Lipid-Lowering and Anti-Inflammatory Effects of Campomanesia adamantium Leaves in Adipocytes and Caenorhabditis elegans
Abstract
:1. Introduction
2. Results
2.1. Antioxidant Activity of AECa
2.2. Effect of AECa on Preadipocytes
2.3. Effect of AECa on Lipid Accumulation in Cells
2.4. Effect of AECa on Cytokine Production
2.5. Effect of AECa on Caenorhabditis elegans Nematodes
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extract Preparation
4.2. Evaluation of the Antioxidant Activity of AECa
4.2.1. DPPH• Free Radical Scavenging Assay
4.2.2. Ferric Reducing Antioxidant Power (FRAP) Assay
4.2.3. β-Carotene Bleaching Inhibitory Activity Assay
4.3. Evaluation of the Effect of AECa on Preadipocytes and Adipocytes
4.3.1. Cell Culture
4.3.2. Cell Viability Assay Using MTT
4.3.3. Lipid Accumulation in Cells
4.3.4. Cytokine Quantification
4.4. Evaluation of the Effect of AECa on Caenorhabditis elegans
4.4.1. C. elegans Culture
4.4.2. Sub-Chronic Toxicity
4.4.3. Lipid Accumulation in C. elegans
4.5. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jakab, J.; Miškić, B.; Mikšić, Š.; Juranić, B.; Ćosić, V.; Schwarz, D.; Včev, A. Adipogenesis as a Potential Anti-Obesity Target: A Review of Pharmacological Treatment and Natural Products. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.; Gavrilova, O.; Pack, S.; Jou, W.; Mullen, S.; Sumner, A.E.; Cushman, S.W.; Periwal, V. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth. PLoS Comput. Biol. 2009, 5, e1000324. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, E.E.; Schupp, M.; Guan, H.-P.; Gardner, N.P.; Lazar, M.A.; Flier, J.S. PPARγ Regulates Adipose Triglyceride Lipase in Adipocytes in Vitro and in Vivo. Am. J. Physiol. Metab. 2007, 293, E1736–E1745. [Google Scholar] [CrossRef] [PubMed]
- Janani, C.; Ranjitha Kumari, B.D. PPAR Gamma Gene—A Review. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Shimano, H. SREBPs: Physiology and Pathophysiology of the SREBP Family. FEBS J. 2009, 276, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Capó, X.; Bouzas, C.; Mateos, D.; Pons, A.; Tur, J.A.; Sureda, A. Metabolic Syndrome Is Associated with Oxidative Stress and Proinflammatory State. Antioxidants 2020, 9, 236. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; Azevedo, I. Chronic Inflammation in Obesity and the Metabolic Syndrome. Mediat. Inflamm. 2010, 2010, 289645. [Google Scholar] [CrossRef] [PubMed]
- Salmon, A. Beyond Diabetes: Does Obesity-Induced Oxidative Stress Drive the Aging Process? Antioxidants 2016, 5, 24. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017, 376, 254–266. [Google Scholar] [CrossRef]
- Saad, B.; Zaid, H.; Shanak, S.; Kadan, S. Introduction to Medicinal Plant Safety and Efficacy. In Anti-Diabetes and Anti-Obesity Medicinal Plants and Phytochemicals; Springer International Publishing: Cham, Switzerland, 2017; pp. 21–55. [Google Scholar] [CrossRef]
- Cardoso, C.A.L. Plantas Do Gênero Campomanesia: Potenciais Medicinal e Nutracêutico; Carvalho, E.S.d., Ed.; UEMS: Dourados, Brazil, 2021. [Google Scholar]
- Lescano, C.H.; Freitas de Lima, F.; Mendes-Silvério, C.B.; Justo, A.F.O.; da Silva Baldivia, D.; Vieira, C.P.; Sanjinez-Argandoña, E.J.; Cardoso, C.A.L.; Mónica, F.Z.; Pires de Oliveira, I. Effect of Polyphenols from Campomanesia adamantium on Platelet Aggregation and Inhibition of Cyclooxygenases: Molecular Docking and in Vitro Analysis. Front. Pharmacol. 2018, 9, 617. [Google Scholar] [CrossRef]
- Ferreira, L.C.; Grabe-Guimarães, A.; de Paula, C.A.; Michel, M.C.P.; Guimarães, R.G.; Rezende, S.A.; de Souza Filho, J.D.; Saúde-Guimarães, D.A. Anti-Inflammatory and Antinociceptive Activities of Campomanesia adamantium. J. Ethnopharmacol. 2013, 145, 100–108. [Google Scholar] [CrossRef]
- de Araújo, L.C.A.; Leite, N.R.; Rocha, P.d.S.d.; Baldivia, D.d.S.; Agarrayua, D.A.; Ávila, D.S.; da Silva, D.B.; Carollo, C.A.; Campos, J.F.; Souza, K.d.P.; et al. Campomanesia adamantium O Berg. Fruit, Native to Brazil, Can Protect against Oxidative Stress and Promote Longevity. PLoS ONE 2023, 18, e0294316. [Google Scholar] [CrossRef] [PubMed]
- Espindola, P.P.d.T.; Rocha, P.d.S.d.; Carollo, C.A.; Schmitz, W.O.; Pereira, Z.V.; Vieira, M.D.C.; dos Santos, E.L.; Souza, K.d.P. Antioxidant and Antihyperlipidemic Effects of Campomanesia adamantium O. Berg Root. Oxid. Med. Cell. Longev. 2016, 2016, 7910340. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.F.; Espindola, P.P.d.T.; Torquato, H.F.V.; Vital, W.D.; Justo, G.Z.; Silva, D.B.; Carollo, C.A.; Souza, K.d.P.; Paredes-Gamero, E.J.; dos Santos, E.L. Leaf and Root Extracts from Campomanesia adamantium (Myrtaceae) Promote Apoptotic Death of Leukemic Cells via Activation of Intracellular Calcium and Caspase-3. Front. Pharmacol. 2017, 8, 466. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Tybussek, T.; Herfellner, T.; Schneider, F.; Schweiggert-Weisz, U.; Eisner, P. Radical Scavenging Mechanisms of Phenolic Compounds: A Quantitative Structure-Property Relationship (QSPR) Study. Front. Nutr. 2022, 9, 882458. [Google Scholar] [CrossRef]
- Anttonen, M.J.; Karjalainen, R.O. High-Performance Liquid Chromatography Analysis of Black Currant (Ribes nigrum L.) Fruit Phenolics Grown Either Conventionally or Organically. J. Agric. Food Chem. 2006, 54, 7530–7538. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Zorita, S.; Lasa, A.; Abendaño, N.; Fernández-Quintela, A.; Mosqueda-Solís, A.; Garcia-Sobreviela, M.P.; Arbonés-Mainar, J.M.; Portillo, M.P. Phenolic Compounds Apigenin, Hesperidin and Kaempferol Reduce in Vitro Lipid Accumulation in Human Adipocytes. J. Transl. Med. 2017, 15, 237. [Google Scholar] [CrossRef]
- Aranaz, P.; Navarro-Herrera, D.; Zabala, M.; Romo-Hualde, A.; López-Yoldi, M.; Vizmanos, J.L.; Milagro, F.I.; González-Navarro, C.J. Phenolic Compounds Reduce the Fat Content in Caenorhabditis elegans by Affecting Lipogenesis, Lipolysis, and Different Stress Responses. Pharmaceuticals 2020, 13, 355. [Google Scholar] [CrossRef]
- dos Santos da Rocha, P.; Orué, S.L.; Leite, D.F.; de Toledo Espindola, P.P.; Cassemiro, N.S.; da Silva, D.B.; Carollo, C.A.; Nunes-Souza, V.; Rabelo, L.A.; Campos, J.F.; et al. Beneficial Effects of Bauhinia rufa Leaves on Oxidative Stress, Prevention, and Treatment of Obesity in High-Fat Diet-Fed C57BL/6 Mice. Oxid. Med. Cell. Longev. 2022, 2022, 8790810. [Google Scholar] [CrossRef]
- Oh, M.-J.; Lee, H.-B.; Yoo, G.; Park, M.; Lee, C.-H.; Choi, I.; Park, H.-Y. Anti-Obesity Effects of Red Pepper (Capsicum annuum L.) Leaf Extract on 3T3-L1 Preadipocytes and High Fat Diet-Fed Mice. Food Funct. 2023, 14, 292–304. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S.; Yang, X.; You, P.; Zhang, W. Myricetin Suppresses Differentiation of 3 T3-L1 Preadipocytes and Enhances Lipolysis in Adipocytes. Nutr. Res. 2015, 35, 317–327. [Google Scholar] [CrossRef]
- Lee, C.W.; Seo, J.Y.; Lee, J.; Choi, J.W.; Cho, S.; Bae, J.Y.; Sohng, J.K.; Kim, S.O.; Kim, J.; Park, Y.I. 3-O-Glucosylation of Quercetin Enhances Inhibitory Effects on the Adipocyte Differentiation and Lipogenesis. Biomed. Pharmacother. 2017, 95, 589–598. [Google Scholar] [CrossRef]
- Yun-Soo, S.; Ok-Hwa, K.; Sung-Bae, K.; Su-Hyun, M.; Da-Hye, K.; Da-Wun, Y.; Jang-Gi, c.; Young-Mi, L.; Dae-Kil, K.; Ho-Seog, L.; et al. Quercetin Prevents Adipogenesis by Regulation of Transcriptional Factors and Lipases in OP9 Cells. Int. J. Mol. Med. 2015, 35, 1779–1785. [Google Scholar] [CrossRef]
- Brasaemle, D.L.; Subramanian, V.; Garcia, A.; Marcinkiewicz, A.; Rothenberg, A. Perilipin A and the Control of Triacylglycerol Metabolism. Mol. Cell. Biochem. 2009, 326, 15–21. [Google Scholar] [CrossRef]
- Sztalryd, C.; Brasaemle, D.L. The Perilipin Family of Lipid Droplet Proteins: Gatekeepers of Intracellular Lipolysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Sánchez, A.; Madrigal-Santillán, E.; Bautista, M.; Esquivel-Soto, J.; Morales-González, Á.; Esquivel-Chirino, C.; Durante-Montiel, I.; Sánchez-Rivera, G.; Valadez-Vega, C.; Morales-González, J.A. Inflammation, Oxidative Stress, and Obesity. Int. J. Mol. Sci. 2011, 12, 3117–3132. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sun, Q.; Wu, X.; Zhang, Y.; Xing, X.; Lin, K.; Feng, Y.; Wang, M.; Wang, Y.; Wang, R. Hypoxia as a Double-Edged Sword to Combat Obesity and Comorbidities. Cells 2022, 11, 3735. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; Mouton, A.J.; da Silva, A.A.; Omoto, A.C.M.; Wang, Z.; Li, X.; do Carmo, J.M. Obesity, Kidney Dysfunction, and Inflammation: Interactions in Hypertension. Cardiovasc. Res. 2021, 117, 1859–1876. [Google Scholar] [CrossRef]
- Van Raemdonck, K.; Umar, S.; Szekanecz, Z.; Zomorrodi, R.K.; Shahrara, S. Impact of Obesity on Autoimmune Arthritis and Its Cardiovascular Complications. Autoimmun. Rev. 2018, 17, 821–835. [Google Scholar] [CrossRef]
- Matsuda, M.; Shimomura, I. Roles of Oxidative Stress, Adiponectin, and Nuclear Hormone Receptors in Obesity-Associated Insulin Resistance and Cardiovascular Risk. Horm. Mol. Biol. Clin. Investig. 2014, 19, 75–88. [Google Scholar] [CrossRef]
- Khan, S.S.; Ning, H.; Wilkins, J.T.; Allen, N.; Carnethon, M.; Berry, J.D.; Sweis, R.N.; Lloyd-Jones, D.M. Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity. JAMA Cardiol. 2018, 3, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Khutami, C.; Sumiwi, S.A.; Khairul Ikram, N.K.; Muchtaridi, M. The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism. Int. J. Mol. Sci. 2022, 23, 2056. [Google Scholar] [CrossRef]
- Nam, S.-Y.; Han, N.-R.; Rah, S.-Y.; Seo, Y.; Kim, H.-M.; Jeong, H.-J. Anti-Inflammatory Effects of Artemisia scoparia and Its Active Constituent, 3,5-Dicaffeoyl-Epi-Quinic Acid against Activated Mast Cells. Immunopharmacol. Immunotoxicol. 2018, 40, 52–58. [Google Scholar] [CrossRef]
- Zhong, R.; Miao, L.; Zhang, H.; Tan, L.; Zhao, Y.; Tu, Y.; Angel Prieto, M.; Simal-Gandara, J.; Chen, L.; He, C.; et al. Anti-Inflammatory Activity of Flavonols via Inhibiting MAPK and NF-ΚB Signaling Pathways in RAW264.7 Macrophages. Curr. Res. Food Sci. 2022, 5, 1176–1184. [Google Scholar] [CrossRef]
- Le, N.H.; Kim, C.-S.; Park, T.; Park, J.H.Y.; Sung, M.-K.; Lee, D.G.; Hong, S.-M.; Choe, S.-Y.; Goto, T.; Kawada, T.; et al. Quercetin Protects against Obesity-Induced Skeletal Muscle Inflammation and Atrophy. Mediat. Inflamm. 2014, 2014, 834294. [Google Scholar] [CrossRef]
- Shen, P.; Yue, Y.; Zheng, J.; Park, Y. Caenorhabditis elegans: A Convenient In Vivo Model for Assessing the Impact of Food Bioactive Compounds on Obesity, Aging, and Alzheimer’s Disease. Annu. Rev. Food Sci. Technol. 2018, 9, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Li, S.; Shen, P.; Park, Y. Caenorhabditis elegans as a Model for Obesity Research. Curr. Res. Food Sci. 2021, 4, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Dyczkowska, A.; Chabowska-Kita, A. Caenorhabditis elegans as a Model Organism in Obesity Research. BioTechnologia 2021, 102, 337–362. [Google Scholar] [CrossRef]
- An, L.; Fu, X.; Chen, J.; Ma, J. Application of Caenorhabditis elegans in Lipid Metabolism Research. Int. J. Mol. Sci. 2023, 24, 1173. [Google Scholar] [CrossRef]
- Lin, Y.; Yang, N.; Bao, B.; Wang, L.; Chen, J.; Liu, J. Luteolin Reduces Fat Storage in Caenorhabditis elegans by Promoting the Central Serotonin Pathway. Food Funct. 2020, 11, 730–740. [Google Scholar] [CrossRef]
- Bobo-García, G.; Davidov-Pardo, G.; Arroqui, C.; Vírseda, P.; Marín-Arroyo, M.R.; Navarro, M. Intra-Laboratory Validation of Microplate Methods for Total Phenolic Content and Antioxidant Activity on Polyphenolic Extracts, and Comparison with Conventional Spectrophotometric Methods. J. Sci. Food Agric. 2015, 95, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Ustundag, Y.; Huysal, K.; Kahvecioglu, S.; Demirci, H.; Yavuz, S.; Sambel, M.; Unal, D. Establishing Reference Values and Evaluation of an In-House Ferric Reducing Antioxidant Power (FRAP) Colorimetric Assay in Microplates. Eur. Res. J. 2016, 2, 126–131. [Google Scholar] [CrossRef]
- Koleva, I.I.; van Beek, T.A.; Linssen, J.P.H.; de Groot, A.; Evstatieva, L.N. Screening of Plant Extracts for Antioxidant Activity: A Comparative Study on Three Testing Methods. Phytochem. Anal. 2002, 13, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Rocha, P.d.S.d.; de Araújo Boleti, A.P.; do Carmo Vieira, M.; Carollo, C.A.; da Silva, D.B.; Estevinho, L.M.; dos Santos, E.L.; de Picoli Souza, K. Microbiological Quality, Chemical Profile as Well as Antioxidant and Antidiabetic Activities of Schinus terebinthifolius Raddi. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 220, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Elfakhani, M.; Torabi, S.; Hussein, D.; Mills, N.; Verbeck, G.F.; Mo, H. Mevalonate Deprivation Mediates the Impact of Lovastatin on the Differentiation of Murine 3T3-F442A Preadipocytes. Exp. Biol. Med. 2014, 239, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Leite, N.R.; de Araújo, L.C.A.; Rocha, P.d.S.d.; Agarrayua, D.A.; Ávila, D.S.; Carollo, C.A.; Silva, D.B.; Estevinho, L.M.; Souza, K.d.P.; dos Santos, E.L. Baru Pulp (Dipteryx alata Vogel): Fruit from the Brazilian Savanna Protects against Oxidative Stress and Increases the Life Expectancy of Caenorhabditis elegans via SOD-3 and DAF-16. Biomolecules 2020, 10, 1106. [Google Scholar] [CrossRef]
- Escorcia, W.; Ruter, D.L.; Nhan, J.; Curran, S.P. Quantification of Lipid Abundance and Evaluation of Lipid Distribution in Caenorhabditis elegans by Nile Red and Oil Red O Staining. J. Vis. Exp. 2018, 2018, e57352. [Google Scholar] [CrossRef]
Sample | DPPH• | FRAP | β-Carotene Bleaching |
---|---|---|---|
IC50 (µg/mL) | EC50 (µg/mL) | IC50 (µg/mL) | |
AECa | 10.41 ± 1.06 | 56.54 ± 3.00 | 229.87 ± 5.92 |
AA | 6.09 ± 2.28 | 40.16 ± 4.96 | ND |
BHA | 6.45 ± 2.28 | - | 15.14 ± 2.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, P.d.S.d.; Orué, S.L.; Ferreira, I.C.; Espindola, P.P.d.T.; Rodrigues, M.V.B.; Carvalho, J.T.G.d.; Baldivia, D.d.S.; Leite, D.F.; Santos, H.F.d.; Oliveira, A.S.; et al. Lipid-Lowering and Anti-Inflammatory Effects of Campomanesia adamantium Leaves in Adipocytes and Caenorhabditis elegans. Pharmaceuticals 2024, 17, 1062. https://doi.org/10.3390/ph17081062
Rocha PdSd, Orué SL, Ferreira IC, Espindola PPdT, Rodrigues MVB, Carvalho JTGd, Baldivia DdS, Leite DF, Santos HFd, Oliveira AS, et al. Lipid-Lowering and Anti-Inflammatory Effects of Campomanesia adamantium Leaves in Adipocytes and Caenorhabditis elegans. Pharmaceuticals. 2024; 17(8):1062. https://doi.org/10.3390/ph17081062
Chicago/Turabian StyleRocha, Paola dos Santos da, Sarah Lam Orué, Isamara Carvalho Ferreira, Priscilla Pereira de Toledo Espindola, Maria Victória Benites Rodrigues, José Tarcísio Giffoni de Carvalho, Debora da Silva Baldivia, Daniel Ferreira Leite, Helder Freitas dos Santos, Alex Santos Oliveira, and et al. 2024. "Lipid-Lowering and Anti-Inflammatory Effects of Campomanesia adamantium Leaves in Adipocytes and Caenorhabditis elegans" Pharmaceuticals 17, no. 8: 1062. https://doi.org/10.3390/ph17081062
APA StyleRocha, P. d. S. d., Orué, S. L., Ferreira, I. C., Espindola, P. P. d. T., Rodrigues, M. V. B., Carvalho, J. T. G. d., Baldivia, D. d. S., Leite, D. F., Santos, H. F. d., Oliveira, A. S., Campos, J. F., dos Santos, E. L., & de Picoli Souza, K. (2024). Lipid-Lowering and Anti-Inflammatory Effects of Campomanesia adamantium Leaves in Adipocytes and Caenorhabditis elegans. Pharmaceuticals, 17(8), 1062. https://doi.org/10.3390/ph17081062