A Comprehensive Research Review of Herbal Textual Research, Phytochemistry, Pharmacology, Traditional Uses, Clinical Application, Safety Evaluation, and Quality Control of Trollius chinensis Bunge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herbal Textual Research of TCB
2.2. Phytochemistry
2.3. Flavonoids
2.4. Organic Acids
2.4.1. Phenolic Acids
No. | Compound Name | Nucleus | Supersede | References |
---|---|---|---|---|
1 | Veratric acid | XXIX | R1=COOH; R2=OCH3; R3=OCH3; R4=H | [42] |
2 | Methyl veratric acid | XXIX | R1=COOCH3; R2=OCH3; R3=OCH3; R4=H | [42] |
3 | Vanillic acid | XXIX | R1=COOH; R2=OCH3; R3=OH; R4=H | [42] |
4 | Protocatechuic acid | XXIX | R1=COOH; R2=OH; R3=OH; R4=H | [42] |
5 | Gallic acid | XXIX | R1=COOH; R2=OH; R3=OH; R4=OH | [47] |
6 | Benzoic acid C6H5COOH | XXIX | R1=COOH; R2=H; R3=H; R4=H | [42] |
7 | 4-Hydroxybenzoic acid | XXIX | R1=COOH; R2=H; R3=OH; R4=H | [47] |
8 | Methyl para-hydroxybenzoate | XXIX | R1=COOCH3; R2=H; R3=OH; R4=H | [47] |
9 | Methyl 3,4-dihydroxybenzoate | XXIX | R1=COOCH3; R2=OH; R3=OH; R4=H | [47] |
10 | 4-Hydroxy-2,6-dimethoxybenzaldehyde | XXIX | R1=CHO; R2=OCH3; R3=OH; R4=OCH3 | [47] |
11 | Aureate acid | XXXI | [48] | |
12 | Eleutheroic acid | XXX | R1=OH; R2=OCH3 | [48] |
13 | Amaryllis glycoside | XXX | R1=O-β-D-glucopyranosyl; R2=OCH3 | [48] |
14 | 4-(β-D-Glucopyranoside)-3-(3-methyl-2-butenyl) benzoic acid | XXX | R1=O-β-D-glucopyranosyl; R2=H | [42] |
15 | Ursolic acid | XXXIII | [47] | |
16 | Anisic acid | XLII | [47] | |
17 | Vitamin C | XLI | [47] | |
18 | (2R,3S)-Piscidicacid | XXXIX | [47] | |
19 | 3-(6-hydroxy-7- methoxy-2H-1,3- benzodioxol-5-yl) propanoicacid | XXXVIII | [47] | |
20 | Isochlorogenic acid A | XXXV | [47] | |
21 | Veratric acid glucose ester | XXXII | [49] | |
22 | Iso rosmarinic acid glycoside | XXXVII | [47] | |
23 | Crystal orchid glycosides | XL | [47] | |
24 | Hookerine | XXXVI | [47] | |
25 | Florissim (name) | XXXIV | [47] |
2.4.2. Fatty Acids
No. | Compound Name | Nucleus | Supersede | References |
---|---|---|---|---|
1 | Methyl caprylate | XLIX | R=H | [49] |
2 | Methyl decanoate | XLIX | R=CH2CH3 | [49] |
3 | Methyl dodecanoate | XLIX | R=(CH2)3CH3 | [49] |
4 | Methyl tridecanoate | XLIX | R=(CH2)4CH3 | [49] |
5 | Methyl tetradecanoate | XLIX | R=(CH2)5CH3 | [49] |
6 | Methyl pentadecanoate | XLIX | R=(CH2)6CH3 | [49] |
7 | Methyl hexadecanoate | XLIX | R=(CH2)7CH3 | [49] |
8 | Methyl heptadecanoate | XLIX | R=(CH2)8CH3 | [49] |
9 | Methyl octadecanoate (Methylstearate) | XLIX | R=(CH2)9CH3 | [49] |
10 | Methyl eicosanoate (Methylarachidonate) | XLIX | R=(CH2)11CH3 | [49] |
11 | Methyl docosanoate | XLIX | R=(CH2)13CH3 | [49] |
12 | Methyl tetracosanoate | XLIX | R=(CH2)15CH3 | [49] |
13 | Methyl benzoate | XLVII | R1=H, R2=H | [49] |
14 | Methyl 3,4-dimethoxybenzoate | XLVII | R1=OCH3, R2=OCH3 | [49] |
15 | Methyl 3-phenyl-2-propenoate | LI | R1=H, R2=H | [49] |
16 | Methyl 3-(4-hydroxyphenyl)-2-propenoate | LI | R1=H, R2=OH | [49] |
17 | Methyl (4-hydroxy-3- methoxyphenyl)-2-propenoate | LI | R1=OCH3, R2=OH | [49] |
18 | Methyl 2-hydroxyhexadecanoate | LV | R1=OH, R2=H, R3=H | [49] |
19 | Methyl 3-hydroxyhexadecanoate | LV | R1=H, R2=OH, R3=H | [49] |
20 | Methyl 10-hydroxyhexadecanoate (Methyl palmitate) | LV | R1=H, R2=H, R3=OH | [49] |
21 | (Z)-9-Hexadecenoic acid methyl ester (methyl palmitoleate) | LVI | R=(CH2)4CH3 | [49] |
22 | (Z)-9-Octadecenoic acid methyl ester (Methyl oleate) | LVI | R=(CH2)6CH3 | [49] |
23 | (Z, Z)-9,12-Octadecadienoic acid methyl ester (methyl linoleate) | LVI | R=CH=CH(CH2)4CH3 | [49] |
24 | (Z, Z, Z)-9,12,15- Octadecatrienoic acid methyl ester | LVI | R=CH=CHCH2CH=CHCH2CH3 | [49] |
25 | Hexadecanoic acid | LIX | R1=H, R2=H | [49] |
26 | (R)-10,16- Dihydroxyhexadecanoic acid | LIX | R1=OH, R2=OH | [49] |
27 | Dimethyl succinate | XLIII | [49] | |
28 | Dimethyl octanedioate | XLIV | [49] | |
29 | Dimethyl azelate | XLV | [49] | |
30 | Dimethyl 3-hydroxy-2-methylglutarate | XLVI | [49] | |
31 | Methyl phenylacetate | XLVIII | [49] | |
32 | 2,3-Dihydrobenzofuran | L | [49] | |
33 | Methyl 4-phenyl-2-butenoate | LII | [49] | |
34 | 9-(O-Propylphenyl)-nonanoic acid methyl ester | LX | [49] | |
35 | (E)-11-Eicosenoic acid methyl ester | LVIII | [49] | |
36 | Methyl 2-methoxy-eicosatrizoate | LXI | [49] | |
37 | (Z, Z, Z)-9,12,15-Octadecatrien-1-ol | LVII | [49] | |
38 | 2-Hydroxybenzaldehyde oxime | LIV | [49] | |
39 | 4-Hydroxyacetophenone | LIII | [49] |
2.5. Indole Alkaloids
2.6. Other
No. | Compound Name | Nucleus | Supersede | References |
---|---|---|---|---|
1 | 3,4-Dihydroxyphenethyl alcohol | LXVIII | R = H | [56] |
2 | 2-(3,4-Dihydroxyphenyl) ethanol glucoside | LXVIII | R = Glc | [53] |
3 | 4-Hydroxy-3-methoxyphenethyl alcohol | LXIX | [53] | |
4 | 2-(3,4-Dihydroxyphenyl)-ethyl-O-beta-D-glucopyranose | LXX | [42] | |
5 | 3,5-Dihydroxyphenethylalcohol 3-O-β-D-glucopyranoside | LXXI | [42,57] | |
6 | 4′-O-(6″-O-vanillyl-β-D-glucopyranosyl) phenethyl alcohol | LXXII | [42] | |
7 | Trolliamide | LXXIII | [26] | |
8 | Trolliusol A | LXXIV | [26] | |
9 | Heptaphyllum lactone | LXV | [9] | |
10 | β-Sitosterol | LXVI | [36] | |
11 | Carotene | LXVII | [36] | |
12 | Rhamnose | LXXV | [58] | |
13 | D-Galactose | LXXVI | [58] | |
14 | Arabinose (type of sugar) | LXXVII | [58] | |
15 | Vanillin | LXXVIII | [59] |
3. Pharmacology
3.1. Antimicrobial Effects
3.2. Antiviral Effects
3.3. Anti-Tumor Effects
3.4. Antioxidant Effects
3.5. Anti-Inflammatory and Analgesic Effects
3.6. Antipyretic Effect
4. Traditional Applications
5. Clinical Applications
5.1. Upper Respiratory Tract Infections
5.2. Wind and Heat Colds
5.3. Mumps
5.4. Treatment of Oral Ulcers
6. Safety Evaluation
7. Quality Control
7.1. Determination of Flavonoid Content
7.2. Determination of Volatile Components
7.3. Determination of Micronutrient Content
7.4. Chemical Fingerprint
8. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, M.; Wang, R.F.; Wu, X.W.; An, Y.N.; Yang, X.W. Investigation on Flos Trollii: Constituents and bioactivities. Chin. J. Nat. Med. 2013, 11, 449–455. [Google Scholar] [CrossRef]
- Ya, J.-S.; Lin, W.-S.; Rui, Y.; Qiang, Z.; Yang, Z.; Gui, Y.-Z.; Yun, C.-L.; Xue, C.; Chong, Y.-Z.; Hua, Q.; et al. Two new compounds from Trollius chinensis Bunge. J. Nat. Med. 2017, 71, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Tana, W.; Chen, J.; Yu, S.; Zhang, X.; Zhang, L. Responses of Trollius chinensis to drought stress and rehydration: From photosynthetic physiology to gene expression. Plant Physiol. Biochem. 2023, 201, 107841. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Liu, X.; Hu, J.; Huang, S.; Ma, X.; Liu, X.; Wang, R.; Hu, X. The crude extract from the flowers of Trollius chinensis Bunge exerts anti-influenza virus effects through modulation of the TLR3 signaling pathway. J. Ethnopharmacol. 2023, 300, 115743. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Fu, J.; Liu, Z.; Su, L.; Fan, R. Examination and verification of the herbs of T. chinensis. Liaoning J. Tradit. Chin. Med. 2023, 44, 427–433. [Google Scholar] [CrossRef]
- Liang, J.W.; Wang, M.Y.; Olounfeh, K.M.; Zhao, N.; Wang, S.; Meng, F.H. Network pharmacology-based identifcation of potential targets of the flower of Trollius chinensis Bunge acting on anti-inflammatory effectss. Sci. Rep. 2019, 9, 8109. [Google Scholar] [CrossRef]
- Geng, D.; Pang, Y.; Tao, Z.; Wang, S.; Liu, X.; Wang, R. Investigation on Potential of jinlianhua Decoction against Novel Coronavirus (2019-nCoV) Based on Molecular Docking. Mod. Chin. Med. 2020, 22, 522–532. [Google Scholar] [CrossRef]
- Wang, T.; Liu, S.; Ding, P.; Liu, S.; Wang, Q.; Pang, Y.; Hu, X.; Wang, R. Study on Anti-influenza Virus Activity of jinlianhua Decoction. Mod. Chin. Med. 2020, 22, 202–206. [Google Scholar] [CrossRef]
- Wei, J.; Li, D.; Hua, H.; Li, Z. Isolation and identification of chemical constituents from flowers of Trollius chinensis(II). J. Shenyang Pharm. Univ. 2012, 29, 12–15. [Google Scholar] [CrossRef]
- Lu, J.; Qin, P.; Han, X.; Peng, B.; Li, Z. Plackett-Burman design in formula optimization of Trollius chinensis Bungeteabag. Food Mach. 2014, 30, 271–275. [Google Scholar] [CrossRef]
- Zhao, X. Gleanings from the Compendium of Materia Medica; People’s Health Publishing House: Beijing, China, 1983; p. 1256. [Google Scholar]
- People’s Medical Publishing House. Compilation Group of National Chinese Herbal Medicine; People’s Medical Publishing House: Beijing, China, 1996; pp. 549–551. [Google Scholar]
- National Pharmacopoeia Committee. Pharmacopoeia of the People’s Republic of China: A Part; China Pharmaceutical Science and Technology Press: Beijing, China, 2020; pp. 1160–1163. [Google Scholar]
- Beijing Municipal Bureau of Health. Beijing Municipal Standards for Chinese Materia Medica; Capital Normal University Press: Beijing, China, 1998; p. 169. [Google Scholar]
- Department of Health of Shanxi Province. Standards for Chinese Herbal Medicines in Shanxi Province; Department of Health of Shanxi Province: Shanxi, China, 1987; pp. 34–35.
- Jiangsu Food and Drug Administration. Jiangsu Food and Drug Administration. Jiangsu Province Chinese Medicine Tablets Concoction Specification; Jiangsu Science and Technology Press: Nanjing, China, 2002; p. 209. [Google Scholar]
- Sichuan Provincial Drug Administration. Sichuan Provincial Standard for the Preparation of Chinese Herbal Medicinal Tablets; Sichuan Provincial Drug Administration: Chengdu, China, 2002; pp. 16–17.
- Zhejiang Food and Drug Administration. Zhejiang Province Chinese Medicine Concoction Specification; China medicine science and technology press: Beijing, China, 2015; p. 261. [Google Scholar]
- Ningxia Food and Drug Administration. Ningxia Chinese Medicine Tablets Concoction Specification; Sunshine Press: Yinchuan, China, 2017; pp. 197–198. [Google Scholar]
- Hubei Provincial Drug Administration. Quality Standard of Chinese Herbal Medicines in Hubei Province; China Pharmaceutical Science and Technology Press: Beijing, China, 2018; pp. 140–141. [Google Scholar]
- Shanghai Food and Drug Administration. Shanghai Code of Practice for the Preparation of Chinese Herbal Medicinal Tablets; Shanghai Science and Technology Publishing Co.: Shanghai, China, 2018; p. 409. [Google Scholar]
- Anhui Province Drug Administration. Specification for the Concoction of Chinese Herbal Medicinal Tablets in Anhui Province; Anhui Science and Technology Press: Hefei, China, 2019; p. 183. [Google Scholar]
- Standard of Traditional Chinese. Standard of Traditional Chinese Medicine in Heilongjiang Province; Heilongjiang People’s Publishing House: Harbin, China, 2001; pp. 129–141. [Google Scholar]
- He, L.; Wang, Z.; Lu, J.; Qin, C.; He, J.; Ren, W.; Liu, X. Trollius chinensis Bunge: A Comprehensive Review of Research on Botany, Materia Medica, Ethnopharmacological Use, Phytochemistry, Pharmacology, and Quality Control. Molecules 2024, 29, 421. [Google Scholar] [CrossRef]
- Li, L. The geographical distribution of subfam. Helleboroideae (Ranunculaceae). J. Sys. Evol. 1995, 33, 537–555. [Google Scholar]
- Fan, S.; Duan, Z. Appreciation of the Imperial Poems on the Summer Residence; Inner Mongolia Culture Press: Hohhot, China, 2000. [Google Scholar]
- Cheng, C. The interpretation of the Names of the Herbs; China Press of Traditional Chinese Medicine: Beijing, China, 2013; p. 265. [Google Scholar]
- Medicine Supply Station of the Commercial Bureau of the Revolutionary Committee of Hebei Province; Institute of Traditional Chinese Medicine of the Ministry of Health. Handbook of Hebei Traditional Chinese Medicine; Science Press: Beijing, China, 1971; Volume 29, pp. 146–147. [Google Scholar]
- Xu, G.; He, H.; Xu, L. Chinese Medicinal Herbs; Medical Science and Technology Press: Beijing, China, 1996; p. 950. [Google Scholar]
- State Administration of Traditional Chinese Medicine Editorial Committee of Chinese Materia Medica. Chinese Materia Medica-Mongolian Medicine Volume; Shanghai Science and Technology Press: Shanghai, China, 2004; pp. 257–258, 277. [Google Scholar]
- Xie, Z. A National Pharmacopoeia of Chinese Herbs; People’s Health Press: Beijing, China, 1996; pp. 160–161. [Google Scholar]
- Medicine NUoTC. Dictionary of Chinese Medicines; Shanghai Science and Technology Press: Shanghai, China, 1997; Volume 1, p. 1398. [Google Scholar]
- Guan, K.J. Flora of China; Science Press: Beijing, China, 1997; Volume 27, pp. 70–88. [Google Scholar]
- Song, D.; Sun, Q. Studies on the chemical constituents of Altair’s T. chinensis (Ⅰ). Chin. J. Med. Chem. 2004, 14, 233–235. [Google Scholar]
- Witkowska-Banaszczak, E. The genus Trollius-review of pharmacological and chemical research. Phytother. Res. 2015, 29, 475–500. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.L.; Li, D.Y.; Hua, H.M.; Chen, X.H.; Kim, C.S. Three new acylated flavone C-glycosides from the flowers of Trollius chinensis. J. Asian Nat. Prod. Res. 2009, 11, 426–432. [Google Scholar] [CrossRef]
- Yan, R.; Cui, Y.; Deng, B.; Bi, J.; Zhang, G. Flavonoid glucosides from the flowers of Trollius chinensis Bunge. J. Nat. Med. 2019, 73, 297–302. [Google Scholar] [CrossRef]
- Zhao, D. Studies on Chemical Constituents and Biological Activities of Chrysanthemum japonicum. Master’s Thesis, Xiamen University, Xiamen, China, 2020. [Google Scholar]
- Cai, H.; Zheng, G.; Zhan, Z.; Hu, J. Advances in Studies on Chemical Compositions of Trollius chinensis Bge. and Their Biological Activities. Cancer Biol. Ther. 2021, 23, 2340–2352. [Google Scholar]
- Liu, P.; Dang, S. Experimental study on the antimicrobial effect of total flavonoids from Lotus corniculatus. Chin. J. Exp. Tradit. Med. Formulae 2019, 73, 297–302. [Google Scholar]
- Ke, Y.; Lin, L.; Zhao, M. Rhamnogalacturonan I-Enriched Pectin, Flavonoids, and Alkaloids from Lotus Leaf Infusion in Regulating Glycolipid Absorption and Metabolism: Isolation, In Vitro Bioactivity Verification, and Structural Characterization. J. Agric. Food Chem. 2023, 71, 8969–8980. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Z.; Zhang, X.P.; Xu, X.D.; Zheng, Q.X.; Yang, J.S.; Ding, W.L. Characterization of aromatic glycosides in the extracts of Trollius species by ultra high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J. Pharm. Biomed. Anal. 2013, 75, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Hashi, Y.; Sun, H.; Liang, Y.; Lan, Y.; Wang, H.; Chen, S. Simultaneous determination of 19 flavonoids in commercial trollflowers by using high-performance liquid chromatography and classification of samples by hierarchical clustering analysis. Fitoterapia 2013, 91, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Liang, Y.; Ren, D.; Qiu, X.; Li, X. Separation of phenolic acids and flavonoids from Trollius chinensis Bunge by high speed counter-current chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1001, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Pei, H.Y.; Chen, K.; Tang, H.; Wu, B.; Tang, M.H.; Peng, A.H.; Ye, H.Y.; Chen, L.J. Separation of caffeoylquinic acids and flavonoids from Asteris souliei by high-performance counter-current chromatography and their anti-inflammatory activity in vitro. J. Sep. Sci. 2017, 40, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huo, T.; Qin, F.; Lu, X.; Li, F. Determination and pharmacokinetics of orientin in rabbit plasma by liquid chromatography after intravenous administration of orientin and Trollius chinensis Bunge extract. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 853, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.F.; Yang, X.W.; Ma, C.M.; Liu, H.Y.; Shang, M.Y.; Zhang, Q.Y.; Cai, S.Q.; Park, J.H. Trollioside, a new compound from the flowers of Trollius chinensis. J. Asian Nat. Prod. Res. 2004, 6, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.W.; Wang, R.F.; Liu, L.J.; Guo, L.N.; Zhao, C. Absorbability, mechanism and structure-property relationship of three phenolic acids from the flowers of Trollius chinensis. Molecules 2014, 19, 18129–18138. [Google Scholar] [CrossRef]
- Wang, R.; Yang, X.; Ma, C.; Cai, S.; Xu, D. Analysis of Fatty Acids from the Flowers of Trollius chinensis. J. Chin. Med. Mater. 2010, 33, 1579–1581. [Google Scholar]
- Wang, R.F.; Liu, R.N.; Zhang, T.; Wu, T. A new natural ceramide from Trollius chinensis Bunge. Molecules 2010, 15, 7467–7471. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; An, Y.N.; Wang, R.F.; Ding, Y.; Sun, Z.X. Distribution of Two bioactive compounds in flowers of Trollius chinensis. J. Chromatogr. Sci. 2014, 52, 466–469. [Google Scholar] [CrossRef]
- Li, L.; Fu, X.; Tian, L.; Guo, L.; Liu, D.; Xu, L. Study on the isolation and activity of total alkaloids from Radix longii. North Horticult. 2023, 83–89. [Google Scholar]
- Shi, S.; Zhang, J.; Liu, T. Isolation and structural characterization of chemical constituents of Lotus corniculatus. J. Shenyang Pharm. Univ. 2017, 34, 297. [Google Scholar]
- Wang, J.; Li, L. Trollius chinensis polysaccharide research progress of extraction and purification methods and activity. Agric. Technol. 2023, 43, 15–17. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Q.; Zhang, S.; Bao, Y.; Chen, M.; Gao, L.; Zhang, Y.; Zhou, H. Polysaccharides from Discarded Stems of Trollius chinensis Bunge Elicit Promising Potential in Cosmetic Industry: Characterization, Moisture Retention and Antioxidant Activity. Molecules 2023, 28, 3114. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Wei, J.X.; Hua, H.M.; Li, Z.L. Antimicrobial constituents from the flowers of Trollius chinensis. J. Asian Nat. Prod. Res. 2014, 16, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.Q.; Wang, R.; Yang, X.; Shang, M.; Ma, C.; Shoyama, Y. Antiviral flavonoid-type C-glycosides from the flowers of Trollius chinensis. Chem. Biodivers. 2006, 3, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Rao, N.; An, F. Study on the isolation and purification of polysaccharides and their antioxidant effects from Lotus corniculatus. Prof. Chin. Med. 2013, 35, 2384. [Google Scholar]
- Tian, H.; Zhou, Z.; Shui, G.; Lam, S.M. Extensive Profiling of Polyphenols from two Trollius Species Using a Combination of Untargeted and Targeted Approaches. Metabolites 2020, 10, 119. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, C.; Li, X.; Kang, Y.; Chen, Y.; Guohu, S.; Li, Y. Study on antibacterial and antioxidant activities of flavonoids from Trollius chinensis Bge. J. Pha. Res. 2023, 42, 228–231+242. [Google Scholar]
- Lin, C.; Shen, W.; Li, Y.; Yang, Y.; Jiang, Z.; Cen, Y.; Li, X.; Yuan, G. Comparison of the in vitro antibacterial effects of extracts of Phyllanthus auriculatus in different solvents. J. Jinan Univ. 2001, 54–55. [Google Scholar]
- Lin, Q.; Feng, S.; Li, Y.; Cen, Y.; Yang, Y.; Wang, L. A preliminary study on the antibacterial and antiviral active components of Chrysanthus japonicum. J. Zhejiang Univ. 2004, 412–415. [Google Scholar]
- Liu, P.; Chen, G.; Tang, S.; Lucy, L.; Tong, J. Experimental study on the antibacterial effect of total flavonoids of Chrysanthemum japonicum. Chin. J. ETMF 2013, 19, 207–210. [Google Scholar] [CrossRef]
- Guo, L.; Peng, Y.; Zhao, C.; Yang, X.; Liu, L.; Wang, R. Pharmacokinetics of tecomin in rats after intragastric and intravenous administration. Biomed. Chromatogr. 2016, 30, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tao, J.; Zhu, Y.; Yuan, T. Application of Berberine in Medicine for Treating or Preventing Influenza Virus. CN105769877A, 12 December 2012. [Google Scholar]
- Liu, A.L.; Liu, B.; Qin, H.L.; Lee, S.M.; Wang, Y.T.; Du, G.H. Anti-influenza virus activities of flavonoids from the medicinal plant Elsholtzia rugulosa. Planta Med. 2008, 74, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Hiasa, Y.; Kuzuhara, H.; Tokumoto, Y.; Konishi, I.; Yamashita, N.; Matsuura, B.; Michitaka, K.; Chung, R.T.; Onji, M. Hepatitis C virus replication is inhibited by 22beta-methoxyolean-12-ene-3beta, 24(4beta)-diol (ME3738) through enhancing interferon-beta. Hepatology 2008, 48, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Lin, Y.; Huang, H.; Liu, X.; Wei, G.; Fu, F. Experimental study on antiviral activity of water extract from Jinlian flower. Chin. J. Microbiol. Immunol. 1999, 25–26. [Google Scholar]
- Zhao, H.; Zhao, Y. Study on the anti-influenza A virus effect of alcohol extract of Lonicerae japonicum in vitro. Chin. Pharm. 2010, 19, 10–11. [Google Scholar]
- Li, Y.L.; Ma, S.C.; Yang, Y.T.; Ye, S.M.; But, P.P. Antiviral activities of flavonoids and organic acid from Trollius chinensis Bunge. J. Ethnopharmacol. 2002, 79, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Cheng, J.; Luo, Q.; Zhang, X.; An, F. Effect of flavone of Chrysanthemum chinensis on the proliferation of K562, HeLa, Ec-109 and NCI-H446 cells. J. Zhengzhou Univ. 2009, 44, 981–983. [Google Scholar] [CrossRef]
- Sun, L.; Luo, Q.; Hao, X.; Liu, H.; Tian, J.; An, F. Effect of flavone of Chrysanthemum chinensis on the growth and apoptosis of A549 cells. Chin. J. Geron. 2011, 31, 82–83. [Google Scholar]
- Tian, Q. Study on the Inhibitory Effect of Total Flavonoids of Jinlianhua on the Proliferation of Human Breast Cancer MCF-7 Cells. Master’s Thesis, Hebei North University, Zhangjiakou, China, 2016. [Google Scholar]
- He, M.; Li, C.; Yang, G.; He, Y.; Zhang, Y.; Chen, Z. Effect of total flavonoids of Chrysanthemum chinensis on the proliferation of human breast cancer MCF-7 cells. Chin. J. Clin. Pharmacol. 2020, 36, 4018–4020. [Google Scholar] [CrossRef]
- Sun, L.; Liu, F.; Liu, H.; Luo, Q.; An, F. Lotus flower ketone research the role of human breast cancer cells. Chin. J. Geron. 2009, 29, 1098–1099. [Google Scholar]
- Chu, T.-c.; An, F.; Wang, S. Effects of orientin and vitexin in Jinlian flowers on the growth and apoptosis of human esophageal cancer cells. Chin. J. Geron. 2013, 33, 4472–4475. [Google Scholar]
- Guo, Q.; Zhao, E.; Fan, J. Study on the inhibition of nitrosation reaction by yellow pigment of Chrysanthemum japonicum. J. Shanxi Univ. 2009, 32, 100–103. [Google Scholar] [CrossRef]
- Li, H.; Zhang, M.; Ma, G. Radical scavenging activity of flavonoids from Trollius chinensis Bunge. Nutrition 2011, 27, 1061–1065. [Google Scholar] [CrossRef]
- Tang, J.; Lu, X.; Chen, R. Study on extraction and antioxidant properties of flavonoids from Chrysanthemum japonicum. Food Sci. 2003, 88–91. [Google Scholar]
- Guo, M.L.; Xu, H.T.; Yang, J.J.; Chou, G.X. Diterpenoid glycosides from the flower of Trollius chinensis Bunge and their nitric oxide inhibitory activities. Bioorg. Chem. 2021, 116, 105312. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, G.; Wu, M.; Yang, J. Study on the anti-inflammatory and analgesic effects of the active components of Chinese medicine Jinlian Hua. Chin. J. Dr. Eval. 2013, 30, 210–213. [Google Scholar]
- Wang, R.; Geng, D.; Wu, X.; Xi, A. Study on anti-inflammatory activity of four main components of Chrysanthemum japonicum. Lishizhen Med. Mat. Med. Res. 2012, 23, 2115–2116. [Google Scholar]
- Su, l.; Zhao, W.; Yang, X.; Xing, R. Experimental study on the anti-inflammatory and analgesic effects of the stem and leaf extracts of Chrysanthemum japonicum. Chin. J. Trad. Med. Sci. Technol. 2012, 19, 31. [Google Scholar]
- Wu, X.A.; Zhao, Y.M.; Yu, N.J. Flavone c-glycosides from Trollius ledebouri reichb. J. Asian Nat. Prod. Res. 2006, 8, 541–544. [Google Scholar] [CrossRef]
- Liu, P.; Hu, N.; Chen, G.; Wang, Y.; Liu, Y.; Tong, J. Antipyretic effect of total flavonoids of Jinlianhua and its influence on tnf-α, il-1β and pge2 contents. Chin. J. ETMF 2014, 20, 189–191. [Google Scholar] [CrossRef]
- Liu, L.J.; Hu, X.H.; Guo, L.N.; Wang, R.F.; Zhao, Q.T. Anti-inflammatory effect of the compounds from the flowers of Trollius chinensis. Pak. J. Pharm. Sci. 2018, 31, 1951–1957. [Google Scholar] [PubMed]
- Feng, J.; Zhao, D.; Xu, Q.; Liu, X.; Zhou, M.; Ye, X.; Lin, T.; Wang, G.; Sun, C.; Ding, R.; et al. A new phenolic glycoside from Trollius chinensis Bunge with anti-inflammatory and antibacterial activities. Nat. Prod. Res. 2022, 36, 3309–3316. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Yan, L.; Li, K.A.; Ji, Z.H.; Tian, S.G. Evaluation of total phenol and flavonoid content and antimicrobial and antibiofilm activities of Trollius chinensis Bunge extracts on Streptococcus mutans. Microsc. Res. Tech. 2020, 83, 1471–1479. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.J.; Li, D.I.; Fang, M.Y.; Liu, S.Y.; Wang, Q.Q.; Liang, Y.X.; Hu, X.H.; Wang, R.F. The antiviral mechanism of the crude extract from the flowers of Trollius chinensis based on TLR 3 signaling pathway. Pak. J. Pharm. Sci. 2021, 34, 1743–1748. [Google Scholar] [PubMed]
- Shi, D.; Chen, M.; Liu, L.; Wang, Q.; Liu, S.; Wang, L.; Wang, R. Anti-influenza A virus mechanism of three representative compounds from Flos Trollii via TLRs signaling pathways. J. Ethnopharmacol. 2020, 253, 112634. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tian, Q.; An, F. Growth inhibition and apoptotic effects of total flavonoids from Trollius chinensis on human breast cancer MCF-7 cells. Oncol. Lett. 2016, 12, 1705–1710. [Google Scholar] [CrossRef] [PubMed]
- An, F.; Wang, S.; Tian, Q.; Zhu, D. Effects of orientin and vitexin from Trollius chinensis on the growth and apoptosis of esophageal cancer EC-109 cells. Oncol. Lett. 2015, 10, 2627–2633. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.; An, F.; Wang, S. Effects of orientin on the growth and apoptosis of human esophageal cancer EC-109 cells. China J. Chin. Mater. Medica 2012, 34, 2055–2059. [Google Scholar]
- An, F.; Yang, G.; Tian, J.; Wang, S. Antioxidant effects of the orientin and vitexin in Trollius chinensis Bunge in D-galactose-aged mice. Neural Regen. Res. 2012, 7, 2565–2575. [Google Scholar] [CrossRef]
- Qu, H.; Jiang, W.; Danhua, Y.; Shuhua, W.; Fang, A. Dynamic effects of orientin and vitexin in Chrysanthemum on antioxidant activities in serum and tissues of aging mice induced by D-galactose. Chi. J. Geron. 2015, 35, 443–446. [Google Scholar]
- Zhou, X. Clinical observation of Jinlianhua granule in the treatment of acute upper respiratory tract infection. J. Pr. Tradit. Chin. Med. 2023, 39, 2455–2457. [Google Scholar]
- Zhao, C.; Du, N.; Guo, L.; Wang, R. Study on the anti-inflammatory activity of total flavonoids and total phenolic acids in Chrysanthemum japonica. Chin. Arch. Tradit. Chin. Med. 2015, 33, 2634–2638. [Google Scholar] [CrossRef]
- Health Group of the Political Working Group of the Revolutionary Committee of the Guangxi Zhuang Autonomous Region. Handbook of Commonly Used Chinese Herbal Medicines in Guangxi Folklore; Health Group of the Political Working Group of the Revolutionary Committee of the Guangxi Zhuang Autonomous Region: Nanning, China, 1969; pp. 206–207. [Google Scholar]
- Pharmacopoeia Committee of the Ministry of Health. Drug Standard of the Ministry of Health-Mongolian Medicines; Pharmacopoeia Committee of the Ministry of Health: Beijing, China, 1998; p. 30.
- Phuntsok, D.T. Jingzhu Materia Medica; Shanghai Science and Technology Press: Shanghai, China, 1986; pp. 83–84. [Google Scholar]
- Dashang, L. Zhongguo Zangben Cao; Minzu Publishing House: Beijing, China, 1997; pp. 83–84. [Google Scholar]
- Jia, M.; Zhang, Y. Dictionary of Chinese Ethnomedicines; China Medicine Science and Technology Press: Beijing, China, 2016; pp. 839–840. [Google Scholar]
- Lin, Q.; Zhao, N.; Sun, Q.; Wang, L. Meta-analysis of the clinical efficacy of Jinlianhua preparation in the treatment of upper respiratory tract infection. Chin. J. Pharm. 2022, 19, 893–896+907. [Google Scholar] [CrossRef]
- Tao, B. To investigate the efficacy and safety of Jinlianhua granule combined with antibiotics in the treatment of acute respiratory tract infection in children. J. Rare Uncommon Dis. 2021, 28, 21–22. [Google Scholar]
- Zhang, X.; Kong, N.; Zhang, C. Clinical observation of Jinlianhua capsule in the treatment of wind-heat cold syndrome. Jilin Med. J. 2012, 33, 115–116. [Google Scholar]
- Zhang, X.; Kong, N.; Zhang, C. Meta analysis of Trollius chinensis wind hot cold. Chin. Pharm. 2011, 22, 4493–4494. [Google Scholar]
- Li, Y. To investigate the effect of Jinlianhua granule and ribavirin injection in the treatment of children with mumps. Contem. Med. Symp. 2017, 15, 161–162. [Google Scholar]
- Dai, D. Tropaeolum capsule combined therapy with dexamethasone acetate paste piece curative effect observation of patients with recurrent oral ulcer. Cap. For. Med. 2020, 27, 73. [Google Scholar]
- Yu, J.; Fu, Q. Clinical study of Jinlianhua granule combined with ribavirin in the treatment of children with hand-foot-mouth disease. Dru. Clin. 2019, 34, 1050–1053. [Google Scholar]
- Song, D.S.Q. Progress in the study of the plant genus Amaryllis. J. Shenyang Pharm. Univ. 2005, 3, 231–234. [Google Scholar]
- Zhao, M.; Yang, L.; Zhu, G.; Liu, J. Experimental study on subacute toxicity of Altaic Chrysodendron to rats. China’s Naturopat. 2017, 25, 91–92. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Zhang, Q. Determination of Orientin, Mucuna pruriens and total flavonoids in T. chinensis from different origins and optimization of extraction process. Normal J. Pharm. 2019, 34, 596–601. [Google Scholar]
- Lam, K.Y.; Ling, A.P.; Koh, R.Y.; Wong, Y.P.; Say, Y.H. A Review on Medicinal Properties of Orientin. Adv. Pharmacol. Sci. 2016, 2016, 4104595. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, L.; Zhao, C.; Wu, X.; Wang, R.; Liu, C. Characterization of the intestinal absorption of seven flavonoids from the flowers of Trollius chinensis using the Caco-2 cell monolayer model. PLoS ONE 2015, 10, e0119263. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhao, H.; Li, B.; Yu, J. Analysis of volatile components in Jinlian flower extract and its application in cigarettes. Fine Chem. 2011, 28, 467–470. [Google Scholar] [CrossRef]
- Qin, W.; Qin, Z.; Feng, C. Study on the structure-activity relationship of chromatographic retention values of volatile components in Chrysanthemum japonicum. Chin. Surg. 2014, 44, 680–682. [Google Scholar] [CrossRef]
- Hou, D.; Li, T.; Diao, Q.; Rui, H. Gas chromatography-mass spectrometry (GC-MS) analysis of fatty acids in Jinlian flowers from different origins. J. Anshan Normal Univ. 2017, 19, 30–33. [Google Scholar]
- Liang, Y. A comparative study of inorganic elements in different parts of the wild genuine and artificially planted Chrysanthus japonica. Mod. Tradit. Chin. Med. Mat. Med. 2014, 16, 73–77. [Google Scholar]
- Zhang, L.; Wu, D.; Zhang, A. ICP-AES was used to analyze the primary morphology and dissolution characteristics of inorganic elements in Lotus. Chin. J. Spectroscopy Lab. 2011, 28, 739–742. [Google Scholar]
- Li, G.; Liu, J. Determination of trace element content in Jinlian flowers from different regions. Lishizhen Med. Mater. Med. Res. 2014, 25, 2533–2534. [Google Scholar]
- Lei, R.; Liu, Y.; Duan, J.; Feng, L. Study on UPLC fingerprint and pattern recognition of Jinlianhua. J. Shenyang Pharm. Univ. 2015, 32, 429–434. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, R.F.; Liu, L.J.; Yang, X.; Peng, Y.S.; Sun, Z.X.; Ding, Y. Chromatographic fingerprint analysis of the floral parts of Trollius chinensis. J. Chromatogr. Sci. 2015, 53, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fan, R.; Zhao, J. Overv Bungeiew of research on the Trollius chinensis. Chin. J. Exp. Formulas 2020, 26, 239. [Google Scholar]
Protozoa | Exual Flavors, Attributes, and Functions | References |
---|---|---|
TCB | Bitter, slightly cold. Antibacterial and anti-inflammatory. Used for upper respiratory tract infection, pharyngitis, tonsils stomatitis, otitis media, acute conjunctivitis, and acute lymphangitis. | Chinese Pharmacopoeia (1977) [13] |
TCB | Bitter, slightly cold. Clears heat and removes toxins. Used for upper respiratory tract infection, pharyngitis, tonsil stomatitis, otitis media, acute conjunctivitis, and acute lymphangitis. | Shanxi Standard of Traditional Chinese Medicinal Materials (1987) [14] |
TCB | Bitter, slightly cold. Attributed to the liver meridian. Clears heat and disperses wind, detoxifies and subdues swellings, calms the liver, and improves eyesight. For mouth sores and swollen throats, floating heat, and tooth pronouncement. Earache and eye pain, mountain miasma, boils, fire poisoning, upper respiratory tract infections, acute enteritis, urinary infections sores, abscesses, etc. | Beijing Standard of Traditional Chinese Medicine [15] |
TCB | Bitter, slightly cold. Clears heat and removes toxins. Used for upper respiratory tract infections, tonsillitis, pharyngitis, otitis media, mouth sores, and boils. | Jiangsu Standard of Traditional Chinese Medicine [16] |
TCB | Bitter, cold. Attributed to the liver meridian. Clears heat and disperses wind. Detoxifies and subdues swelling, calms the liver, and improves eyesight. Used for mouth sores, swollen throats, floating fever, toothache, earache, eye pain, mountain miasma, boils, and fire. | Processing Specification of Chinese Herbal Decoction Pieces in Sichuan Province (2002) [17] |
TCB | Bitter, cold. Attributed to lung and stomach meridians. Clears heat. Detoxification. Indications: Wind and heat colds, throat swelling and pain, mouth sores, eye redness, and swelling. | Zhejiang Chinese Medicine Preparation (2015) [18] |
TCB | Bitter, slightly cold. Attributed to the lung and stomach meridians. Clears heat and detoxifies. For upper respiratory tract infections. Pharyngitis, tonsillitis, otitis media, etc., as well as mouth sores and boils. | Ningxia Standard of Traditional Chinese Medicine (2017) [19] |
TCB | Bitter, slightly cold. Attributed to the lung, liver, and gallbladder meridians. Clears heat and removes toxins. Used for lung-heat cough, sore throat, eye redness and swelling, and pus in ears. | Hubei Province Traditional Chinese Medicine Quality Standard (2018) [20] |
TCB | Bitter, slightly cold. Attributed to the lung and stomach meridians. Clears heat and detoxifies. For sore throat, eye redness, swelling and pain, phlegm-heat tuberculosis, scrofula and mouth sores, and swelling and pain in the ear. | Shanghai Processing Standard of Chinese Herbal Decoction Pieces (2018) [21] |
TCB | Bitter, slightly cold. Attributed to lung and stomach meridians. Antibacterial and anti-inflammatory. For upper respiratory tract infections, pharyngitis, tonsillitis, otitis media, acute conjunctivitis, and acute lymphadenitis. | Processing Standard of Traditional Chinese Medicine Decoction Pieces in Anhui province (2019) [22] |
Trollius asiaticus L. Trollius macropetalus Fr. Schmidt. Trollius ledebourii Reichb. | Bitter, slightly cold. Clears heat and removes toxins. Used for carbuncles, swollen sores, sore throat, mouth sores, and redness of the eyes. | Standard of Traditional Chinese Medicine in Heilongjiang Province (2001) [23] |
No. | Genus | Latin Name | Distribution Area |
1 | Saussurea involucrata | Trollius chinensis Bunge | Shanxi, northern Henan, Hebei, eastern Nei Mongol, western Liaoning, and Jilin, China |
2 | Wide-petaled TCB | Trollius asiaticus L. | Heilongjiang, Xinjiang, etc., China; Mongolia; Siberia; and Russia |
3 | Amaryllis longifolia | Trollius macropetalus Fr. Schmidt | Liaoning, Jilin, and Heilongjiang, China |
4 | Short-petaled TCB | Trollius ledebouri Reichb.e | Heilongjiang and northeastern Inner Mongolia, China; eastern Siberia; the Far East; and Russia |
5 | Garden nasturtium | Trollius farreri Stapf | Northwestern Yunnan (Wisi and Deqin), western Sichuan, northeastern Tibet, southern and eastern Qinghai, southern Gansu, and southern Shaanxi (Qinling), China |
6 | Altaic TCB | Trollius altaicus L. | Northern Xinjiang and western Inner Mongolia, China |
7 | Sichuan and Shaanxi TCB | Trollius buddae Schipcz | Northern Sichuan, southern Gansu, and southern Shaanxi, China |
8 | Dsungaripus communis | Trollius dschungaricus Regel | Tianshan, Zhaosu, and Xinjiang, China; Central Asia; and Russia |
9 | Tropaeolum majus | Trollius japonicus Miq | Changbai Mountain and Jilin, China; Sakhalin Island, Japan |
10 | Small-flowered TCB | Trollius micranthus Hand. Mazz | NW Yunnan and E Tibet, China |
11 | Little TCB | Trollius pumilus D. Don | Southern Tibet, China |
12 | Ranunculus | Trollius ranunculoides Hemsl | Northwestern Yunnan, eastern Tibet, western Sichuan, southern and eastern Qinghai, and southern Gansu, China |
13 | Taiwan TCB | Trollius taihasenzanensis Masamune | China–Taiwan |
14 | TCB | Trollius vaginatus | NW Yunnan (Zhongdian) and SW Sichuan (Muli), China |
15 | Yunnan TCB | Trollius yunnanensis (Franch.) Ulbr. | Western and northwestern Yunnan and western Sichuan, China |
16 | Long-petaled Yunnan TCB | Trollius yunnanensis var. eupetalus | Gongshan, Deqin, and NW Yunnan, China |
17 | Yunnan TCB (var.) | Trollius yunnanensis (Franch.) Ulbr. var. anemonifolius (Brühl) W.T. Wang | Western Sichuan and southern Gansu, China |
18 | Peltate-leaved Yunnan TCB (var.) | Trollius yunnanensis (Franch.) Ulbr. var. peltatus W. T. Wang | Emei and Sichuan, China |
19 | Qinghai–Tibetan TCB (var.) | Trollius pumilus var. tanguticus Bruhl | Northeastern Tibet, northwestern Sichuan, southern and eastern Qinghai, and southwestern Gansu, China |
20 | Amaryllis (var.) | Trollius pumilus D. Don var. foliosus (W. T. Wang) W. T. Wang | Min County and Southern Gansu, China |
21 | Derg TCB (var.) | Trollius pumilus D. Don var. tehkehensis (W. T.Wang) W. T. Wang | Alpine grassland around Dege and Sichuan, China |
22 | Dwarf goldenrod (var.) with large leaves | Trollius farreri Stapf var. major W. T. Wang | NW Yunnan (Deqin) and SE Tibet (Tsatsumi), China |
23 | P11111ale purple gilded lily (Amaryllis lilaca) | Trollius lilacinus Bunge | Tian Shan and Xinjiang, China; Western Siberia, Russia; and Central Asia |
24 | Water lily | Nymphoides aurantiacum (Dalz. Ex Hook.) O. Kuntze | China, Taiwan, western India, and Sri Lanka |
25 | European Golden Lotus (Hemerocallis fulva) | Trollius europaeus | Northern, central, and western Europe |
26 | Amaryllis | Trollius laxus | Distributed within the U.S. in Connecticut, Del. (Delaware), NJ (New Jersey), N.Y (New York), Pa. (Pennsylvania), and Ohio |
Pharmacological Effects | Extracts/Compounds | Types | Animal/Cell | Dosage | Effects | Reference |
---|---|---|---|---|---|---|
Antimicrobial effects | Crude extract | In vivo | BALB/mice | 0.2 mg/g | TCB crude extract exerted anti-influenza virus effect by regulating the expression of TLR3, IRF3, IFN-β, TAK1, and TBK1 in the TLR3 signaling pathway. | [86] |
Trochinenol A | In vitro | 293 T cells | 1.0 mg | Trochinenol A has a minimum inhibitory concentration (MIC) of 6.25 mg/mL against Staphylococcus aureus and can inhibit the TNFα-induced NF-κB pathway. | [87] | |
Crude extract | In vitro | Bacterium suspension | 3.125 mg/mL | TCB extracts of streptococcus mutans have antibacterial activity and resistance to biofilm activity. | [88] | |
Flavonoids | In vitro | Mice | 440 mg·kg−1 | An inhibitory effect on Staphylococcus aureus infection was shown. | [63] | |
Antiviral effects | Crude extract | In vivo | Mice | 0.2 mg/g | TCB crude extract exerted anti-influenza virus effect by regulating the expression of TLR3, IRF3, IFN-β, TAK1, and TBK1 in the TLR3 signaling pathway. | [4] |
Crude extract | In vitro | MDCK cells | 0.5 mg·mL−1 | Reduced the expression of tlr3 mRNA and protein, as well as IFN β mRNA, by intervening in the TLR3 signaling pathway. | [89] | |
Veratric acid; vitexin; trolline | In vivo | SD mice | 400 μmol/L | Downregulating tlr3 and tlr7 signaling pathways and upregulating TLR4 signaling pathway exerted anti-H1N1 virus effect. | [90] | |
Anti-tumor effects | Flavonoids | In vivo | MCF-7 breast cancer cells | 0.0991, 0.1982, 0.3964, 0.7928 or 1.5856 mg/mL | Flavonoids selectively reduced the expression of bcl-2 and NF-κB while increasing the expression of caspase-9 and caspase-3. | [91] |
Orientin, vitexin | In vitro | EC-109 cells | 5.0, 8.0 µM | Orientin and vitexin inhibited the growth of EC-109 cells and induced early apoptosis. | [92] | |
Flavonoids | In vitro | MCF-7 cells | 100, 200, 300 μg·mL−1 | Inhibition of PARP-1/p53 pathway inhibited the proliferation of human breast cancer MCF-7 cells. | [74] | |
Orientin | In vitro | EC-10 cells | 5, 10, 20, 40, 80 μmol/L | Orientin dose-dependently inhibited the growth and proliferation of EC-109 cells and induced apoptosis of tumor cells. | [93] | |
Antioxidant effects | Orientin, vitexin | In vitro | Mice | 40 mg/kg | 40 mg/kg dose of prince’s-feather and vitex glycosides has the same antioxidant capacity and vitamin e. | [78] |
Flavonoids | In vitro | Mice | 44 μmol/L | TCB total flavonoids showed strong ROS scavenging activity. | [94] | |
Orientin, vitexin | In vivo | Mice | 200 mg/kg−1 | Significantly increased the serum T-AOC activity of D-galactose-induced senescence mice. | [95] | |
Antipyretic effects | Orientin, vitexin | In vivo | Mice | 200 mg·kg−1 | Significantly increased the serum T-AOC activity of D-galactose-induced senescence mice. | [96] |
Formononetin | In vitro | NSCLC cells | 0.5, 1.5, 3, 10 μg/mL | Inhibition of EGFR-Akt-Mcl-1 axis to suppress tumor growth in non-small cell lung cancer. | [97] | |
Anti-inflammatory and analgesic effects | Flavonoids | In vitro | RAW264. 7 cells | 62.5, 125, 250, 500, 1000 μg/mL | Both total flavonoids and total phenolic acids of TCB had obvious anti-inflammatory activities, and total flavonoids were slightly better than total phenolic acids. | [46] |
Ethnic Group | Pharmaceutical Name | Botanical Name | Efficacy | Reference |
---|---|---|---|---|
Tibetan | Laibganzipomedo, capital of Malawi (Tw) | Saussurea involucrata | It heals sores, stops pulse heat, cures abscesses, and clears heat from the upper half of the body. | Jingzhu Materia Medica [100] |
Maddox Sitchin, Maddox, clear as a bell | Garden nasturtium | Flowers for food poisoning, sores, carbuncles, wounds, and ulcers. The whole herb for pus and swelling. | Dictionary of Chinese Ethnic Medicines | |
Coloration of the charts | Amaryllis Grandiflora | Flowers and fruits for gallbladder pain and meat poisoning. | Dictionary of Chinese Ethnic Medicines | |
Pungent color, Meadow color Khin, Medoselkyn, Murtoseljian | Ranunculus | Flowers for food poisoning, sores and carbuncles, traumatic ulcers, yellow water disease, various toxic diseases, infectious diseases, fever, and biliousness. Eradicates botulism, black aconite poison and poisonous fever. | National Chinese Herbal Medicine List Dictionary of Chinese Ethnic Medicines [101] | |
Sekchin, Medoselqing | Little T.chinensis | The flowers cure food poisoning, sores and carbuncles, and traumatic ulcers. | Dictionary of Chinese Ethnic Medicines | |
The coloration of the charts | Yunnan TCB | The flowers or fruits are used for food poisoning, febrile illnesses, bilious fever, and cholecystitis. | Chinese Materia Medica | |
Mongolian medicine | Alatanhua Khiqiqi, Modgas Rizhin, Xiezhi Khiqiqi | Saussurea involucrata | Flowers for gold wounds, traumatic infections, bloody eyes, throat fever, sore throats, otitis media, acute lymphadenitis, acute conjunctivitis, feverish toothache, and sores. | Chinese Materia Medica—Mongolian Medicine Volume [30] |
Pungent color, Meadow color Khin, Medoselkyn, Murtoseljian | Ranunculus | Flowers for food poisoning, sores and carbuncles, traumatic ulcers, yellow water disease, various toxic diseases, infectious diseases, fever, and biliousness. Eradicates botulism, black aconite poison, and poisonous fever. | Chinese Materia Medica [101] National Chinese Herbal Medicine List Dictionary of Chinese Ethnic Medicines | |
Mado Sekchin, Medoselqing | Little TCB | The flowers cure food poisoning, sores and carbuncles, and traumatic ulcers. | Dictionary of Chinese Ethnic Medicines | |
The coloration of the charts | Yunnan TCB | The flowers or fruits are used for food poisoning, febrile illnesses, bilious fever, and cholecystitis. | Chinese Materia Medica | |
Mongolian medicine | Alatanhua Khiqiqi, Alatanhua Khiqiqi, Modgas Rizhin, Xiezhi Khiqiqi | Saussurea involucrata | Flowers for gold wounds, traumatic infections, bloody eyes, throat fever, sore throats, otitis media, acute lymphadenitis, acute conjunctivitis, feverish toothache, and sores. | Chinese Materia Medica—Mongolian Medicine Volume [101] |
The Koreans | Broad-petal gold plum | Wide petaled TCB | Whole herbs and flowers for epilepsy and conjunctivitis. | Dictionary of Chinese Ethnic Medicines |
Gold flower | Short-petaled TCB | Whole herbs and flowers for epilepsy, hemorrhages, and conjunctivitis. | Dictionary of Chinese Ethnic Medicines | |
Lisu medicine | Yunnan mother cilia, chicken claw grass | Yunnan TCB | Root for malaria; whole plant for external wind-cold, rheumatism and numbness, and cervical lymph nodes. | Dictionary of Chinese Ethnic Medicines |
Mother (name) Seeley | Ranunculus | Tuberculosis. Roots, flowers, and fruits for meat poisoning and malaria. The whole plant treats rheumatism and lymph node tuberculosis; the stem, leaves, and flowers treat rheumatism and numbness, lymph node tuberculosis and chicken-claw wind; the flowers are powdered to treat suppurative wounds. | Dictionary of Chinese Ethnic Medicines | |
Oroqen or Orochon (ethnic group) | Kahoot, Kimmelweed, Gold Bumps | Short-petaled TCB | Flowers for sore throats, mouth sores, eye redness, carbuncle sores, bronchitis, cholecystitis, chronic tonsillitis, acute otitis media, acute conjunctivitis, and acute lymphadenitis. | Dictionary of Chinese Ethnic Medicines |
Kazakh ethnic group of Xinjiang | Saussurea involucrata | Altaic TCB | Flowers are used for acute and chronic tonsillitis, pharyngitis, upper respiratory tract infections, otitis media, conjunctivitis, lymphadenitis, fever reduction, acute bronchitis, acute appendicitis, acute enteritis, urinary tract infections, sores, and carbuncles. | Dictionary of Chinese Ethnic Medicines |
Uighur (Uyghur) ethnic group of Xinjiang | Xiehedan (name) | Altaic TCB | The flowers are used for fever, pharyngitis, tonsillitis, acute bronchitis, otitis media, conjunctivitis, acute appendicitis, acute enteritis, urinary tract infection, sores, and carbuncles. | Dictionary of Chinese Ethnic Medicines |
Tujia ethnic group of Hunan | Inborn son | Saussurea involucrata | Flowers for upper respiratory tract infections, tonsillitis, pharyngitis, acute otitis media, chronic tympanitis, acute lymphadenitis, acute conjunctivitis, mouth sores, and boils. | Jingzhu Medica [100] Dictionary of Chinese Ethnic Medicines [102] |
Hmong or Miao ethnic group of southwest China | Aravana-qiqiqi, Drynaria, and Golden Plumweed | Saussurea involucrata | Flowers treat acute and chronic tonsillitis, acute otitis media, acute periostitis, acute conjunctivitis, acute lymphadenitis, upper respiratory tract infections, tonsillitis, and pharyngitis. | Jingzhu Materia Medica [100] Dictionary of Chinese Ethnic Medicines [102] |
Name | Functions and Indications | Formula | Method of Making | Content Determination Standard |
---|---|---|---|---|
TCB Fever Granules | Clear heat and remove toxins, promote the production of fluids, and relieve phlegm. Used for colds and flu with high fever, thirst, dry throat, sore throat, cough, and thick phlegm and influenza and upper respiratory tract infections with the above symptoms. | TCB 600 g, Big Green Leaf 600 g, Gypsum 450 g, Zhi Mu 300 g, Di Huang 300 g, Xuan Shen 300 g, Fried Bitter Almond 450 g. | Aqueous decoction with dextrin and meringue to make granules. | Each 1 g contains no less than 0.32 mg of Bauhinia glycosides. |
TCB Lozenges | Clear heat and remove toxins, subdue swelling and relieve pain, and reduce sore throats. It is used for the redness, swelling, and pain of the pharynx, the swelling of gums, and sores of mouth and tongue caused by internal heat and toxin; acute pharyngitis, acute tonsillitis, and upper respiratory tract infections with the above symptoms. | TCB 450 g, Peppermint Oil 4 mL | Aqueous decoction with menthol oil and magnesium stearate pressed tablets. | Orientin is not less than 1.6 mg per tablet. |
TCB Oral Liquid | Clears heat and removes toxins. Used for upper respiratory tract infections, pharyngitis, and tonsillitis caused by wind or heat and toxicity attacking the lungs and internalized heat and toxicity. | TCB 450 g | Add honey or simple syrup to the decoction, and sodium benzoate, ethyl hydroxybenzene, and water. | Orientin is not less than 1.5 mg per 1 mL. |
TCB Granules | Ibid | TCB 1000 g | Water decoction with sucrose and dextrin to make granules. | Orientin is not less than 16.0 mg per sachet. |
TCB Capsules | Ibid | TCB 1000 g | Aqueous decoction with dextrin in capsules. | Orientin is not be less than 3.0 mg per capsule. |
TCB Flakes | Ibid | TCB 1500 g | Decoction of water with starch to make granules and then pressed tablets. | Orientin is not less than 4.5 mg per tablet. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Wang, Z.; Wang, P.; Wang, L.; Li, Y.; He, L.; Liu, X.; Xu, J.; Duan, Y.; Ma, W. A Comprehensive Research Review of Herbal Textual Research, Phytochemistry, Pharmacology, Traditional Uses, Clinical Application, Safety Evaluation, and Quality Control of Trollius chinensis Bunge. Pharmaceuticals 2024, 17, 800. https://doi.org/10.3390/ph17060800
Yang K, Wang Z, Wang P, Wang L, Li Y, He L, Liu X, Xu J, Duan Y, Ma W. A Comprehensive Research Review of Herbal Textual Research, Phytochemistry, Pharmacology, Traditional Uses, Clinical Application, Safety Evaluation, and Quality Control of Trollius chinensis Bunge. Pharmaceuticals. 2024; 17(6):800. https://doi.org/10.3390/ph17060800
Chicago/Turabian StyleYang, Keke, Zhen Wang, Panpan Wang, Lai Wang, Yuanjie Li, Lianqing He, Xiubo Liu, Jiao Xu, Yijin Duan, and Wei Ma. 2024. "A Comprehensive Research Review of Herbal Textual Research, Phytochemistry, Pharmacology, Traditional Uses, Clinical Application, Safety Evaluation, and Quality Control of Trollius chinensis Bunge" Pharmaceuticals 17, no. 6: 800. https://doi.org/10.3390/ph17060800
APA StyleYang, K., Wang, Z., Wang, P., Wang, L., Li, Y., He, L., Liu, X., Xu, J., Duan, Y., & Ma, W. (2024). A Comprehensive Research Review of Herbal Textual Research, Phytochemistry, Pharmacology, Traditional Uses, Clinical Application, Safety Evaluation, and Quality Control of Trollius chinensis Bunge. Pharmaceuticals, 17(6), 800. https://doi.org/10.3390/ph17060800