Evidence of Cannabidiol Effectiveness Associated or Not with Tetrahydrocannabinol in Topical Administration: A Scope Review
Abstract
:1. Introduction
2. Results
2.1. Literature Selection
2.1.1. Pharmacokinetics
2.1.2. Intraocular Pressure
2.1.3. Corneal Hyperalgesia
2.1.4. Multiple Sclerosis (MS)
- Spasticity
- Neuropathic pain
2.1.5. Neurodegeneration
2.1.6. Stiff-Person Syndrome (SPS)
2.1.7. Fragile X Syndrome (FXS)
2.1.8. Relapse-Promoting Conditions
2.1.9. Analgesia
2.1.10. Osteoarthritis
2.1.11. Anti-Inflammatory
2.1.12. Colitis
2.1.13. Dermatological Conditions
2.1.14. Wound Healing
2.1.15. Antibacterial
2.1.16. Antioxidant Activity
2.1.17. Epidermolysis Bullosa (EB)
2.2. Adverse Events
2.3. Limitations
3. Materials and Methods
3.1. Search Parameters
3.2. Search Strategy and Databases
Inclusion and Exclusion Criteria
- Study type: Experimental clinical studies or pre-clinical with animals;
- Administration path: topical administration (mucosal or skin), also, studies could contain more than one administration path if discussed the different results between them;
- Formulation: Cannabidiol with or without other bioactives; in dosed Cannabis sativa extract or in commercial formulations isolated;
- Methodology: should contain the treatment used, according to the health condition studied;
- Although, articles were excluded if:
- Presented formulation containing more than one medicinal plant and/or which Cannabis sativa and/or cannabidiol is not the focus of the study;
- Presented formulation with other bioactives but not cannabidiol;
- Presented synthetic or natural molecules different from those in focus, especially if present contrary activities from those in focus;
- Full text not available or, if requested, not provided.
3.3. Data Extraction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
∆9-THC | (−)-∆9-Trans-Tetrahydrocannabinol |
ALS | Amyotrophic Lateral Sclerosis |
AO | Spontaneous Osteoarthritis |
API | Active Pharmaceutical Ingredient |
CBCV | Cannabichromevarin |
CBD | Cannabidiol |
CBDA | Cannabidiolic Acid |
CBD-GA | Glatiramer Acetate And CBD |
CBDV | Canabidivarina |
CDC | Centers for Disease Control and Prevention |
CFA | Freud’s Adjuvant |
Cmax | Maximal Concentration |
EAE | Autoimmune Encephalitis |
EB | Epidermolysis Bullosa |
FJB | Fluoro-Jade B |
FXS | Fragile X Syndrome |
IL-6 | Interleukine 6 |
IOP | Intraocular Pressure |
LPXA4 | Anti-Inflammatory Lipoxin |
MPO | Myeloperoxidase |
MS | Multiple Sclerosis |
NDS | Nasal Delivery System |
NEPE 14 | Noneuphoric Phytocannabinoid Elixr 14 |
NSAID | Non-Steroidal Anti-Inflammatory Drug |
PARS-S | Pediatric Anxiety Rating Scale |
PedQLI | Pediatric Quality OF Life Inventory |
POEM | Patient Oriented Eczema Measure |
QOLHEQ | Quality OF Life Hand Eczema Questionnaire |
ROS | Reactive Oxygen Species |
SPS | Stiff-Person Syndrome |
THCA | Tetrahydrocannabinolic Acid |
THC-COOH | 11-nor-9-carboxy-thc |
TNFα | Tumor Necrosis Factor |
UVA | Ultraviolet Rays A |
UVB | Ultraviolet Rays B |
References
- Turner, C.E.; Elsohly, M.A.; Boeren, E.G. Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J. Nat. Prod. 1980, 43, 169–234. [Google Scholar] [CrossRef] [PubMed]
- Farag, S.; Kayser, O. The cannabis plant: Botanical aspects. In Handbook of Cannabis and Related Pathologies; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–12. [Google Scholar]
- Schultes, R.E.; Klein, W.M.; Plowman, T.; Lockwood, T.E. Cannabis: An example of taxonomic neglect. In Cannabis and Culture; De Gruyter Mouton: Berlin/Heidelberg, Germany, 1974; pp. 21–38. [Google Scholar]
- Hoffmann, W. Hanf, Cannabis sativa L. In Handbuch der Pflanzenzüchtung; Paul Parey: Berlin/Heidelberg, Germany, 1961; Volume 5. [Google Scholar]
- Clarke, R.C. Marijuana Botany: An Advanced Study: The Propagation and Breeding of Distinctive Cannabis; Ronin Publishing: Berkeley, CA, USA, 1981. [Google Scholar]
- Kumar, P.; Mahato, D.K.; Kamle, M.; Borah, R.; Sharma, B.; Pandhi, S.; Tripathi, V.; Yadav, H.S.; Devi, S.; Patil, U.; et al. Pharmacological properties, therapeutic potential, and legal status of Cannabis sativa L.: An overview. Phytother. Res. 2021, 35, 6010–6029. [Google Scholar] [CrossRef] [PubMed]
- Radwan, M.M.; Chandra, S.; Gul, S.; ElSohly, M.A. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef] [PubMed]
- Vanhoenacker, G.; Van Rompaey, P.; De Keukeleire, D.; Sandra, P. Chemotaxonomic features associated with flavonoids of cannabinoid-free cannabis (Cannabis sativa subsp. sativa L.) in relation to hops (Humulus lupulus L.). Nat. Prod. Lett. 2010, 16, 57–63. [Google Scholar]
- Hanuš, L.O.; Meyer, S.M.; Muñoz, E.; Taglialatela-Scafati, O.; Appendino, G. Phytocannabinoids: A unified critical inventory. Nat. Prod. Rep. 2016, 33, 1357–1392. [Google Scholar] [CrossRef] [PubMed]
- Fischedick, J.T. Identification of terpenoid chemotypes among high (−)-trans-Δ9-tetrahydrocannabinol-producing Cannabis sativa L. cultivars. Cannabis Cannabinoid Res. 2017, 2, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Booth, J.K.; Bohlmann, J. Terpenes in Cannabis sativa—From plant genome to humans. Plant Sci. 2019, 284, 67–72. [Google Scholar] [CrossRef]
- Turner, C.; Elsohly, M. Anhydrocannabisativine, a new alkaloid isolated from cannabis-sativa. Lloydia 1976, 39, 474. [Google Scholar]
- ElBatsh, M.M.; Moklas, M.A.A.; Marsden, C.A.; Kendall, D.A. Antidepressant-like effects of Δ9-tetrahydrocannabinol and rimonabant in the olfactory bulbectomised rat model of depression. Pharmacol. Biochem. Behav. 2012, 102, 357–365. [Google Scholar] [CrossRef]
- Fiani, B.; Sarhadi, K.J.; Soula, M.; Zafar, A.; Quadri, S.A. Current application of cannabidiol (CBD) in the management and treatment of neurological disorders. Neurol. Sci. 2020, 41, 3085–3098. [Google Scholar] [CrossRef]
- Urits, I.; Gress, K.; Charipova, K.; Habib, K.; Lee, D.; Lee, C.; Jung, J.W.; Kassem, H.; Cornett, E.; Paladini, A.; et al. Use of cannabidiol (CBD) for the treatment of chronic pain. Best Pract. Res. Clin. Anaesthesiol. 2020, 34, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Haffar, A.; Khan, I.A.; Abdelaal, M.S.; Banerjee, S.; Sharkey, P.F.; Lonner, J.H. Topical Cannabidiol (CBD) After Total Knee Arthroplasty Does Not Decrease Pain or Opioid Use: A Prospective Randomized Double-Blinded Placebo-Controlled Trial. J. Arthroplast. 2022, 37, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Adel Ali Youssef, A.; Hayder Abdelrahman, M.; Geweda, M.M.; Varner, C.; Joshi, P.H.; Ghonge, M.; Dudhipala, N.; Sulochana, S.P.; Gadepalli, R.S.; Majumdar, S. Formulation and in Vitro-Ex vivo evaluation of cannabidiol and Cannabidiol-Valine-Hemisuccinate loaded Lipid-Based nanoformulations for ocular applications. Int. J. Pharm. 2024, 657, 124110. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Olszowy-Tomczyk, M.; Typek, R. CBG, CBD, Δ9-THC, CBN, CBGA, CBDA and Δ9-THCA as antioxidant agents and their intervention abilities in antioxidant action. Fitoterapia 2021, 152, 104915. [Google Scholar] [CrossRef] [PubMed]
- Stella, N. THC and CBD: Similarities and differences between siblings. Neuron 2023, 111, 302–327. [Google Scholar] [CrossRef] [PubMed]
- Sharkawy, A.; Silva, A.M.; Rodrigues, F.; Barreiro, F.; Rodrigues, A. Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles as green topical delivery vehicles for cannabidiol (CBD). Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127677. [Google Scholar] [CrossRef]
- Porras, J.D.; Román, Y.; Palacio, J.; Blandón-Naranjo, L.; Benjumea, D.; Pérez, L.D. Amphiphilic block copolymers bearing fatty acid derivatives as vehicles for THC in the development of analgesic oral formulations. React. Funct. Polym. 2024, 195, 105811. [Google Scholar] [CrossRef]
- Passani, A.; Posarelli, C.; Sframeli, A.T.; Perciballi, L.; Pellegrini, M.; Guidi, G.; Figus, M. Cannabinoids in Glaucoma Patients: The Never-Ending Story. J. Clin. Med. 2020, 9, 3978. [Google Scholar] [CrossRef] [PubMed]
- Darmani, N.A.; Chebolu, S.; Zhong, W.; Trinh, C.; McClanahan, B.; Brar, R.S. Additive antiemetic efficacy of low-doses of the cannabinoid CB1/2 receptor agonist Δ9-THC with ultralow-doses of the vanilloid TRPV1 receptor agonist resiniferatoxin in the least shrew (Cryptotis parva). Eur. J. Pharmacol. 2014, 722, 147–155. [Google Scholar] [CrossRef]
- Britch, S.C.; Craft, R.M. Cannabidiol and Delta-9-Tetrahydrocannabinol Interactions in Male and Female Rats With Persistent Inflammatory Pain. J. Pain 2023, 24, 98–111. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Garg, A. An insight of techniques for the assessment of permeation flux across the skin for optimization of topical and transdermal drug delivery systems. J. Drug Deliv. Sci. Technol. 2021, 62, 102355. [Google Scholar] [CrossRef]
- Ho, E.A.; Donnelly, R.F. Translational advancements in transdermal and mucosal delivery. Drug Deliv. Transl. Res. 2022, 12, 733–734. [Google Scholar] [CrossRef] [PubMed]
- Raina, N.; Rani, R.; Thakur, V.K.; Gupta, M. New Insights in Topical Drug Delivery for Skin Disorders: From a Nanotechnological Perspective. ACS Omega 2023, 8, 19145–19167. [Google Scholar] [CrossRef] [PubMed]
- Stanley, T.H. Transmucosal and Other New Drug Delivery Technologies. In Anesthesia for the New Millennium: Modern Anesthetic Clinical Pharmacology; Stanley, T.H., Egan, T.D., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 137–151. [Google Scholar]
- Leppert, W.; Malec-Milewska, M.; Zajaczkowska, R.; Wordliczek, J. Transdermal and Topical Drug Administration in the Treatment of Pain. Molecules 2018, 23, 681. [Google Scholar] [CrossRef]
- Ataide, J.A.; Coco, J.C.; dos Santos, É.M.; Beraldo-Araujo, V.; Silva, J.R.A.; de Castro, K.C.; Lopes, A.M.; Filipczak, N.; Yalamarty, S.S.K.; Torchilin, V.P.; et al. Co-Encapsulation of Drugs for Topical Application-A Review. Molecules 2023, 28, 1449. [Google Scholar] [CrossRef] [PubMed]
- Hammell, D.C.; Zhang, L.P.; Ma, F.; Abshire, S.M.; McIlwrath, S.L.; Stinchcomb, A.L.; Westlund, K.N. Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis. Eur. J. Pain Lond. Engl. 2016, 20, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Hannon, M.B.; Deabold, K.A.; Talsma, B.N.; Lyubimov, A.; Iqbal, A.; Zakharov, A.; Gamble, L.J.; Wakshlag, J.J. Serum cannabidiol, tetrahydrocannabinol (THC), and their native acid derivatives after transdermal application of a low-THC Cannabis sativa extract in beagles. J. Vet. Pharmacol. Ther. 2020, 43, 508–511. [Google Scholar] [CrossRef]
- Bartner, L.R.; McGrath, S.; Rao, S.; Hyatt, L.K.; Wittenburg, L.A. Pharmacokinetics of cannabidiol administered by 3 delivery methods at 2 different dosages to healthy dogs. Can. J. Vet. Res. Rev. Can. Rech. Vet. 2018, 82, 178–183. [Google Scholar]
- Gonzalez-Cuevas, G.; Martin-Fardon, R.; Kerr, T.M.; Stouffer, D.G.; Parsons, L.H.; Hammell, D.C.; Banks, S.L.; Stinchcomb, A.L.; Weiss, F. Unique treatment potential of cannabidiol for the prevention of relapse to drug use: Preclinical proof of principle. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2018, 43, 2036–2045. [Google Scholar] [CrossRef]
- Paudel, K.S.; Hammell, D.C.; Agu, R.U.; Valiveti, S.; Stinchcomb, A.L. Cannabidiol bioavailability after nasal and transdermal application: Effect of permeation enhancers. Drug Dev. Ind. Pharm. 2010, 36, 1088–1097. [Google Scholar] [CrossRef]
- Miller, S.; Daily, L.; Leishman, E.; Bradshaw, H.; Straiker, A. ∆9-tetrahydrocannabinol and cannabidiol differentially regulate intraocular pressure. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5904–5911. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Kulkarni, S.; Ciesielski, A.; Nikas, S.P.; Mackie, K.; Makriyannis, A.; Straiker, A. Controlled-deactivation CB1 receptor ligands as a novel strategy to lower intraocular pressure. Pharmaceuticals 2018, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Rebibo, L.; Frušić-Zlotkin, M.; Ofri, R.; Nassar, T.; Benita, S. The dose-dependent effect of a stabilized cannabidiol nanoemulsion on ocular surface inflammation and intraocular pressure. Int. J. Pharm. 2022, 617, 121627. [Google Scholar] [CrossRef] [PubMed]
- Thapa, D.; Cairns, E.A.; Szczesniak, A.M.; Toguri, J.T.; Caldwell, M.D.; Kelly, M.E.M. The Cannabinoids Δ8THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation. Cannabis Cannabinoid Res. 2018, 3, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Duchi, S.; Ovadia, H.; Touitou, E. Nasal administration of drugs as a new non-invasive strategy for efficient treatment of multiple sclerosis. J. Neuroimmunol. 2013, 258, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Liput, D.J.; Hammell, D.C.; Stinchcomb, A.L.; Nixon, K. Transdermal delivery of cannabidiol attenuates binge alcohol-induced neurodegeneration in a rodent model of an alcohol use disorder. Pharmacol. Biochem. Behav. 2013, 111, 120–127. [Google Scholar] [CrossRef]
- Giacoppo, S.; Galuppo, M.; Pollastro, F.; Grassi, G.; Bramanti, P.; Mazzon, E. A new formulation of cannabidiol in cream shows therapeutic effects in a mouse model of experimental autoimmune encephalomyelitis. Daru 2015, 23, 48. [Google Scholar] [CrossRef]
- Brioschi, F.A.; Di Cesare, F.; Gioeni, D.; Rabbogliatti, V.; Ferrari, F.; D’urso, E.S.; Amari, M.; Ravasio, G. Oral transmucosal cannabidiol oil formulation as part of a multimodal analgesic regimen: Effects on pain relief and quality of life improvement in dogs affected by spontaneous osteoarthritis. Animals 2020, 10, 1505. [Google Scholar] [CrossRef]
- McIver, V.C.; Tsang, A.S.; Symonds, N.E.; Perkins, N.R.; Uquillas, E.; Dart, C.M.; Jeffcott, L.B.; Dart, A.J. Effects of topical treatment of cannabidiol extract in a unique manuka factor 5 manuka honey carrier on second intention wound healing on equine distal limb wounds: A preliminary study. Aust. Vet. J. 2020, 98, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Christy, S.; Carlsson, A.H.; Larson, D.; Davenport, G.J.; Glenn, J.F.; Brumfield, R., Jr.; Avina, G.; Jockheck-Clark, A.; Christy, R.J.; Nuutila, K. Topical Noneuphoric Phytocannabinoid Elixir 14 Reduces Inflammation and Mitigates Burn Progression. J. Surg. Res. 2024, 296, 447–455. [Google Scholar] [CrossRef]
- Tubaro, A.; Giangaspero, A.; Sosa, S.; Negri, R.; Grassi, G.; Casano, S.; Della Loggia, R.; Appendino, G. Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins. Fitoterapia 2010, 81, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Schicho, R.; Storr, M. Topical and systemic cannabidiol improves trinitrobenzene sulfonic acid colitis in mice. Pharmacology 2012, 89, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J.; et al. The antimicrobial potential of cannabidiol. Commun. Biol. 2021, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Atalay, S.; Gęgotek, A.; Wroński, A.; Domigues, P.; Skrzydlewska, E. Therapeutic application of cannabidiol on UVA and UVB irradiated rat skin. A proteomic study. J. Pharm. Biomed. Anal. 2021, 192, 113656. [Google Scholar] [CrossRef] [PubMed]
- Łuczaj, W.; Jastrząb, A.; do Rosário Domingues, M.; Domingues, P.; Skrzydlewska, E. Changes in Phospholipid/Ceramide Profiles and Eicosanoid Levels in the Plasma of Rats Irradiated with UV Rays and Treated Topically with Cannabidiol. Int. J. Mol. Sci. 2021, 22, 8700. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.; Krämer, M.; Madea, B. Topical application of THC containing products is not able to cause positive cannabinoid finding in blood or urine. Forensic Sci. Int. 2017, 272, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, G.T.; Aponte, R.; Bruzzese, D.; Guarcello, G.; Manzo, V.; Napolitano, M.; Moreggia, O.; Chiariello, F.; Florio, C. THC/CBD oromucosal spray in patients with multiple sclerosis overactive bladder: A pilot prospective study. Neurol. Sci. 2018, 39, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Riva, N.; Mora, G.; Sorarù, G.; Lunetta, C.; Ferraro, O.E.; Falzone, Y.; Leocani, L.; Fazio, R.; Comola, M.; Comi, G.; et al. Safety and efficacy of nabiximols on spasticity symptoms in patients with motor neuron disease (CANALS): A multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2019, 18, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Rog, D.J.; Nurmikko, T.J.; Friede, T.; Young, C.A. Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 2005, 65, 812–819. [Google Scholar] [CrossRef]
- Nurmikko, T.J.; Serpell, M.G.; Hoggart, B.; Toomey, P.J.; Morlion, B.J.; Haines, D. Sativex successfully treats neuropathic pain characterised by allodynia: A randomised, double-blind, placebo-controlled clinical trial. Pain 2007, 133, 210–220. [Google Scholar] [CrossRef]
- Langford, R.M.; Mares, J.; Novotna, A.; Vachova, M.; Novakova, I.; Notcutt, W.; Ratcliffe, S. A double-blind, randomized, placebo-controlled, parallel-group study of THC/CBD oromucosal spray in combination with the existing treatment regimen, in the relief of central neuropathic pain in patients with multiple sclerosis. J. Neurol. 2013, 260, 984–997. [Google Scholar] [CrossRef] [PubMed]
- Rog, D.J.; Nurmikko, T.J.; Young, C.A. Oromucosal Δ9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: An uncontrolled, open-label, 2-year extension trial. Clin. Ther. 2007, 29, 2068–2079. [Google Scholar] [CrossRef]
- Aparicio Rosana, R.; Polo Virginia, O. An epileptic seizure in a patient with multiple sclerosis treated with thc/cbd (sativex (tm)). Aten. Farm. 2013, 15, 439–442. [Google Scholar]
- Vicente-Valor, M.; Garcia-Llopis, P.; Mejia Andujar, L.; Antonino de la Camara, G.; García del Busto, N.; Lopez Tinoco, M.; Quintana Vergara, B.; Peiro Vilaplana, C.; Dominguez Moran, J.; Sánchez Alcaraz, A. Cannabis derivatives therapy for a seronegative stiff-person syndrome: A case report. J. Clin. Pharm. Ther. 2013, 38, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Heussler, H.; Cohen, J.; Silove, N.; Tich, N.; Bonn-Miller, M.O.; Du, W.; O’Neill, C.; Sebree, T. A phase 1/2, open-label assessment of the safety, tolerability, and efficacy of transdermal cannabidiol (ZYN002) for the treatment of pediatric fragile X syndrome. J. Neurodev. Disord. 2019, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Scheffer, I.E.; Hulihan, J.; Messenheimer, J.; Ali, S.; Keenan, N.; Griesser, J.; Gutterman, D.L.; Sebree, T.; Sadleir, L.G. Safety and Tolerability of Transdermal Cannabidiol Gel in Children with Developmental and Epileptic Encephalopathies: A Nonrandomized Controlled Trial. JAMA Netw. Open 2021, 4, e2123930. [Google Scholar] [CrossRef]
- Heineman, J.T.; Forster, G.L.; Stephens, K.L.; Cottler, P.S.; Timko, M.P.; De George, B.R., Jr. A Randomized Controlled Trial of Topical Cannabidiol for the Treatment of Thumb Basal Joint Arthritis. J. Hand Surg. 2022, 47, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Highet, B.H.; Lesser, E.R.; Johnson, P.W.; Kaur, J.S. Tetrahydrocannabinol and Cannabidiol Use in an Outpatient Palliative Medicine Population. Am. J. Hosp. Palliat. Care 2020, 37, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.H.; Cullen, B.D.; Tang, M.; Fang, Y. The Effectiveness of Topical Cannabidiol Oil in Symptomatic Relief of Peripheral Neuropathy of the Lower Extremities. Curr. Pharm. Biotechnol. 2020, 21, 390–402. [Google Scholar] [CrossRef]
- Ali, A.; Akhtar, N. The safety and efficacy of 3% Cannabis seeds extract cream for reduction of human cheek skin sebum and erythema content. Pak. J. Pharm. Sci. 2015, 28, 1389–1395. [Google Scholar]
- Ali, A.; Akhtar, N.; Khan, H.; Bin Asad, M.H.H.; Ahmad, Z. The improvement on the skin surface by a new type of dermocosmetic loaded plant extract: A split face skin topographic study. Pak. J. Pharm. Sci. 2020, 33, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Maghfour, J.; Rietcheck, H.R.; Rundle, C.W.; Runion, T.M.; Jafri, Z.A.; Dercon, S.; Lio, P.; Fernandez, J.; Fujita, M.; Dellavalle, R.P.; et al. An Observational Study of the Application of a Topical Cannabinoid Gel on Sensitive Dry Skin. J. Drugs Dermatol. JDD 2020, 19, 1204–1208. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, A.M.; Khan, M.A.; Ahmad, M.; Zafar, M.; Jahan, S.; Sultana, S. Ethnopharmacological application of medicinal plants to cure skin diseases and in folk cosmetics among the tribal communities of North-West Frontier Province, Pakistan. J. Ethnopharmacol. 2010, 128, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, Y.; Tan, Y.; Liu, W.; Ouaddi, S.; McCoy, J.; Kovacevic, M.; Situm, M.; Stanimirovic, A.; Li, M. Novel cannabidiol aspartame combination treatment (JW-100) significantly reduces ISGA score in atopic dermatitis: Results from a randomized double-blinded placebo-controlled interventional study. J. Cosmet. Dermatol. 2022, 21, 1647–1650. [Google Scholar] [CrossRef] [PubMed]
- Maida, V.; Corban, J. Topical Medical Cannabis: A New Treatment for Wound Pain—Three Cases of Pyoderma Gangrenosum. J. Pain Symptom Manag. 2017, 54, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Chelliah, M.P.; Zinn, Z.; Khuu, P.; Teng, J.M.C. Self-initiated use of topical cannabidiol oil for epidermolysis bullosa. Pediatr. Dermatol. 2018, 35, e224–e227. [Google Scholar] [CrossRef] [PubMed]
- Schräder, N. Cannabinoid-based medicines for pain and pruritus in EB. Acta Derm.-Venereol. 2020, 100, 19–20. [Google Scholar]
- Maida, V.; Shi, R.B.; Fazzari, F.G.T.; Zomparelli, L. Topical cannabis-based medicines—A novel paradigm and treatment for non-uremic calciphylaxis leg ulcers: An open label trial. Int. Wound J. 2020, 17, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Hedaya, M.A. Chapter 19—Routes of Drug Administration. In Pharmaceutics, 2nd ed.; Dash, A.K., Singh, S., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 537–554. [Google Scholar]
- Pan, Q.; Yu, Y.; Chen, D.; Jiao, G.; Liu, X. Enhanced penetration strategies for transdermal delivery. Front. Chem. Sci. Eng. 2020, 14, 378–388. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [Google Scholar] [CrossRef]
- Frasch, H.F.; Barbero, A.M. Application of numerical methods for diffusion-based modeling of skin permeation. Adv. Drug Deliv. Rev. 2013, 65, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Machiele, R.; Motlagh, M.; Patel, B. Intraocular Pressure; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Vranka, J.A.; Kelley, M.J.; Acott, T.S.; Keller, K.E. Extracellular matrix in the trabecular meshwork: Intraocular pressure regulation and dysregulation in glaucoma. Exp. Eye Res. 2015, 133, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Straiker, A. What is currently known about cannabidiol and ocular pressure. Expert Rev. Ophthalmol. 2019, 14, 259–261. [Google Scholar] [CrossRef]
- Miller, S.; Leishman, E.; Oehler, O.; Daily, L.; Murataeva, N.; Wager-Miller, J.; Bradshaw, H.; Straiker, A. Evidence for a GPR18 role in diurnal regulation of intraocular pressure. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6419–6426. [Google Scholar] [CrossRef] [PubMed]
- Acosta, M.C.; Tan, M.E.; Belmonte, C.; Gallar, J. Sensations evoked by selective mechanical, chemical, and thermal stimulation of the conjunctiva and cornea. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2063–2067. [Google Scholar]
- Feng, Y.; Simpson, T.L. Nociceptive sensation and sensitivity evoked from human cornea and conjunctiva stimulated by CO2. Investig. Ophthalmol. Vis. Sci. 2003, 44, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Hamrah, P. Understanding Neuropathic Corneal Pain--Gaps and Current Therapeutic Approaches. Semin Ophthalmol. 2016, 31, 59–70. [Google Scholar] [CrossRef]
- Rosenthal, P.; Baran, I.; Jacobs, D.S. Corneal pain without stain: Is it real? Ocul. Surf. 2009, 7, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Ashtari, F.; Mokhtari, F.; Soudavi, M.; Saadat, H.; Valiani, M. Effect of MS on Pregnancy and the Effect of Pregnancy on MS Patients in Isfahan; Research Square Platform LLC: Durham, NC, USA, 2020. [Google Scholar]
- Frohman, E.M.; Racke, M.K.; Raine, C.S. Multiple sclerosis—The plaque and its pathogenesis. N. Engl. J. Med. 2006, 354, 942–955. [Google Scholar] [CrossRef] [PubMed]
- Karussis, D. The diagnosis of multiple sclerosis and the various related demyelinating syndromes: A critical review. J. Autoimmun. 2014, 48, 134–142. [Google Scholar] [CrossRef]
- Steinman, L. Multiple sclerosis: A two-stage disease. Nat. Immunol. 2001, 2, 762–764. [Google Scholar] [CrossRef]
- Robinson, A.P.; Harp, C.T.; Noronha, A.; Miller, S.D. The experimental autoimmune encephalomyelitis (EAE) model of MS: Utility for understanding disease pathophysiology and treatment. Handb. Clin. Neurol. 2014, 122, 173–189. [Google Scholar] [CrossRef]
- Boivin, M. Nabiximols (Sativex®). In Cannabinoids and Pain; Springer: Berlin/Heidelberg, Germany, 2021; pp. 119–126. [Google Scholar]
- Mayeux, R. Epidemiology of Neurodegeneration. Annu. Rev. Neurosci. 2003, 26, 81–104. [Google Scholar] [CrossRef] [PubMed]
- Caffrey, D.; Finn, C.T.; Song, S.M.; Burton, F.; Arsan, C. Stiff-Person Syndrome and Psychiatric Comorbidities: A Systematic Review. J. Acad. Consult.-Liaison Psychiatry 2021, 62, 3–13. [Google Scholar] [CrossRef]
- Dalakas, M.C. Stiff-person Syndrome and GAD Antibody-spectrum Disorders: GABAergic Neuronal Excitability, Immunopathogenesis and Update on Antibody Therapies. Neurotherapeutics 2022, 19, 832–847. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, J.; Webber, C. The roles of FMRP-regulated genes in autism spectrum disorder: Single- and multiple-hit genetic etiologies. Am. J. Hum. Genet. 2013, 93, 825–839. [Google Scholar] [CrossRef]
- Conaghan, P. Update on osteoarthritis part 1: Current concepts and the relation to exercise. Br. J. Sports Med. 2002, 36, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Glyn-Jones, S.; Palmer, A.J.R.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. Lancet 2015, 386, 376–387. [Google Scholar] [CrossRef]
- Hiligsmann, M.; Cooper, C.; Arden, N.; Boers, M.; Branco, J.C.; Luisa Brandi, M.; Bruyère, O.; Guillemin, F.; Hochberg, M.C.; Hunter, D.J.; et al. Health economics in the field of osteoarthritis: An expert’s consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin. Arthritis Rheum. 2013, 43, 303–313. [Google Scholar] [CrossRef]
- Lodzki, M.; Godin, B.; Rakou, L.; Mechoulam, R.; Gallily, R.; Touitou, E. Cannabidiol-transdermal delivery and anti-inflammatory effect in a murine model. J. Control. Release Off. J. Control. Release Soc. 2003, 93, 377–387. [Google Scholar] [CrossRef]
- Teixeira, F.V.; Hosne, R.S.; Sobrado, C.W. Management of ulcerative colitis: A clinical update. J. Coloproctology Rio Jan. 2015, 35, 230–237. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Wang, Y.K.; Chen, H.P.; Gao, K.L.; Shu, C.; Wang, J.C.; Yan, L.F.; Yang, Y.G.; Xie, F.Y.; Liu, J. A Deep Learning Based Framework for Diagnosing Multiple Skin Diseases in a Clinical Environment. Front. Med. 2021, 8, 626369. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Yang, S.; Kim, W.; Jung, J.; Chung, K.Y.; Lee, S.W.; Oh, B. Acral melanoma detection using a convolutional neural network for dermoscopy images. PLoS ONE 2018, 13, e0193321. [Google Scholar] [CrossRef] [PubMed]
- Young, A.T.; Xiong, M.; Pfau, J.; Keiser, M.J.; Wei, M.L. Artificial Intelligence in Dermatology: A Primer. J. Investig. Dermatol. 2020, 140, 1504–1512. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Decencière, E.; Velasco-Forero, S.; Burdin, H.; Bornschlögl, T.; Bernerd, F.; Warrick, E.; Baldeweck, T. A New Color Augmentation Method for Deep Learning Segmentation of Histological Images. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019; pp. 886–890. [Google Scholar]
- Noronha, S.S.; Mehta, M.A.; Garg, D.; Kotecha, K.; Abraham, A. Deep Learning-Based Dermatological Condition Detection: A Systematic Review With Recent Methods, Datasets, Challenges, and Future Directions. IEEE Access 2023, 11, 140348–140381. [Google Scholar] [CrossRef]
- Berthet, M.; Gauthier, Y.; Lacroix, C.; Verrier, B.; Monge, C. Nanoparticle-Based Dressing: The Future of Wound Treatment? Trends Biotechnol. 2017, 35, 770–784. [Google Scholar] [CrossRef] [PubMed]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Salas Campos, L.; Fernandes Mansilla, M.; Martinez de la Chica, A.M. Topical chemotherapy for the treatment of burns. Rev. De Enferm. Barc. Spain 2005, 28, 67–70. [Google Scholar]
- Artem Ataide, J.; Caramori Cefali, L.; Machado Croisfelt, F.; Arruda Martins Shimojo, A.; Oliveira-Nascimento, L.; Gava Mazzola, P. Natural actives for wound healing: A review. Phytother. Res. PTR 2018, 32, 1664–1674. [Google Scholar] [CrossRef]
- Maverakis, E.; Marzano, A.V.; Le, S.T.; Callen, J.P.; Brüggen, M.-C.; Guenova, E.; Dissemond, J.; Shinkai, K.; Langan, S.M. Pyoderma gangrenosum. Nat. Rev. Dis. Primers 2020, 6, 81. [Google Scholar] [CrossRef]
- Wang, E.A.; Maverakis, E.M. The rapidly evolving lesions of ulcerative pyoderma gangrenosum: A timeline. Int. J. Dermatol. 2018, 57, 983. [Google Scholar] [CrossRef] [PubMed]
- Romanhole, R.C.; Fava, A.L.M.; Tundisi, L.L.; de Macedo, L.M.; Dos Santos, É.M.; Ataide, J.A.; Mazzola, P.G. Unplanned absorption of sunscreen ingredients: Impact of formulation and evaluation methods. Int. J. Pharm. 2020, 591, 120013. [Google Scholar] [CrossRef] [PubMed]
- Trojahn, C.; Dobos, G.; Lichterfeld, A.; Blume-Peytavi, U.; Kottner, J. Characterizing facial skin ageing in humans: Disentangling extrinsic from intrinsic biological phenomena. BioMed Res. Int. 2015, 2015, 318586. [Google Scholar] [CrossRef] [PubMed]
- Bardhan, A.; Bruckner-Tuderman, L.; Chapple, I.L.C.; Fine, J.-D.; Harper, N.; Has, C.; Magin, T.M.; Marinkovich, M.P.; Marshall, J.F.; McGrath, J.A.; et al. Epidermolysis bullosa. Nat. Rev. Dis. Primers 2020, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.M.; Lopez, H.L.; Marinotti, O. Post Marketing Safety of Plus CBD™ Products, a Full Spectrum Hemp Extract: A 2-Year Experience. J. Diet. Suppl. 2020, 17, 587–598. [Google Scholar] [CrossRef] [PubMed]
- Colasanti, B.K.; Powell, S.R.; Craig, C.R. Intraocular pressure, ocular toxicity and neurotoxicity after administration of Δ9-Tetrahydrocannabinol or cannabichromene. Exp. Eye Res. 1984, 38, 63–71. [Google Scholar] [CrossRef]
- Institute, J.B. Joanna Briggs Institute Reviewers’ Manual 2014; The Joanna Briggs Institute: Adelaide, Australia, 2014. [Google Scholar]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
Animals | Condition | Intervention | Reference |
---|---|---|---|
Male Sprague Dawley rats | Pharmacokinetics induced monoarthritis | 1% and 10% CBD gel Transdermal delivery 2 weeks | [31] |
Six poupose-bred female research beagles | Pharmacokinetics | CBB/CBDA/THC/THCA ointment Transdermal delivery 2 weeks | [32] |
Male beagle dogs, healthy conditions and sexually intact | Pharmacokinetics relapse-promoting conditions | CBD Trandermal cream 6 weeks | [33] |
Male Wister rats | Pharmacokinetics | CBD gel Transdermal delivery 7 days | [34] |
Male and female hairless rats IAF | Pharmacokinetics | CBD solution Nasal and transdermal delivery 4 and 48 h | [35] |
Male and Female mice C57BL/6J (C57) strain except CB1 -/- | Intraocular pressure | Tocrisolve (THC and CBD) Eye 8 h | [36] |
Male mice C57BL/6J (C57) strain except CB1 -/- | Intraocular pressure | (−)-∆8-THC-DMH with controlled deactivation Eye 5 h | [37] |
Female C57BL/6 mice | Intraocular pressure | Nanoemulsions (CBD) Eye 2 weeks | [38] |
Male BALB/c and CB2R knockout mice | Corneal hyperalgesia | Soybean oil (∆8-THC, CBD or HU-308 at 0.2–5% w/v) Eye 6 and 12 h | [39] |
Female mice (C57B1/6) with 6–7 weeks of age. | Induced to present autoimmune encephalomyelitis | CBD Nasal delivery system 28 days | [40] |
Adult male Sprague Dawley rats | Alcohol induced neurodegeneration with Ethanol | CBD 1%, 2.5% and 5% Transdermal gel 4 days | [41] |
Male C57BL/6 mice | Induced to encephalomyelitis | CBD 2.5% O/W Cream 28 days | [42] |
Dogs, with different breed, age, body weight and gender | Osteoarthritis | CBD oil Oromucosal 12 weeks | [43] |
Standard bred horses | Wounds formation or scars on forelimbs, contaminated with fresh feces | CBD extract Topical | [44] |
Female and male pathogen-free Yorkshire Hybrid pigs | Wound burn | CBD/THC cream Topical 7 days | [45] |
Male CD1 mice | Induce inflammation with Croton oil dissolved in acetone | CBD solution Topical 6 h | [46] |
Male CD1 mices (5–9 weeks old) | Colitis induction in mice with sulfonic acid | CBD Intrarectal, intraperitoneal or intragastric 32 h | [47] |
Female outbred CD1 mice (UQBR-AIBN) | Contaminated back skin with bacterial inoculum in the concentration of 5 × 107 CFU | CBD gel Topical 32 h | [48] |
Nude male rats (RH-FOXN1RN) | Antioxidant | CBD Cream Topical 4 weeks | [49] |
Male nude rats (RH-FOXN1RNU) | Antioxidant | CBD Cream Topical 4 weeks | [50] |
Study | Condition | Intervention | Reference |
---|---|---|---|
Case-control (N = 3) | Pharmacokinetics | Hemp oil crem Topical 3 days | [51] |
Prospective pilot Study (N = 5) | Multiple sclerosis | THC/CBD spray Oromucosal 4 weeks | [36] |
Prospective pilot study (N = 15) | Multiple sclerosis | THC/CBD spray Oromucosal 4 weeks | [52] |
Multicenter, double-blind, randomized, placebo-controlled, parallel-group, phase 2 trial (N = 59) | Amyotrophic lateral sclerosis or primary lateral sclerosis | Nabiximol (THC/CBD) Oromucosal 4 weeks | [53] |
Randomized, double-blind, placebo-controlled, parallel-group (N = 66) | Central neuropathic pain syndrome due to multiple sclerosis | THC (2.7 mg)/CBD (2.5 mg) spray Oromucosal 5 weeks | [54] |
Randomized, double-blind, placebo-controlled parallel groups study (N = 125) | Unilateral peripheral neuropathic pain and allodynia | Sativex Oromucosal 6 weeks | [55] |
Double-blind, randomized, placebo-controlled, parallel-group study (N = 93) | Multiple sclerosis | THC/CBD spray Oromucosal 1 year | [56] |
Randomized double-blind, placebo-controlled, parallel-group study (N = 66) | Central neuropathic pain syndromes associated to multiple sclerosis | THC (21.6 mg)/CBD (20 mg) Oromucosal 2 Years | [57] |
Case-report (N = 1) | Multiple sclerosis | Sativex Oromucosal 4 weeks | [58] |
Case-report (N = 1) | Stiff-person syndrome | Sativex Oromucosal 14 month | [59] |
Open label (N = 20) | Fragile X syndrome | CBD gel Transdermal delivery 12 weeks | [60] |
Open label (N = 48) | Epileptic encephalopathies diagnosis | CBD 2% gel Transdermal delivery 26 weeks | [61] |
Single-center, randomized controlled trial (N = 10) | Symptomatic thumb basal joint arthritis | CBD shear butter Topical 1 week | [62] |
Cross-sectional (N = 58) | Analgesia | CBD Topical 3 months | [63] |
Single-center, double-blind, randomized and placebo-controlled trial (N = 29) | Symptomatic peripheral neuropathy | CBD oil cream Transdermal delivery 3 weeks | [64] |
Case-control (N = 11) | Erythema | 3% Cannabis sativa extract cream Topical 12 weeks | [65] |
Case-control (N = 11) | 3% Cannabis sativa extract cream Topical 12 weeks | [66] | |
Observational (N = 16) | Diagnosed eczema | CBD Topical 2 weeks | [67] |
Cross-sectional (N = 328) | Skin burns | Crushed fresh leaves Topical | [68] |
Randomized double-blinded placebo-controlled interventional pilot study (N = 66) | Atopic dermatitis | CBD cream Topical 2 weeks | [69] |
Case series (N = 3) | Pyoderma Gangrenos | Bedrolite® and Argyle™ Topical 3 days | [70] |
Case series (N = 3) | Epidermolysis bullosa | CBD oil cream Topical 2 to 3 times a day | [71] |
Case series (N = 3) | Epidermolysis bullosa | CBD/THC oil Topican and sublingual | [72] |
Prospective open label clinical trial (N = 2) | Wounds involving mucous membranes caused by Non-Uremic Calciphylaxis (NUC) | Cannabis based medicine Topical Until wound closure | [73] |
Administration Pathway | Formulation | Adverse Event | Reference |
---|---|---|---|
Eye | ∆9-THC | Neurotoxicity | [116] |
Oromucosal | CBD:THC spray | Nausea and anxiety, disease progression, and asthenia, dizziness, somnolence, vertigo, muscle spasticity or rigidity, and dry mouth | [53] |
Oromucosal | CBD:THC spray | Nervous system disorders (dizziness) | [54] |
Oromucosal | Sativex® spray | Gastrointestinal discomforts (nausea, vomit, diarrhea, and constipation), nervous system (severe and mild-moderate psychiatric), and oral discomfort. Ischemic attack, a serious adverse event | [55] |
Oromucosal | CBD:THC spray | [56] | |
Oromucosal | CBD:THC spray | [57] | |
Transdermal | CBD:THC | Erythema | [32] |
Transdermal | CBD | Gastrointestinal discomforts | [61] |
Topical skin | CBD | Allergic reaction in local or systemic | [42] |
Plataform | Subject Vocabulary | Descriptors and Terms Used in the Search Strategy | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
PUBMED | MeSH—Medical Subject Headings | Cannabidiol | Cannabis | “Medical Marijuana” | “Administration, Topical” | “Administration, Cutaneous” | “Transdermal Patch” |
PUBMED PMC | MeSH—Medical Subject Headings | Cannabidiol | Cannabis | “Medical Marijuana” | “Administration, Topical” | “Administration, Cutaneous” | “Transdermal Patch” |
BVS BIREME | DeCS | Cannabidiol | Cannabis | “Medical Marijuana” | “Administration, Topical” | “Administration, Cutaneous” | “Transdermal Patch” |
Cannabidiol | Cannabis | “Marihuana Medicinal” | “Administración Tópica” | “Administración Cutánea” | “Parche Transdérmico” | ||
Canabidiol | Cannabis | “Maconha Medicinal” | “Administração Tópica” | “Administração Cutânea” | “Adesivo Transdérmico” | ||
Scopus | Cannabidiol | Cannabis | “Medical Marijuana” | “Administration, Topical” | “Administration, Cutaneous” | “Transdermal Patch” | |
WEB OF SCIENCE | Cannabidiol | Cannabis | “Medical Marijuana” | “Administration, Topical” | “Administration, Cutaneous” | “Transdermal Patch” | |
EMBASE | Emtree | Cannabidiol | Cannabis | medical marijuana use preferred term: medical cannabis | administration, topical use preferred term: topical drug administration | administration, cutaneous use preferred term: cutaneous drug administration | “Transdermal Patch” |
Cochrane Library | MeSH—Medical Subject Headings | Cannabidiol | Cannabis | “Medical Marijuana” | “Administration, Topical” | “Administration, Cutaneous” | “Transdermal Patch” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fava, A.L.M.; Souza, C.M.d.; Santos, É.M.d.; Silvério, L.A.L.; Ataide, J.A.; Paiva-Santos, A.C.; Costa, J.L.; Melo, D.O.d.; Mazzola, P.G. Evidence of Cannabidiol Effectiveness Associated or Not with Tetrahydrocannabinol in Topical Administration: A Scope Review. Pharmaceuticals 2024, 17, 748. https://doi.org/10.3390/ph17060748
Fava ALM, Souza CMd, Santos ÉMd, Silvério LAL, Ataide JA, Paiva-Santos AC, Costa JL, Melo DOd, Mazzola PG. Evidence of Cannabidiol Effectiveness Associated or Not with Tetrahydrocannabinol in Topical Administration: A Scope Review. Pharmaceuticals. 2024; 17(6):748. https://doi.org/10.3390/ph17060748
Chicago/Turabian StyleFava, Ana Laura Masquetti, Cinthia Madeira de Souza, Érica Mendes dos Santos, Luiza Aparecida Luna Silvério, Janaína Artem Ataide, Ana Cláudia Paiva-Santos, Jose Luiz Costa, Daniela Oliveira de Melo, and Priscila Gava Mazzola. 2024. "Evidence of Cannabidiol Effectiveness Associated or Not with Tetrahydrocannabinol in Topical Administration: A Scope Review" Pharmaceuticals 17, no. 6: 748. https://doi.org/10.3390/ph17060748
APA StyleFava, A. L. M., Souza, C. M. d., Santos, É. M. d., Silvério, L. A. L., Ataide, J. A., Paiva-Santos, A. C., Costa, J. L., Melo, D. O. d., & Mazzola, P. G. (2024). Evidence of Cannabidiol Effectiveness Associated or Not with Tetrahydrocannabinol in Topical Administration: A Scope Review. Pharmaceuticals, 17(6), 748. https://doi.org/10.3390/ph17060748