, J.C. Research & Development Degree of Difficulty (R&D3)—A White Paper; Economics Web Institute: Washington, DC, USA, 1998. [Google Scholar]
- Mankins, J.C. Approaches to strategic research and technology (R&T) analysis and road mapping. Acta Astronaut. 2002, 51, 3–21. [Google Scholar]
- Mankins, J.C. Technology readiness assessments: A retrospective. Acta Astronaut. 2009, 65, 1216–1223. [Google Scholar] [CrossRef]
- Banke, J. Technology Readiness Levels Demystified. Aeronautics. 2010. Available online: https://www.nasa.gov/topics/aeronautics/features/trl_demystified.html (accessed on 20 July 2022).
- Mankins, J.C. Technology readiness and risk assessments: A new approach. Acta Astronaut. 2009, 65, 1208–1215. [Google Scholar] [CrossRef]
- Hao, Y.; Ge, H.; Sun, M.; Gao, Y. Selecting an Appropriate Animal Model of Depression. Int. J. Mol. Sci. 2019, 20, 4827. [Google Scholar] [CrossRef]
- Lerman, L.O.; Kurtz, T.W.; Touyz, R.M.; Ellison, D.H.; Chade, A.R.; Crowley, S.D.; Mattson, D.L.; Mullins, J.J.; Osborn, J.; Eirin, A.; et al. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019, 73, e87–e120. [Google Scholar] [CrossRef] [PubMed]
- Moorhouse, D.J. Detailed Definitions and Guidance for Application of Technology Readiness Levels. J. Aircr. 2002, 39, 190–192. [Google Scholar] [CrossRef]
- Krizkovska, B.; Kumar, R.; Rehorova, K.; Sykora, D.; Dobiasova, S.; Kucerova, D.; Tan, M.C.; Linis, V.; Oyong, G.; Ruml, T.; et al. Comparison of Chemical Composition and Biological Activities of Eight Selaginella Species. Pharmaceuticals 2020, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Brazbio. Partnerships for a Better Wolrd. 2022. Brazbio Was Founded in 2018 as a Joint Venture between Centroflora Group, a Brazilian Company That Operates in the Production and Commercialization of Pharmaceutical Extracts from Natural Ingredients, and Givaudan, a Swiss Company and Global Leader in the Production of Flavors and Fragrances. Available online: http://brazbio.com/en/our-company/ (accessed on 20 July 2022).
- Canter, P.H.; Thomas, H.; Ernst, E. Bringing medicinal plants into cultivation: Opportunities and challenges for biotechnology. Trends Biotechnol. 2005, 23, 180–185. [Google Scholar] [CrossRef] [PubMed]
- CORDIS. Replacement of Contentious Inputs in Organic Farming Systems. Horizon 2020. 2018. Available online: https://cordis.europa.eu/article/id/442664-new-agroecological-approaches-to-scale-up-organic-farming (accessed on 16 May 2024).
- WHO. Fifty-First Report of the WHO Expert Committee on Specifications for Pharmaceutical Preparations; WHO technical report series; no. 1003; WHO Library Cataloguing-in-Publication Data: Geneva, Switzerland, 2017. [Google Scholar]
- WHO (Ed.) Guidelines on Good Agricultural and Collection Practices (GACP) for Medicinal Plants; in iris.com; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- FDA. Botanical Drug Development Guidance for Industry; U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER), Ed.; FDA: Silver Spring, MD, USA, 2016. [Google Scholar]
- EMA. Guideline on Good Agricultural and Collection Practice (GACP) for Starting Materials of Herbal Origin; EMEA/HMPC/246816/2005; HMPC, Ed.; European Medicines Agency/Herbal Medicinal Products Committee: Amsterdam, The Netherlands, 2006; pp. 1–11. [Google Scholar]
- FDA. 21CFR312.23; FDA: Silver Spring, MD, USA, 2023. [Google Scholar]
- Maitra, U.; Stephen, C.; Ciesla, L.M. Drug discovery from natural products—Old problems and novel solutions for the treatment of neurodegenerative diseases. J. Pharm. Biomed. Anal. 2022, 210, 114553. [Google Scholar] [CrossRef] [PubMed]
- Jităreanu, A.; Trifan, A.; Vieriu, M.; Caba, I.-C.; Mârțu, I.; Agoroaei, L. Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes 2022, 11, 83. [Google Scholar] [CrossRef]
- Quan, N.V.; Dang Xuan, T.; Teschke, R. Potential Hepatotoxins Found in Herbal Medicinal Products: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 5011. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, P.; Palaniappan, A. Terminalia arjuna, a Cardioprotective Herbal Medicine-Relevancy in the Modern Era of Pharmaceuticals and Green Nanomedicine—A Review. Pharmaceuticals 2023, 16, 126. [Google Scholar] [CrossRef]
- Djehiche, C.; Benzidane, N.; Djeghim, H.; Tebboub, M.; Mokrani, E.H.; Mebrek, S.; Messaoudi, M.; Bensouici, C.; Alsalme, A.; Cornu, D.; et al. Exploring the Therapeutic Potential of Ammodaucus leucotrichus Seed Extracts: A Multi-Faceted Analysis of Phytochemical Composition, Anti-Inflammatory Efficacy, Predictive Anti-Arthritic Properties, and Molecular Docking Insights. Pharmaceuticals 2024, 17, 385. [Google Scholar] [CrossRef]
- Madia, V.N.; De Angelis, M.; De Vita, D.; Messore, A.; De Leo, A.; Ialongo, D.; Tudino, V.; Saccoliti, F.; De Chiara, G.; Garzoli, S.; et al. Investigation of Commiphora myrrha (Nees) Engl. Oil and Its Main Components for Antiviral Activity. Pharmaceuticals 2021, 14, 243. [Google Scholar] [CrossRef]
- Gaurav, H.; Yadav, D.; Maurya, A.; Yadav, H.; Yadav, R.; Shukla, A.C.; Sharma, M.; Gupta, V.K.; Palazon, J. Biodiversity, Biochemical Profiling, and Pharmaco-Commercial Applications of Withania somnifera: A Review. Molecules 2023, 28, 1208. [Google Scholar] [CrossRef] [PubMed]
- WHO (Ed.) WHO Guidelines on Good Manufacturing Practices for (GMP) for Herbal Medicines; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- FDA. Guidance for Industry CGMP for Phase 1 Investigational Drugs Administration; U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) Office of Regulatory Affairs (ORA), Ed.; FDA: Silver Spring, MD, USA, 2008. [Google Scholar]
- Bodeker, G.; Ong, C.-K.; Grundy, C.; Burford, G.; Shein, K. WHO Global Atlas of Traditional, Complementary and Alternative Medicine; WHO Centre for Health Development: Kobe, Japan, 2005. [Google Scholar]
- Council of Europe; European Directorate for the Quality of Medicines & HealthCare. European Pharmacopoeia (Ph. Eur.), 11th ed.; Conuncil of Europe: Strasbourg, France, 2023. [Google Scholar]
- ANVISA. Farmacopéia Brasileira. In Volume 2 Plantas Medicinais; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2022. [Google Scholar]
- Nicolai, M.; Mota, J.; Fernandes, A.S.; Pereira, F.; Pereira, P.; Reis, C.P.; Robles Velasco, M.V.; Baby, A.R.; Rosado, C.; Rijo, P. Assessment of the Potential Skin Application of Plectranthus ecklonii Benth. Pharmaceuticals 2020, 13, 120. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Test No. 423: Acute Oral Toxicity—Acute Toxic Class Method; OECD Guidelines for the Testing of Chemicals, Section 4; OECDiLibrary: Paris, France, 2002. [Google Scholar] [CrossRef]
- ANVISA. Estudos Não Clinicos Necessários ao Desenvolvimento de Medicamentos Fitoterápicos; ANVISA: Brasília, Brazil, 2019. [Google Scholar]
- WHO (Ed.) Quality Control Methods for Herbal Materials; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- USP. Herbal Medicines Compendium; United States Pharmacopeial Convention, Ed.; USP: North Bethesda, MD, USA, 2024. [Google Scholar]
- AOACInternational. Official Methods of Analysis, 22nd ed.; AOACInternational: Rockville, MD, USA, 2023; Available online: https://www.aoac.org/official-methods-of-analysis/ (accessed on 4 July 2023).
- Medicines & Healthcare Products Regulatory Agency (Ed.) The British Pharmacopoeia Quality Standards; MHRA: London, UK, 2024. [Google Scholar]
- Choudhary, N.; Sekhon, B.S. An overview of advances in the standardization of herbal drugs. J. Pharm. Educ. Res. 2011, 2, 55–70. [Google Scholar]
- Fitzgerald, M.; Heinrich, M.; Booker, A. Medicinal Plant Analysis: A Historical and Regional Discussion of Emergent Complex Techniques. Front. Pharmacol. 2019, 10, 1480. [Google Scholar] [CrossRef]
- Muyumba, N.W.; Mutombo, S.C.; Sheridan, H.; Nachtergael, A.; Duez, P. Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications. Talanta Open 2021, 4, 100070. [Google Scholar] [CrossRef]
- Kim, M.K.; Park, S.C.; Park, G.; Choi, E.; Ji, Y.; Jang, Y.P. Analytical quality by design methodology for botanical raw material analysis: A case study of flavonoids in Genkwa Flos. Sci. Rep. 2021, 11, 11936. [Google Scholar] [CrossRef] [PubMed]
- Indrayanto, G. Recent Development of Quality Control Methods for Herbal Derived Drug Preparations. Nat. Prod. Commun. 2018, 13, 1599–1606. [Google Scholar] [CrossRef]
- Huang, S.; Chen, J.; Li, W.; Song, S.; Li, X.; Yu, H.; Long, F.; Chen, R.; Bao, X.; Chan, K.; et al. Comparison of Volatile Compositions among Four Related Ligusticum chuanxiong Herbs by HS-SPME-GC-MS. Processes 2023, 11, 196. [Google Scholar] [CrossRef]
- ICH. M4: The Common Technical Document. 2003. Available online: https://www.ich.org/page/ctd (accessed on 16 May 2024).
- ANVISA. Guia Para Organização do Documento Técnico Comum (CTD) Para o Registro e Pós-Registro de Medicamentos; ANVISA: Brasília, Brazil, 2019. [Google Scholar]
- EMA (Ed.) Guideline on the Use of the CTD Format in the Preparation of a Registration Application for Traditional Herbal Medicinal Products; EMA: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Agência Nacional de Vigilância Sanitária—Anvisa (Ed.) RDC 166/2017 Estabelece Critérios Para a Validaçãode Métodos Analíticos; ANVISA: Brasília, Brazil, 2017. [Google Scholar]
- Sarma, N.; Upton, R.; Rose, U.; Guo, D.A.; Marles, R.; Khan, I.; Giancaspro, G. Pharmacopeial Standards for the Quality Control of Botanical Dietary Supplements in the United States. J. Diet. Suppl. 2023, 20, 485–504. [Google Scholar] [CrossRef]
- ANVISA. Resolução da Diretoria Colegiada—RDC N° 26, in Dispõe Sobre o Registro de Medicamentos Fitoterápicos e o Registro e a Notificação de Produtos Tradicionais Fitoterápicos; ANVISA: Brasília, Brazil, 2014. [Google Scholar]
- Borgonetti, V.; Les, F.; Lopez, V.; Galeotti, N. Attenuation of Anxiety-like Behavior by Helichrysum stoechas (L.) Moench Methanolic Extract through Up-Regulation of ERK Signaling Pathways in Noradrenergic Neurons. Pharmaceuticals 2020, 13, 472. [Google Scholar]
- Zurdo, J. Developability assessment as an early de-risking tool for biopharmaceutical development. Pharm. Bioprocess. 2013, 1, 29–50. [Google Scholar] [CrossRef]
- Lin, A.; Giuliano, C.J.; Palladino, A.; John, K.M.; Abramowicz, C.; Yuan, M.L.; Sausville, E.L.; Lukow, D.A.; Liu, L.; Chait, A.R.; et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 2019, 11, eaaw8412I. [Google Scholar] [CrossRef]
- Tuohongerbieke, A.; Wang, H.; Wu, J.; Wang, Z.; Dong, T.; Huang, Y.; Zhu, D.; Sun, D.; Tsim, K.W.K. Xiao Cheng Qi Decoction, an Ancient Chinese Herbal Mixture, Relieves Loperamide-Induced Slow-Transit Constipation in Mice: An Action Mediated by Gut Microbiota. Pharmaceuticals 2024, 17, 153. [Google Scholar] [CrossRef] [PubMed]
- Parish, T. In vitro drug discovery models for Mycobacterium tuberculosis relevant for host infection. Expert Opin. Drug Discov. 2020, 15, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Vohora, D. Drug Discovery and Development. In Pharmaceutical Medicine and Translational Clinical Research; Academic Press: Cambridge, MA, USA, 2018; pp. 19–32. [Google Scholar]
- Franco, C.H.; Alcantara, L.M.; Chatelain, E.; Freitas-Junior, L.; Moraes, C.B. Drug Discovery for Chagas Disease: Impact of Different Host Cell Lines on Assay Performance and Hit Compound Selection. Trop. Med. Infect. Dis. 2019, 4, 82. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, F.A.; Selim, N.M.; Elhawary, S.S.; Abd El Hadi, S.R.; Hetta, M.H.; Albalawi, M.A.; Shati, A.A.; Alfaifi, M.Y.; Elbehairi, S.E.I.; Fahmy, L.I.; et al. Green Biosynthesis of Silver Nanoparticles Using Annona glabra and Annona squamosa Extracts with Antimicrobial, Anticancer, Apoptosis Potentials, Assisted by In Silico Modeling, and Metabolic Profiling. Pharmaceuticals 2022, 15, 1354. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.; Aires-de-Sousa, J. Computational Methodologies in the Exploration of Marine Natural Product Leads. Mar. Drugs 2018, 16, 236. [Google Scholar] [CrossRef]
- Loiodice, S.; Nogueira da Costa, A.; Atienzar, F. Current trends in in silico, in vitro toxicology, and safety biomarkers in early drug development. Drug Chem. Toxicol. 2019, 42, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Rim, K.T. In silico prediction of toxicity and its applications for chemicals at work. Toxicol. Environ. Health Sci. 2020, 12, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Van Norman, G.A. Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Is it Time to Rethink Our Current Approach? JACC Basic Transl. Sci. 2019, 4, 845–854. [Google Scholar] [CrossRef]
- Robinson, N.B.; Krieger, K.; Khan, F.M.; Huffman, W.; Chang, M.; Naik, A.; Yongle, R.; Hameed, I.; Krieger, K.; Girardi, L.N.; et al. The current state of animal models in research: A review. Int. J. Surg. 2019, 72, 9–13. [Google Scholar] [CrossRef]
- Laman, J.D.; Kooistra, S.M.; Clausen, B.E. Reproducibility Issues: Avoiding Pitfalls in Animal Inflammation Models. Methods Mol. Biol. 2017, 1559, 1–17. [Google Scholar] [PubMed]
- Owens, P.K.; Raddad, E.; Miller, J.W.; Stille, J.R.; Olovich, K.G.; Smith, N.V.; Jones, R.S.; Scherer, J.C. A decade of innovation in pharmaceutical R&D: The Chorus model. Nat. Rev. Drug Discov. 2015, 14, 17–28. [Google Scholar] [PubMed]
- ICH. Guidance on Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals M3(R2) Current Step 4 Version. International Conference on Harmonization; ICH. 2009. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-m3r2-non-clinical-safety-studies-conduct-human-clinical-trials-and-marketing-authorisation-pharmaceuticals-step-5_en.pdf (accessed on 16 May 2024).
- Directive 2004/24/EC of the European Parliament and of the Council. Off. J. Eur. Union 2004, L 136, 85–90. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:136:0085:0090:en:PDF (accessed on 16 May 2024).
- WHO. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine; institutional repository for information sharing; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- EMA. Guideline on Non-Clinical Documentation in Applications for Marketing Authorisation/Registration of Wellestablished and Traditional Herbal Medicinal Products; EMEA/HMPC/32116/2005 Rev.1; Committee on Herbal Medicinal Products (HMPC): Amsterdam, The Netherlands, 2018. [Google Scholar]
- da Rocha, C.F.; Flexa, C.N.N.; de Souza, G.C.; Pereira, A.C.M.; Carvalho, H.O.; do Nascimento, A.L.; de Jesus Vasconcelos, N.J.P.; da Silva, H.R.; Carvalho, J.C.T. Acute and Reproductive Toxicity Evaluation of Ormona((R)) SI and Ormona((R)) RC-Two New Nutraceuticals with Geranylgeraniol, Tocotrienols, Anthocyanins, and Isoflavones-In Adult Zebrafish. Pharmaceuticals 2022, 15, 1434. [Google Scholar] [CrossRef]
- WHO (Ed.) Key Technical Issues of Herbal Medicines with Reference to Interaction with Other Medicines; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Mazzari, A.L.; Milton, F.; Frangos, S.; Carvalho, A.C.; Silveira, D.; de Assis Rocha Neves, F.; Prieto, J.M. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity. Front. Pharmacol. 2016, 7, 265. [Google Scholar] [CrossRef] [PubMed]
- FDA. The Drug Development Process. 2018. Available online: https://www.fda.gov/patients/learn-about-drug-and-device-approvals/drug-development-process (accessed on 20 July 2023).
- Steinmetz, K.L.; Spack, E.G. The basics of preclinical drug development for neurodegenerative disease indications. BMC Neurol. 2009, 9 (Suppl. 1), S2. [Google Scholar] [CrossRef] [PubMed]
- USP. <1033> Biological Assay Validation; IPQ International Pharmaceutical Quality: Washington, DC, USA, 2022. [Google Scholar]
- USP. <1032> Design and Development of Biological Assays; IPQ International Pharmaceutical Quality: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- OECD. OECD Test Guideline 451: Carcinogenicity Studies; OECD Publishing: Paris, France, 2009; Available online: https://www.oecd.org/env/test-no-451-carcinogenicity-studies-9789264071186-en.htm (accessed on 16 May 2024).
- Kovarich, S.; Cappelli, C.I. Use of In Silico Methods for Regulatory Toxicological Assessment of Pharmaceutical Impurities. Methods Mol. Biol. 2022, 2425, 537–560. [Google Scholar] [PubMed]
- Little, J.G.; Marsman, D.S.; Baker, T.R.; Mahony, C. In silico approach to safety of botanical dietary supplement ingredients utilizing constituent-level characterization. Food Chem. Toxicol. 2017, 107, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Myatt, G.J.; Ahlberg, E.; Akahori, Y.; Allen, D.; Amberg, A.; Anger, L.T.; Aptula, A.; Auerbach, S.; Beilke, L.; Bellion, P.; et al. In silico toxicology protocols. Regul. Toxicol. Pharmacol. 2018, 96, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Morsy, M.A.; Jacob, S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev. Res. 2018, 79, 373–382. [Google Scholar] [CrossRef]
- Peters, S.A.; Petersson, C.; Blaukat, A.; Halle, J.P.; Dolgos, H. Prediction of active human dose: Learnings from 20 years of Merck KGaA experience, illustrated by case studies. Drug Discov. Today 2020, 25, 909–919. [Google Scholar] [CrossRef]
- ICH. ICH: E6 (R2): Guideline for Good Clinical Practice—Step 5; International Conference on Harmonization: London, UK, 2016. [Google Scholar]
- EMA (Ed.) Guideline on Strategies to Identify and Mitigate Risks for First-in-Human and Early Clinical Trials with Investigational Medicinal Products; EMEA/CHMP/SWP/28367/07 Rev., 1; EMA: Amsterdam, The Netherlands, 2017. [Google Scholar]
- ICH. Addendum on Estimands and Sensitivity Analysis in Clinical Trials to the Guideline on Statistical Principles for Clinical Trials E9(R1). ICH Expert Working Group, Ed.; 2019. Available online: https://database.ich.org/sites/default/files/E9-R1_Step4_Guideline_2019_1203.pdf (accessed on 16 May 2024).
- Cañigueral, S.; Tschopp, R.; Ambrosetti, L.; Vignutelli, A.; Scaglione, F.; Petrini, O. The Development of Herbal Medicinal Products. Pharm. Med. 2012, 22, 107–118. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, R.; Zhao, C.; Tang, X.; Lu, A.; Bian, Z. Placebo design in WHO-registered trials of Chinese herbal medicine need improvements. BMC Complement. Altern. Med. 2019, 19, 299. [Google Scholar] [CrossRef] [PubMed]
- Raus, K.; Pleschka, S.; Klein, P.; Schoop, R.; Fisher, P. Effect of an Echinacea-Based Hot Drink Versus Oseltamivir in Influenza Treatment: A Randomized, Double-Blind, Double-Dummy, Multicenter, Noninferiority Clinical Trial. Curr. Ther. Res. Clin. Exp. 2015, 77, 66–72. [Google Scholar] [CrossRef]
- Pagani, E.; Santos, J.F.L.; Rodrigues, E. Culture-Bound Syndromes of a Brazilian Amazon Riverine population: Tentative correspondence between traditional and conventional medicine terms and possible ethnopharmacological implications. J. Ethnopharmacol. 2017, 203, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Tomaschek, K.; Olechowski, A.; Eppinger, S.; Joglekar, N. A Survey of Technology Readiness Level Users. INCOSE Int. Symp. 2016, 26, 2101–2117. [Google Scholar] [CrossRef]
- Sutherland, I.; Ignatova, S.; Hewitson, P.; Janaway, L.; Wood, P.; Edwards, N.; Harris, G.; Guzlek, H.; Keay, D.; Freebairn, K.; et al. Scalable Technology for the Extraction of Pharmaceutics (STEP): The transition from academic knowhow to industrial reality. J. Chromatogr. A 2011, 1218, 6114–6121. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, B.; Zhang, C.; Wysk, R.A.; Chen, Y.W. Bioprinting: An assessment based on manufacturing readiness levels. Crit. Rev. Biotechnol. 2017, 37, 333–354. [Google Scholar] [CrossRef] [PubMed]
- Lakkireddy, H.R.; Bazile, D.V. Nano-carriers for drug routeing—Towards a new era. J. Drug Target. 2019, 27, 525–541. [Google Scholar] [CrossRef] [PubMed]
- Allwardt, V.; Ainscough, A.J.; Viswanathan, P.; Sherrod, S.D.; McLean, J.A.; Haddrick, M.; Pensabene, V. Translational Roadmap for the Organs-on-a-Chip Industry toward Broad Adoption. Bioengineering 2020, 7, 112. [Google Scholar] [CrossRef]
- de Araújo e Silva, R.; Santa Brígida, A.I.; de Freitas Rosa, M.; da Silva Neto, R.M.; Spinosa, W.A.; Benício de Sá Filho, E.; Brito de Figueirêdo, M.C. An approach for implementing ecodesign at early research stage: A case study of bacterial cellulose production. J. Clean. Prod. 2020, 269, 122245. [Google Scholar] [CrossRef]
- Daniotti, S.; Re, I. Marine Biotechnology: Challenges and Development Market Trends for the Enhancement of Biotic Resources in Industrial Pharmaceutical and Food Applications. A Statistical Analysis of Scientific Literature and Business Models. Mar. Drugs 2021, 19, 61. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, K.; Ergal, I.; Koller, M.; Basen, M.; Schuster, B.; Rittmann, S.K.R. Archaea Biotechnology. Biotechnol. Adv. 2021, 47, 107668. [Google Scholar] [CrossRef] [PubMed]
- Jenie, R.P.; Suryana, Y.; Pambudi, S.; Widayanti, T.; Irzaman, I.; Nurdin, N.M.; Dahrul, M.; Iskandar, J.; Kurniawan, A.; Siskandar, R.; et al. General protocol for ethical conforming development for non-invasive blood biomarker measurement optical device. AIP Conf. Proc. 2021, 2320, 050023. [Google Scholar]
- Becker, C.R.; Majeed, A.; Crispin, A.; Knez, A.; Schoepf, U.J.; Boekstegers, P.; Steinbeck, G.; Reiser, M.F. CT measurement of coronary calcium mass: Impact on global cardiac risk assessment. Eur. Radiol. 2005, 15, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Arnouts, S.; Brown, S.; de Arriba, M.L.; Donabedian, M.; Charlier, J. Technology Readiness Levels for vaccine and drug development in animal health: From discovery to life cycle management. Front. Vet. Sci. 2022, 9, 1016959. [Google Scholar] [CrossRef] [PubMed]
- Smanski, M.J.; Aristidou, A.; Carruth, R.; Erickson, J.; Gordon, M.; Kedia, S.B.; Lee, K.H.; Prather, D.; Schiel, J.E.; Schultheisz, H.; et al. Bioindustrial manufacturing readiness levels (BioMRLs) as a shared framework for measuring and communicating the maturity of bioproduct manufacturing processes. J. Ind. Microbiol. Biotechnol. 2022, 49, kuac022. [Google Scholar] [CrossRef] [PubMed]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Braga, F.C. Paving New Roads Towards Biodiversity-Based Drug Development in Brazil: Lessons from the Past and Future Perspectives. Rev. Bras. Farmacogn. 2021, 31, 505–518. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, K.H.; Shin, Y.C.; Jang, B.H.; Ko, S.G. Utilization of traditional medicine in primary health care in low- and middle-income countries: A systematic review. Health Policy Plan. 2020, 35, 1070–1083. [Google Scholar] [CrossRef]
- Bilia, A.R.; Costa, M.D.C. Medicinal plants and their preparations in the European market: Why has the harmonization failed? The cases of St. John’s wort, valerian, ginkgo, ginseng, and green tea. Phytomedicine, 2021; 81, 153421. [Google Scholar]
- Wang, M.; Franz, G. The role of the European Pharmacopoeia (Ph Eur) in Quality Control of Traditional Chinese Herbal Medicine in European Member States. World J. Tradit. Chin. Med. 2015, 1, 5–15. [Google Scholar] [CrossRef]
- Franzen, S.R.; Chandler, C.; Lang, T. Health research capacity development in low and middle income countries: Reality or rhetoric? A systematic meta-narrative review of the qualitative literature. BMJ Open 2017, 7, e012332. [Google Scholar] [CrossRef] [PubMed]
- Calza, F.; Ferretti, M.; Panetti, E.; Parmentola, A. Moving drug discoveries beyond the valley of death: The role of innovation ecosystems. Eur. J. Innov. Manag. 2020, 24, 1184–1209. [Google Scholar] [CrossRef]
- Trivella, D.B.B.; Bruder, M.C.P.; Oliveira, F.C.B.; Porcaro, R.; Rustiguel, J.K.; Ribeiro, L.B.; Felicio, R.d.; Cunha, M.G.d.; Nascimento, A.F.Z.; Zeri, A.C.M.; et al. Descoberta de fármacos a partir de produtos naturais e a abordagem Molecular Power House (MPH). Rev. Fitos 2022, 16 (Suppl. 2), 176–192. [Google Scholar] [CrossRef]
TRL-1 | Mankins | Basic principles observed and reported |
HMP | Pharmacological effect of an herbal preparation observed and reported | |
TRL-2 | Mankins | Technology concept and/or application formulated |
HMP | Technological application formulated and proof of concept planned | |
TRL-3 | Mankins | Analytical and experimental critical function and/or characteristic proof of concept |
HMP | Proof of concept of herbal preparation (API candidate) | |
TRL-4 | Mankins | Component and/or breadboard validation in a laboratory environment |
HMP | Optimization of herbal preparation in bench-scale and non-GLP validation | |
TRL-5 | Mankins | Component and/or breadboard validation in a relevant environment |
HMP | Optimization of herbal preparation in pilot-scale and GLP validation | |
TRL-6 | Mankins | System/subsystem model or prototype demonstration in a relevant environment (ground or space) |
HMP | Herbal medicinal product prototype completes phase I clinical trial | |
TRL-7 | Mankins | System prototype demonstration in a space environment |
HMP | Herbal medicinal product completes phase II clinical trial | |
TRL-8 | Mankins | Actual system completed and “flight qualified” through test and demonstration (ground or space) |
HMP | Herbal medicinal product completes phase III clinical trial, and the dossier is approved by one regulatory authority | |
TRL-9 | Mankins | Actual system “flight-proven” through successful mission operations |
HMP | Herbal medicinal product pharmacovigilance and phase IV clinical trials are performed |
HS | HP | HMP | AD | NCA | CT | |
---|---|---|---|---|---|---|
TLR1 | Initial literature review and data collection | |||||
TLR-2 | Addressing botanical inconsistencies | Comprehensive literature review | Compatibility with vehicles | Initial parameters’ proposal | Comprehensive literature review | Comprehensive literature review |
TLR-3 | Certified botanical identification | Best extract under current conditions | Advance solubility and compatibility issues | Best characterization under current conditions | Optimal PoC under current conditions | |
TLR-4 | Full traceability supply-chain development | Bench-scale optimization and semi-industrial scale initiation | Advances formulation for pre-clinicals | Consistent characterization | Efficacy and safety confirmation and bio-guided HP optimization | Update literature review |
TLR-5 | Supply chain consolidation | Semi-industrial scale optimization | Advance formulation for human use | Validated methods for HP | GLP tests for phase I CT authorization | Update literature review |
TLR-6 | Stability assessment | GMP-compliant batches | GMP-compliant batches | Validated methods for HP and HMP | GLP tests for phase II CT authorization | GCP phase I clinical trial |
TLR-7 | Industrial scale and GACP implementation | GMP-compliant industrial batches | GMP-compliant batches | Validated methods for HP and HMP | GLP tests for long-term use | GCP phase II clinical trials |
TLR-8 | GACP compliance | GMP-compliant industrial batches | GMP-certified batches | Validated methods for HP and HMP | GLP tests for long-term use | GCP phase III clinical trials |
TLR-9 | GACP certified | GMP-compliant * or certified industrial batches | GMP-certified batches | Validated methods for HP and HMP | GCP phase IV trials and pharmaco-vigilance |
EMA Term [31] | FDA Term [48] | ANVISA Term [63] | EMA Definition |
---|---|---|---|
Herbal substance | Botanical drug substance | Droga vegetal | Mainly whole, fragmented, or cut plants, plant parts, algae, fungi, and lichen in an unprocessed, usually dried form, but sometimes fresh. Certain exudates that have not been subjected to a specific treatment are also considered to be herbal substances. Herbal substances are precisely defined by the plant part used and the botanical name according to the binomial system (genus, species, variety, and author) [114]. |
Herbal preparation | Botanical drug preparation | Derivado vegetal | Preparations are obtained by subjecting herbal substances to treatments such as extraction, distillation, expression, fractionation, purification, concentration, or fermentation. These include comminuted or powdered herbal substances, tinctures, extracts, essential oils, expressed juices, and processed exudates [115]. |
Herbal medicinal product | Botanical drug product | Fitoterápico | Any medicinal product, exclusively containing as active ingredients one or more herbal substances or one or more herbal preparations, or one or more such herbal substances in combination with one or more such herbal preparations [116]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagani, E.; Ropke, C.D.; Soares, C.M.; Perez, S.A.C.; Benevides, P.J.C.; Barbosa, B.S.; Carvalho, A.C.B.; Behrens, M.D. Technology Readiness Level Roadmap for Developing Innovative Herbal Medicinal Products. Pharmaceuticals 2024, 17, 703. https://doi.org/10.3390/ph17060703
Pagani E, Ropke CD, Soares CM, Perez SAC, Benevides PJC, Barbosa BS, Carvalho ACB, Behrens MD. Technology Readiness Level Roadmap for Developing Innovative Herbal Medicinal Products. Pharmaceuticals. 2024; 17(6):703. https://doi.org/10.3390/ph17060703
Chicago/Turabian StylePagani, Eduardo, Cristina Dislich Ropke, Cristiane Mota Soares, Sandra Aurora Chavez Perez, Paulo José Coelho Benevides, Barbara Sena Barbosa, Ana Cecilia Bezerra Carvalho, and Maria Dutra Behrens. 2024. "Technology Readiness Level Roadmap for Developing Innovative Herbal Medicinal Products" Pharmaceuticals 17, no. 6: 703. https://doi.org/10.3390/ph17060703
APA StylePagani, E., Ropke, C. D., Soares, C. M., Perez, S. A. C., Benevides, P. J. C., Barbosa, B. S., Carvalho, A. C. B., & Behrens, M. D. (2024). Technology Readiness Level Roadmap for Developing Innovative Herbal Medicinal Products. Pharmaceuticals, 17(6), 703. https://doi.org/10.3390/ph17060703