New Therapeutic Strategies in Retinal Vascular Diseases: A Lipid Target, Phosphatidylserine, and Annexin A5—A Future Theranostic Pairing in Ophthalmology
Abstract
:1. Background
2. Retinal Vein Occlusion and Other Vascular Retinal Diseases
3. PS as a Novel Therapeutic Target in Human Disease
4. PS as a Novel Therapeutic Target in Ophthalmology
5. The Biology and Pharmacology of Annexin A5
5.1. Biology
5.2. Pharmacology
6. ANXV (Annexin A5) as an Investigational New Drug
7. The Rationale for Investigating ANXV in Patients with Retinal Vein Occlusion
8. Clinical Experience with Other Annexin A5-Related Drug Candidates
9. PS Binding Annexin A5-Based Molecular Diagnostic Tools
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations and ACRONYMS
References
- Blindness, G.B.D.; Vision Impairment, C.; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Campochiaro, P.A. Retinal and Choroidal Vascular Diseases: Past, Present, and Future: The 2021 Proctor Lecture. Investig. Ophthalmol. Vis. Sci. 2021, 62, 26. [Google Scholar] [CrossRef]
- Tah, V.; Orlans, H.O.; Hyer, J.; Casswell, E.; Din, N.; Sri Shanmuganathan, V.; Ramskold, L.; Pasu, S. Anti-VEGF Therapy and the Retina: An Update. J. Ophthalmol. 2015, 2015, 627674. [Google Scholar] [CrossRef] [PubMed]
- Bhisitkul, R.B.; Campochiaro, P.A.; Blotner, S.; Quezada-Ruiz, C.; Liu, M.; Haskova, Z. Heterogeneity in disease activity, frequency of treatments, and visual outcomes among patients with retinal vein occlusion: Relationship between injection need and vision with as-needed ranibizumab. Br. J. Ophthalmol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.B.; Heier, J.S.; Chaudhary, V.; Wykoff, C.C. Treatment of geographic atrophy: An update on data related to pegcetacoplan. Curr. Opin. Ophthalmol. 2024, 35, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, N.; Parachuri, N.; Loewenstein, A.; Bandello, F.; Kuppermann, B.D. Global experience of faricimab in clinical settings—A review. Expert. Opin. Biol. Ther. 2024, 24, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Boyer, D.S.; Do, D.V.; Wykoff, C.C.; Sakamoto, T.; Win, P.; Joshi, S.; Salehi-Had, H.; Seres, A.; Berliner, A.J.; et al. Intravitreal aflibercept 8 mg in diabetic macular oedema (PHOTON): 48-week results from a randomised, double-masked, non-inferiority, phase 2/3 trial. Lancet 2024, 403, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Leventis, P.A.; Grinstein, S. The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 2010, 39, 407–427. [Google Scholar] [CrossRef]
- Su, Y.; Chen, J.; Dong, Z.; Zhang, Y.; Ma, R.; Kou, J.; Wang, F.; Shi, J. Procoagulant Activity of Blood and Endothelial Cells via Phosphatidylserine Exposure and Microparticle Delivery in Patients with Diabetic Retinopathy. Cell. Physiol. Biochem. 2018, 45, 2411–2420. [Google Scholar] [CrossRef]
- Li, T.; Aredo, B.; Zhang, K.; Zhong, X.; Pulido, J.S.; Wang, S.; He, Y.G.; Huang, X.; Brekken, R.A.; Ufret-Vincenty, R.L. Phosphatidylserine (PS) Is Exposed in Choroidal Neovascular Endothelium: PS-Targeting Antibodies Inhibit Choroidal Angiogenesis In Vivo and Ex Vivo. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7137–7145. [Google Scholar] [CrossRef]
- Wautier, M.P.; Heron, E.; Picot, J.; Colin, Y.; Hermine, O.; Wautier, J.L. Red blood cell phosphatidylserine exposure is responsible for increased erythrocyte adhesion to endothelium in central retinal vein occlusion. J. Thromb. Haemost. 2011, 9, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- van Genderen, H.O.; Kenis, H.; Hofstra, L.; Narula, J.; Reutelingsperger, C.P. Extracellular annexin A5: Functions of phosphatidylserine-binding and two-dimensional crystallization. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2008, 1783, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Bartolome, F.; Krzyzanowska, A.; de la Cueva, M.; Pascual, C.; Antequera, D.; Spuch, C.; Villarejo-Galende, A.; Rabano, A.; Fortea, J.; Alcolea, D.; et al. Annexin A5 prevents amyloid-beta-induced toxicity in choroid plexus: Implication for Alzheimer’s disease. Sci. Rep. 2020, 10, 9391. [Google Scholar] [CrossRef] [PubMed]
- de Jong, R.C.M.; Pluijmert, N.J.; de Vries, M.R.; Pettersson, K.; Atsma, D.E.; Jukema, J.W.; Quax, P.H.A. Annexin A5 reduces infarct size and improves cardiac function after myocardial ischemia-reperfusion injury by suppression of the cardiac inflammatory response. Sci. Rep. 2018, 8, 6753. [Google Scholar] [CrossRef]
- Dong, Y.; Jia, Z.; Kang, B.; Zhang, W. Annexin-A5 monomer as a membrane repair agent for the treatment of renal ischemia-reperfusion injury. Mol. Biol. Rep. 2024, 51, 679. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Jia, Z.; Dong, Y.; Li, W.; Zhang, W. Recombinant human annexin A5 accelerates diabetic wounds healing by regulating skin inflammation. Regen. Ther. 2024, 27, 342–353. [Google Scholar] [CrossRef]
- Kang, T.H.; Park, J.H.; Yang, A.; Park, H.J.; Lee, S.E.; Kim, Y.S.; Jang, G.Y.; Farmer, E.; Lam, B.; Park, Y.M.; et al. Annexin A5 as an immune checkpoint inhibitor and tumor-homing molecule for cancer treatment. Nat. Commun. 2020, 11, 1137. [Google Scholar] [CrossRef] [PubMed]
- Tschirhart, B.J.; Lu, X.; Gomes, J.; Chandrabalan, A.; Bell, G.; Hess, D.A.; Xing, G.; Ling, H.; Burger, D.; Feng, Q. Annexin A5 Inhibits Endothelial Inflammation Induced by Lipopolysaccharide-Activated Platelets and Microvesicles via Phosphatidylserine Binding. Pharmaceuticals 2023, 16, 837. [Google Scholar] [CrossRef] [PubMed]
- Ewing, M.M.; de Vries, M.R.; Nordzell, M.; Pettersson, K.; de Boer, H.C.; van Zonneveld, A.J.; Frostegard, J.; Jukema, J.W.; Quax, P.H. Annexin A5 therapy attenuates vascular inflammation and remodeling and improves endothelial function in mice. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 95–101. [Google Scholar] [CrossRef]
- Thiagarajan, P.; Benedict, C.R. Inhibition of arterial thrombosis by recombinant annexin V in a rabbit carotid artery injury model. Circulation 1997, 96, 2339–2347. [Google Scholar] [CrossRef]
- Bouter, A.; Carmeille, R.; Gounou, C.; Bouvet, F.; Degrelle, S.A.; Evain-Brion, D.; Brisson, A.R. Review: Annexin-A5 and cell membrane repair. Placenta 2015, 36 (Suppl. 1), S43–S49. [Google Scholar] [CrossRef] [PubMed]
- Chollet, P.; Malecaze, F.; Hullin, F.; Raynal, P.; Arne, J.L.; Pagot, V.; Ragab-Thomas, J.; Chap, H. Inhibition of intraocular fibrin formation with annexin V. Br. J. Ophthalmol. 1992, 76, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Kondo, S.; Mizuno, K.; Yano, W.; Nakao, H.; Hattori, Y.; Kimura, K.; Nishida, T. Promotion of corneal epithelial wound healing in vitro and in vivo by annexin A5. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1862–1868. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Jang, J.H.; Choi, E.J.; Kim, Y.S.; Lee, E.J.; Jung, I.D.; Han, H.D.; Wu, T.C.; Hung, C.F.; Kang, T.H.; et al. Annexin A5 Increases Survival in Murine Sepsis Model by Inhibiting HMGB1-Mediated Proinflammation and Coagulation. Mol. Med. 2016, 22, 424–436. [Google Scholar] [CrossRef]
- Soares, M.M.; King, S.W.; Thorpe, P.E. Targeting inside-out phosphatidylserine as a therapeutic strategy for viral diseases. Nat. Med. 2008, 14, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Mui, L.; Martin, C.M.; Tschirhart, B.J.; Feng, Q. Therapeutic Potential of Annexins in Sepsis and COVID-19. Front. Pharmacol. 2021, 12, 735472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, L.; Li, L.; Zhu, B.; Huo, L.; Hu, Z.; Wang, X.; Wang, J.; Gao, M.; Zhang, J.; et al. Phosphatidylserine externalized on the colonic capillaries as a novel pharmacological target for IBD therapy. Signal Transduct. Target. Ther. 2021, 6, 235. [Google Scholar] [CrossRef]
- Su, G.; Zhang, D.; Li, T.; Pei, T.; Yang, J.; Tu, S.; Liu, S.; Ren, J.; Zhang, Y.; Duan, M.; et al. Annexin A5 derived from matrix vesicles protects against osteoporotic bone loss via mineralization. Bone Res. 2023, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Sadoudi, S.; Le Jeune, S.; Bonnin, P.; Charue, D.; Boulanger, C.; Blanc-Brude, O. An imbalance between plasma Annexin A5 and phosphatidylserine expression in erythrocytes promotes vascular injury during sickle cell disease. Haematologica 2016, 101, 295–296. [Google Scholar]
- Setty, B.N.; Kulkarni, S.; Stuart, M.J. Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood 2002, 99, 1564–1571. [Google Scholar] [CrossRef]
- Martin, C.M.; Slessarev, M.; Campbell, E.; Basmaji, J.; Ball, I.; Fraser, D.D.; Leligdowicz, A.; Mele, T.; Priestap, F.; Tschirhart, B.J.; et al. Annexin A5 in Patients With Severe COVID-19 Disease: A Single-Center, Randomized, Double-Blind, Placebo-Controlled Feasibility Trial. Crit. Care Explor. 2023, 5, e0986. [Google Scholar] [CrossRef] [PubMed]
- Tschirhart, B.J.; Lu, X.; Mokale Kognou, A.L.; Martin, C.M.; Slessarev, M.; Fraser, D.D.; Leligdowicz, A.; Urquhart, B.; Feng, Q. Pharmacokinetics of recombinant human annexin A5 (SY-005) in patients with severe COVID-19. Front. Pharmacol. 2023, 14, 1299613. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, M.F.; Normando, E.M.; Cardoso, M.J.; Miodragovic, S.; Jeylani, S.; Davis, B.M.; Guo, L.; Ourselin, S.; A’Hern, R.; Bloom, P.A. Real-time imaging of single neuronal cell apoptosis in patients with glaucoma. Brain 2017, 140, 1757–1767. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, M.F.; Hill, D.; Patel, R.; Corazza, P.; Maddison, J.; Younis, S. Detecting retinal cell stress and apoptosis with DARC: Progression from lab to clinic. Prog. Retin. Eye Res. 2022, 86, 100976. [Google Scholar] [CrossRef] [PubMed]
- Belhocine, T.Z.; Blankenberg, F.G.; Kartachova, M.S.; Stitt, L.W.; Vanderheyden, J.L.; Hoebers, F.J.; Van de Wiele, C. (99m)Tc-Annexin A5 quantification of apoptotic tumor response: A systematic review and meta-analysis of clinical imaging trials. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 2083–2097. [Google Scholar] [CrossRef] [PubMed]
- Boersma, H.H.; Kietselaer, B.L.; Stolk, L.M.; Bennaghmouch, A.; Hofstra, L.; Narula, J.; Heidendal, G.A.; Reutelingsperger, C.P. Past, present, and future of annexin A5: From protein discovery to clinical applications. J. Nucl. Med. 2005, 46, 2035–2050. [Google Scholar]
- Report UN. Ageing, Global Issues. Available online: https://www.un.org/en/global-issues/ageing (accessed on 25 May 2024).
- Rogers, S.; McIntosh, R.L.; Cheung, N.; Lim, L.; Wang, J.J.; Mitchell, P.; Kowalski, J.W.; Nguyen, H.; Wong, T.Y.; International Eye Disease, C. The prevalence of retinal vein occlusion: Pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology 2010, 117, 313–319.e1. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Xu, Y.; Zha, M.; Zhang, Y.; Rudan, I. Global epidemiology of retinal vein occlusion: A systematic review and meta-analysis of prevalence, incidence, and risk factors. J. Glob. Health 2019, 9, 010427. [Google Scholar] [CrossRef]
- Sperduto, R.D.; Hiller, R.; Chew, E.; Seigel, D.; Blair, N.; Burton, T.C.; Farber, M.D.; Gragoudas, E.S.; Haller, J.; Seddon, J.M.; et al. Risk factors for hemiretinal vein occlusion: Comparison with risk factors for central and branch retinal vein occlusion: The eye disease case-control study. Ophthalmology 1998, 105, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, M.; Kiyohara, Y.; Arakawa, S.; Hata, Y.; Yonemoto, K.; Doi, Y.; Iida, M.; Ishibashi, T. Prevalence and systemic risk factors for retinal vein occlusion in a general Japanese population: The Hisayama study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3205–3209. [Google Scholar] [CrossRef]
- Janssen, M.C.; den Heijer, M.; Cruysberg, J.R.; Wollersheim, H.; Bredie, S.J. Retinal vein occlusion: A form of venous thrombosis or a complication of atherosclerosis? A meta-analysis of thrombophilic factors. Thromb. Haemost. 2005, 93, 1021–1026. [Google Scholar] [CrossRef]
- Su, Y.; Deng, X.; Ma, R.; Dong, Z.; Wang, F.; Shi, J. The Exposure of Phosphatidylserine Influences Procoagulant Activity in Retinal Vein Occlusion by Microparticles, Blood Cells, and Endothelium. Oxidative Med. Cell. Longev. 2018, 2018, 3658476. [Google Scholar] [CrossRef]
- Khayat, M.; Williams, M.; Lois, N. Ischemic retinal vein occlusion: Characterizing the more severe spectrum of retinal vein occlusion. Surv. Ophthalmol. 2018, 63, 816–850. [Google Scholar] [CrossRef]
- Deobhakta, A.; Chang, L.K. Inflammation in retinal vein occlusion. Int. J. Inflam. 2013, 2013, 438412. [Google Scholar] [CrossRef]
- Zhou, Y.; Qi, J.; Liu, H.; Liang, S.; Guo, T.; Chen, J.; Pan, W.; Tan, H.; Wang, J.; Xu, H.; et al. Increased intraocular inflammation in retinal vein occlusion is independent of circulating immune mediators and is involved in retinal oedema. Front. Neurosci. 2023, 17, 1186025. [Google Scholar] [CrossRef] [PubMed]
- Scott, I.U.; Campochiaro, P.A.; Newman, N.J.; Biousse, V. Retinal vascular occlusions. Lancet 2020, 396, 1927–1940. [Google Scholar] [CrossRef] [PubMed]
- Driban, M.; Kedia, N.; Arora, S.; Chhablani, J. Novel pharmaceuticals for the management of retinal vein occlusion and linked disorders. Expert. Rev. Clin. Pharmacol. 2023, 16, 1125–1139. [Google Scholar] [CrossRef]
- Hayreh, S.S. Classification of central retinal vein occlusion. Ophthalmology 1983, 90, 458–474. [Google Scholar] [CrossRef] [PubMed]
- Ip, M.; Hendrick, A. Retinal Vein Occlusion Review. Asia Pac. J. Ophthalmol. 2018, 7, 40–45. [Google Scholar] [CrossRef]
- Iftikhar, M.; Mir, T.A.; Hafiz, G.; Zimmer-Galler, I.; Scott, A.W.; Solomon, S.D.; Sodhi, A.; Wenick, A.S.; Meyerle, C.; Jiramongkolchai, K.; et al. Loss of Peak Vision in Retinal Vein Occlusion Patients Treated for Macular Edema. Am. J. Ophthalmol. 2019, 205, 17–26. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Hafiz, G.; Mir, T.A.; Scott, A.W.; Sophie, R.; Shah, S.M.; Ying, H.S.; Lu, L.; Chen, C.; Campbell, J.P.; et al. Pro-Permeability Factors After Dexamethasone Implant in Retinal Vein Occlusion; the Ozurdex for Retinal Vein Occlusion (ORVO) Study. Am. J. Ophthalmol. 2015, 160, 313–321.e19. [Google Scholar] [CrossRef] [PubMed]
- Biagi, C.; Conti, V.; Montanaro, N.; Melis, M.; Buccellato, E.; Donati, M.; Covezzoli, A.; Amato, R.; Pazzi, L.; Venegoni, M.; et al. Comparative safety profiles of intravitreal bevacizumab, ranibizumab and pegaptanib: The analysis of the WHO database of adverse drug reactions. Eur. J. Clin. Pharmacol. 2014, 70, 1505–1512. [Google Scholar] [CrossRef]
- Falavarjani, K.G.; Nguyen, Q.D. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye 2013, 27, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Bayer. A Study to Learn How Well a Higher Amount of Aflibercept Given as an Injection into the Eye Works and How Safe It Is in People with Reduced Vision Due to Swelling in the Macula, Central Part of the Retina Caused by a Blocked Vein in the Retina (Macula Edema Secondary to Retinal Vein Occlusion) (QUASAR); Bayer: Leverkusen, Germany, 2023. [Google Scholar]
- Genentech. FDA Approves Genentech’s Vabysmo for the Treatment of Retinal Vein Occlusion (RVO); Genentech: South San Francisco, CA, USA, 2023. [Google Scholar]
- Nagata, S.; Sakuragi, T.; Segawa, K. Flippase and scramblase for phosphatidylserine exposure. Curr. Opin. Immunol. 2020, 62, 31–38. [Google Scholar] [CrossRef]
- Kay, J.G.; Fairn, G.D. Distribution, dynamics and functional roles of phosphatidylserine within the cell. Cell Commun. Signal. 2019, 17, 126. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, C.; Zhuang, J.; Qi, W.; Jiang, J.; Liu, X.; Zhao, W.; Cao, Y.; Wu, H.; Qi, J.; et al. The role of phosphatidylserine on the membrane in immunity and blood coagulation. Biomark. Res. 2022, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Arikketh, D.; Nelson, R.; Vance, J.E. Defining the importance of phosphatidylserine synthase-1 (PSS1): Unexpected viability of PSS1-deficient mice. J. Biol. Chem. 2008, 283, 12888–12897. [Google Scholar] [CrossRef]
- Fadok, V.A.; Voelker, D.R.; Campbell, P.A.; Cohen, J.J.; Bratton, D.L.; Henson, P.M. Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immunol. 1992, 148, 2207–2216. [Google Scholar] [CrossRef]
- Clarke, R.J.; Hossain, K.R.; Cao, K. Physiological roles of transverse lipid asymmetry of animal membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183382. [Google Scholar] [CrossRef]
- Ran, S.; Downes, A.; Thorpe, P.E. Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 2002, 62, 6132–6140. [Google Scholar]
- Wang, Y.; Beck, W.; Deppisch, R.; Marshall, S.M.; Hoenich, N.A.; Thompson, M.G. Advanced glycation end products elicit externalization of phosphatidylserine in a subpopulation of platelets via 5-HT2A/2C receptors. Am. J. Physiol.-Cell Physiol. 2007, 293, C328–C336. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.; Pollard, H.B.; Arispe, N. Annexin 5 and apolipoprotein E2 protect against Alzheimer’s amyloid-beta-peptide cytotoxicity by competitive inhibition at a common phosphatidylserine interaction site. Peptides 2002, 23, 1249–1263. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.A.; Yu, B.; Sim, F.C.; Kishore, U.; Sim, R.B. Complement activation by phospholipids: The interplay of factor H and C1q. Protein Cell 2010, 1, 1033–1049. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.H.; Phillips, G., Jr.; Medof, M.E.; Mold, C. Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients. J. Clin. Investig. 1993, 92, 1326–1335. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, W.; Yang, Y.; Sun, K.; Li, S.; Xu, H.; Yang, M.; Zhang, L.; Zhu, X. TMEM30A deficiency in endothelial cells impairs cell proliferation and angiogenesis. J. Cell Sci. 2019, 132, jcs225052. [Google Scholar] [CrossRef] [PubMed]
- Lind, S.E. Phosphatidylserine is an overlooked mediator of COVID-19 thromboinflammation. Heliyon 2021, 7, e06033. [Google Scholar] [CrossRef]
- Iannucci, J.; Renehan, W.; Grammas, P. Thrombin, a Mediator of Coagulation, Inflammation, and Neurotoxicity at the Neurovascular Interface: Implications for Alzheimer’s Disease. Front. Neurosci. 2020, 14, 762. [Google Scholar] [CrossRef]
- Drake, T.A.; Ruf, W.; Morrissey, J.H.; Edgington, T.S. Functional tissue factor is entirely cell surface expressed on lipopolysaccharide-stimulated human blood monocytes and a constitutively tissue factor-producing neoplastic cell line. J. Cell Biol. 1989, 109, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, F.A.; Larkin, S.K.; Emeis, J.J.; Allison, A.C. Interaction of an annexin V homodimer (Diannexin) with phosphatidylserine on cell surfaces and consequent antithrombotic activity. Thromb. Haemost. 2007, 97, 478–486. [Google Scholar]
- Neidlinger, N.A.; Larkin, S.K.; Bhagat, A.; Victorino, G.P.; Kuypers, F.A. Hydrolysis of phosphatidylserine-exposing red blood cells by secretory phospholipase A2 generates lysophosphatidic acid and results in vascular dysfunction. J. Biol. Chem. 2006, 281, 775–781. [Google Scholar] [CrossRef]
- Rausch, L.; Lutz, K.; Schifferer, M.; Winheim, E.; Gruber, R.; Oesterhaus, E.F.; Rinke, L.; Hellmuth, J.C.; Scherer, C.; Muenchhoff, M.; et al. Binding of phosphatidylserine-positive microparticles by PBMCs classifies disease severity in COVID-19 patients. J. Extracell. Vesicles 2021, 10, e12173. [Google Scholar] [CrossRef] [PubMed]
- Ravanat, C.; Archipoff, G.; Beretz, A.; Freund, G.; Cazenave, J.P.; Freyssinet, J.M. Use of annexin-V to demonstrate the role of phosphatidylserine exposure in the maintenance of haemostatic balance by endothelial cells. Biochem. J. 1992, 282 Pt 1, 7–13. [Google Scholar] [CrossRef]
- Tait, J.F.; Gibson, D. Measurement of membrane phospholipid asymmetry in normal and sickle-cell erythrocytes by means of annexin V binding. J. Lab. Clin. Med. 1994, 123, 741–748. [Google Scholar] [PubMed]
- van Tits, L.J.; van Heerde, W.L.; Landburg, P.P.; Boderie, M.J.; Muskiet, F.A.J.; Jacobs, N.; Duits, A.J.; Schnog, J.B. Plasma annexin A5 and microparticle phosphatidylserine levels are elevated in sickle cell disease and increase further during painful crisis. Biochem. Biophys. Res. Commun. 2009, 390, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Birge, R.B.; Boeltz, S.; Kumar, S.; Carlson, J.; Wanderley, J.; Calianese, D.; Barcinski, M.; Brekken, R.A.; Huang, X.; Hutchins, J.T.; et al. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016, 23, 962–978. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, L.; Wang, Z.; Kang, X.; Jin, H.; Zhao, W.; Zhang, J.; Su, H. Quantification of Phosphatidylserine Molecules on the Surface of Individual Cells Using Single-Molecule Force Spectroscopy. Anal. Chem. 2024, 96, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Kur, I.M.; Weigert, A. Phosphatidylserine externalization as immune checkpoint in cancer. Pflug. Arch. 2024. [Google Scholar] [CrossRef]
- Hsiao, Y.P.; Chen, C.; Lee, C.M.; Chen, P.Y.; Chung, W.H.; Wang, Y.P.; Hung, Y.C.; Cheng, C.M.; Chen, C.; Ko, B.H.; et al. Differences in the Quantity and Composition of Extracellular Vesicles in the Aqueous Humor of Patients with Retinal Neovascular Diseases. Diagnostics 2021, 11, 1276. [Google Scholar] [CrossRef]
- Klingeborn, M.; Dismuke, W.M.; Bowes Rickman, C.; Stamer, W.D. Roles of exosomes in the normal and diseased eye. Prog. Retin. Eye Res. 2017, 59, 158–177. [Google Scholar] [CrossRef]
- Chatterjee, A.; Singh, R. Extracellular vesicles: An emerging player in retinal homeostasis. Front. Cell Dev. Biol. 2023, 11, 1059141. [Google Scholar] [CrossRef] [PubMed]
- Tumahai, P.; Saas, P.; Ricouard, F.; Biichle, S.; Puyraveau, M.; Laheurte, C.; Delbosc, B.; Saleh, M. Vitreous Microparticle Shedding in Retinal Detachment: A Prospective Comparative Study. Investig. Ophthalmol. Vis. Sci. 2016, 57, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Wever, K.E.; Claassen, K.; Frielink, C.; Boerman, O.; Scheffer, G.J.; Allison, A.; Wegener, F.; Masereeuw, R.; Rongen, G.A. The Annexin A5 Homodimer Diannexin Protects Against Ischemia Reperfusion Injury Through Phosphatidylserine Binding. Circulation 2009, 120, S1077. [Google Scholar] [CrossRef]
- Wever, K.E.; Wagener, F.A.; Frielink, C.; Boerman, O.C.; Scheffer, G.J.; Allison, A.; Masereeuw, R.; Rongen, G.A. Diannexin protects against renal ischemia reperfusion injury and targets phosphatidylserines in ischemic tissue. PLoS ONE 2011, 6, e24276. [Google Scholar] [CrossRef] [PubMed]
- Gerke, V.; Moss, S.E. Annexins: From structure to function. Physiol. Rev. 2002, 82, 331–371. [Google Scholar] [CrossRef] [PubMed]
- Gerke, V.; Gavins, F.N.E.; Geisow, M.; Grewal, T.; Jaiswal, J.K.; Nylandsted, J.; Rescher, U. Annexins-a family of proteins with distinctive tastes for cell signaling and membrane dynamics. Nat. Commun. 2024, 15, 1574. [Google Scholar] [CrossRef] [PubMed]
- Sopkova, J.; Renouard, M.; Lewit-Bentley, A. The crystal structure of a new high-calcium form of annexin V. J. Mol. Biol. 1993, 234, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Huber, R.; Berendes, R.; Burger, A.; Luecke, H.; Karshikov, A. Annexin V-crystal structure and its implications on function. Behring Inst. Mitt. 1992, 91, 107–125. [Google Scholar]
- Rand, J.; Eerden, P.V.; Wu, X.X.; Chazotte, C. Defective annexin A5 crystallization: A mechanism for pregnancy losses in the antiphospholipid syndrome. Thromb. Res. 2005, 115 (Suppl. 1), 77–81. [Google Scholar] [PubMed]
- Matsuda, R.; Kaneko, N.; Horikawa, Y.; Chiwaki, F.; Shinozaki, M.; Abe, S.; Yumura, W.; Nihei, H.; Ieiri, T. Measurement of urinary annexin V by ELISA and its significance as a new urinary-marker of kidney disease. Clin. Chim. Acta 2000, 298, 29–43. [Google Scholar] [CrossRef]
- Van Eerden, P.; Wu, X.X.; Chazotte, C.; Rand, J.H. Annexin A5 levels in midtrimester amniotic fluid: Association with intrauterine growth restriction. Am. J. Obstet. Gynecol. 2006, 194, 1371–1376. [Google Scholar] [CrossRef]
- Vermes, I.; Steur, E.N.; Reutelingsperger, C.; Haanen, C. Decreased concentration of annexin V in parkinsonian cerebrospinal fluid: Speculation on the underlying cause. Mov. Disord. 1999, 14, 1008–1010. [Google Scholar] [CrossRef] [PubMed]
- Creutz, C.E.; Hira, J.K.; Gee, V.E.; Eaton, J.M. Protection of the Membrane Permeability Barrier by Annexins. Biochemistry 2012, 51, 9966–9983. [Google Scholar] [CrossRef]
- Tzima, E.; Poujol, C.; Nurden, P.; Nurden, A.T.; Orchard, M.A.; Walker, J.H. Annexin V relocates to the periphery of activated platelets following thrombin activation: An ultrastructural immunohistochemical approach. Cell Biol. Int. 1999, 23, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Maurer-Fogy, I.; Reutelingsperger, C.P.; Pieters, J.; Bodo, G.; Stratowa, C.; Hauptmann, R. Cloning and expression of cDNA for human vascular anticoagulant, a Ca2+-dependent phospholipid-binding protein. Eur. J. Biochem. 1988, 174, 585–592. [Google Scholar] [CrossRef]
- Reutelingsperger, C.P.; Hornstra, G.; Hemker, H.C. Isolation and partial purification of a novel anticoagulant from arteries of human umbilical cord. Eur. J. Biochem. 1985, 151, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, A.; Frostegard, J. Annexin A5 in cardiovascular disease and systemic lupus erythematosus. Immunobiology 2005, 210, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Bonilha, V.L.; Bhattacharya, S.K.; West, K.A.; Sun, J.; Crabb, J.W.; Rayborn, M.E.; Hollyfield, J.G. Proteomic characterization of isolated retinal pigment epithelium microvilli. Mol. Cell. Proteom. 2004, 3, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Munoz, L.E.; Mallavarapu, M.; Herrmann, M.; Finnemann, S.C. Annexin A5 regulates surface alphavbeta5 integrin for retinal clearance phagocytosis. J. Cell Sci. 2019, 132, jcs.232439. [Google Scholar] [CrossRef]
- Brachvogel, B.; Dikschas, J.; Moch, H.; Welzel, H.; von der Mark, K.; Hofmann, C.; Poschl, E. Annexin A5 is not essential for skeletal development. Mol. Cell. Biol. 2003, 23, 2907–2913. [Google Scholar] [CrossRef]
- Ueki, H.; Mizushina, T.; Laoharatchatathanin, T.; Terashima, R.; Nishimura, Y.; Rieanrakwong, D.; Yonezawa, T.; Kurusu, S.; Hasegawa, Y.; Brachvogel, B.; et al. Loss of Maternal Annexin A5 Increases the Likelihood of Placental Platelet Thrombosis and Foetal Loss. Sci. Rep. 2012, 2, 827. [Google Scholar] [CrossRef]
- Shimada, A.; Ideno, H.; Arai, Y.; Komatsu, K.; Wada, S.; Yamashita, T.; Amizuka, N.; Poschl, E.; Brachvogel, B.; Nakamura, Y.; et al. Annexin A5 involvement in bone overgrowth at the enthesis. J. Bone Miner. Res. 2018, 33, 1532–1543. [Google Scholar] [CrossRef] [PubMed]
- Jakubowska, A.; Kilis-Pstrusinska, K. Annexin V in children with idiopathic nephrotic syndrome treated with cyclosporine A. Adv. Clin. Exp. Med. 2020, 29, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Roldan, V.; Marin, F.; Pineda, J.; Marco, P.; Corral, J.; Climent, V.; Garcia, A.; Martinez, J.G.; Sogorb, F. Annexin V levels in survivors of early myocardial infarction. Rev. Esp. Cardiol. 2002, 55, 1230–1234. [Google Scholar] [PubMed]
- Zhou, D.; Luo, N.; Wu, Q.; You, Y.; Zhai, Z.F.; Mou, Z.R.; Wu, Y.Z.; Hao, F. Transcellular distribution heterogeneity of Annexin A5 represents a protective response to lupus-related thrombophilia: A pilot Proteomics-based study. J. Dermatol. 2012, 39, 82. [Google Scholar] [CrossRef]
- Klement, K.; Melle, C.; Murzik, U.; Diekmann, S.; Norgauer, J.; Hemmerich, P. Accumulation of annexin A5 at the nuclear envelope is a biomarker of cellular aging. Mech. Ageing Dev. 2012, 133, 508–522. [Google Scholar] [CrossRef] [PubMed]
- Draeger, A.; Monastyrskaya, K.; Babiychuk, E.B. Plasma membrane repair and cellular damage control: The annexin survival kit. Biochem. Pharmacol. 2011, 81, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Chipot, C.; Scheuring, S. Annexin-V stabilizes membrane defects by inducing lipid phase transition. Nat. Commun. 2020, 11, 230. [Google Scholar] [CrossRef] [PubMed]
- Schepers, A.; Pires, N.M.; Eefting, D.; de Vries, M.R.; van Bockel, J.H.; Quax, P.H. Short-term dexamethasone treatment inhibits vein graft thickening in hypercholesterolemic ApoE3Leiden transgenic mice. J. Vasc. Surg. 2006, 43, 809–815. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, H.; Wang, J.; Li, F.; Li, X.; Li, T.; Wang, C.; Li, L.; Peng, R.; Liu, L.; et al. Annexin A5 ameliorates traumatic brain injury-induced neuroinflammation and neuronal ferroptosis by modulating the NF-kB/HMGB1 and Nrf2/HO-1 pathways. Int. Immunopharmacol. 2023, 114, 109619. [Google Scholar] [CrossRef]
- Kuijpers, M.J.; Munnix, I.C.; Cosemans, J.M.; Vlijmen, B.V.; Reutelingsperger, C.P.; Egbrink, M.O.; Heemskerk, J.W. Key role of platelet procoagulant activity in tissue factor-and collagen-dependent thrombus formation in arterioles and venules in vivo differential sensitivity to thrombin inhibition. Microcirculation 2008, 15, 269–282. [Google Scholar] [CrossRef]
- Romisch, J.; Seiffge, D.; Reiner, G.; Paques, E.P.; Heimburger, N. In-vivo antithrombotic potency of placenta protein 4 (annexin V). Thromb. Res. 1991, 61, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Van Ryn-McKenna, J.; Merk, H.; Muller, T.H.; Buchanan, M.R.; Eisert, W.G. The effects of heparin and annexin V on fibrin accretion after injury in the jugular veins of rabbits. Thromb. Haemost. 1993, 69, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Kreft, S.; Klatt, A.R.; Strassburger, J.; Poschl, E.; Flower, R.J.; Eming, S.; Reutelingsperger, C.; Brisson, A.; Brachvogel, B. Skin Wound Repair Is Not Altered in the Absence of Endogenous AnxA1 or AnxA5, but Pharmacological Concentrations of AnxA4 and AnxA5 Inhibit Wound Hemostasis. Cells Tissues Organs 2016, 201, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Concha, N.O.; Head, J.F.; Kaetzel, M.A.; Dedman, J.R.; Seaton, B.A. Rat annexin V crystal structure: Ca(2+)-induced conformational changes. Science 1993, 261, 1321–1324. [Google Scholar] [CrossRef]
- Bouter, A.; Gounou, C.; Berat, R.; Tan, S.; Gallois, B.; Granier, T.; d’Estaintot, B.L.; Poschl, E.; Brachvogel, B.; Brisson, A.R. Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair. Nat. Commun. 2011, 2, 270. [Google Scholar] [CrossRef]
- Gidon-Jeangirard, C.; Solito, E.; Hofmann, A.; Russo-Marie, F.; Freyssinet, J.M.; Martinez, M.C. Annexin V counteracts apoptosis while inducing Ca(2+) influx in human lymphocytic T cells. Biochem. Biophys. Res. Commun. 1999, 265, 709–715. [Google Scholar] [CrossRef]
- Linke, B.; Abeler-Dorner, L.; Jahndel, V.; Kurz, A.; Mahr, A.; Pfrang, S.; Linke, L.; Krammer, P.H.; Weyd, H. The tolerogenic function of annexins on apoptotic cells is mediated by the annexin core domain. J. Immunol. 2015, 194, 5233–5242. [Google Scholar] [CrossRef] [PubMed]
- Munoz, L.E.; Frey, B.; Pausch, F.; Baum, W.; Mueller, R.B.; Brachvogel, B.; Poschl, E.; Rodel, F.; Mark, K.D.; Herrmann, M.; et al. The role of annexin A5 in the modulation of the immune response against dying and dead cells. Curr. Med. Chem. 2007, 14, 271–277. [Google Scholar] [CrossRef]
- Watanabe, M.; Yano, W.; Kondo, S.; Ohhira, A.; Hattori, Y.; Nishida, T. Human annexin A5 promotes the migration of rabbit corneal epithelial cells. Investig. Ophthalmol. Vis. Sci. 2003, 44, U328. [Google Scholar]
- Davis, B.M.; Normando, E.M.; Guo, L.; Turner, L.A.; Nizari, S.; O’Shea, P.; Moss, S.E.; Somavarapu, S.; Cordeiro, M.F. Topical Delivery of Avastin to the Posterior Segment of the Eye In Vivo Using Annexin A5-associated Liposomes. Small 2014, 10, 1575–1584. [Google Scholar] [CrossRef]
- Zhang, X.; Huo, L.; Jin, H.; Han, Y.; Wang, J.; Zhang, Y.; Lai, X.; Le, Z.; Zhang, J.; Hua, Z. Anti-cancer activity of Annexin V in murine melanoma model by suppressing tumor angiogenesis. Oncotarget 2017, 8, 42602–42612. [Google Scholar] [CrossRef] [PubMed]
- Min, P.K.; Lim, S.; Kang, S.J.; Hong, S.Y.; Hwang, K.C.; Chung, K.H.; Shim, C.Y.; Rim, S.J.; Chung, N. Targeted ultrasound imaging of apoptosis with annexin a5 microbubbles in acute Doxorubicin-induced cardiotoxicity. J. Cardiovasc. Ultrasound 2010, 18, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Reutelingsperger, C. Report of the Ellipsometry Analysis of the Phosphatidylserine Binding Characterstics of Two Batches of ANXV of Anenxin Pharmaceuticals; Maastricht University: Maastricht, The Netherlands, 2021. [Google Scholar]
- Ewing, M.M.; de Vries, M.; Nordzell, M.; Jukema, J.W.; Frostegard, J.; Pettersson, K.; Quax, P. Annexin A5 Reduces Inflammation Mediated Vascular Remodelling and Post-interventional Atherosclerosis and Improves Vascular Function in Hypercholesterolemic Mice. Circulation 2009, 120, S1113. [Google Scholar] [CrossRef]
- Ewing, M.M.; Pettersson, K.; Karper, J.C.; de Vries, M.R.; Sampietro, M.L.; Jukema, J.W.; Quax, P.H. Annexin A5 prevents reactive stenosis in a dose-dependent fashion: Potential for clinical application. Atheroscler. Suppl. 2011, 12, 82. [Google Scholar] [CrossRef]
- Colin Aronovicz Yves, H.O. Wautier, Heron Methods and Pharmaceuticals Compositions for Treatment of Retinal Occlusion. 2016. Available online: https://patents.google.com/patent/US9463217B1/en-patentCitations (accessed on 15 July 2024).
- Chabanel, A.; Glacet-Bernard, A.; Lelong, F.; Taccoen, A.; Coscas, G.; Samama, M.M. Increased red blood cell aggregation in retinal vein occlusion. Br. J. Haematol. 1990, 75, 127–131. [Google Scholar] [CrossRef]
- Suzhou Yabao Pharmaceutical Research and Development Co., Ltd. Evaluation of SY-005 Injection after Single/Multiple-Dose Escalation Intravenous Administration in Healthy Subjects Phase I Study of Safety, Tolerability, and Pharmacokinetics; Suzhou Yabao Pharmaceutical Research and Development Co., Ltd.: Suzhou, China, 2020. [Google Scholar]
- Boersma, H.H.; Liem, I.H.; Kemerink, G.J.; Thimister, P.W.; Hofstra, L.; Stolk, L.M.; van Heerde, W.L.; Pakbiers, M.T.; Janssen, D.; Beysens, A.J.; et al. Comparison between human pharmacokinetics and imaging properties of two conjugation methods for 99mTc-annexin A5. Br. J. Radiol. 2003, 76, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.; Kapur, S.S.R.; D’Alessandro, A.; Mulgaonkar, S.; Allison, A.; Russell, M.; Knechtle, S. Treatment with Diannexin post perfusion decreases DGF and improves GFR in renal transplant recipients of marginal kidney donors. In Proceedings of the XXIII International Congress of the Transplantation Society, Vancouver, BC, Canada, 15–19 August 2010; Volume 90, p. 92. [Google Scholar]
- Stasi, I.; Cappuzzo, F. Profile of bavituximab and its potential in the treatment of non-small-cell lung cancer. Lung Cancer (Auckl) 2014, 5, 43–50. [Google Scholar] [CrossRef]
- Belhocine, T.Z. 18F-FDG PET imaging in posttherapy monitoring of cervical cancers: From diagnosis to prognosis. J. Nucl. Med. 2004, 45, 1602–1604. [Google Scholar]
- Belhocine, T.Z.; Blankenberg, F.G. The imaging of apoptosis with the radiolabelled annexin A5: A new tool in translational research. Curr. Clin. Pharmacol. 2006, 1, 129–137. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frostegård, A.; Haegerstrand, A. New Therapeutic Strategies in Retinal Vascular Diseases: A Lipid Target, Phosphatidylserine, and Annexin A5—A Future Theranostic Pairing in Ophthalmology. Pharmaceuticals 2024, 17, 979. https://doi.org/10.3390/ph17080979
Frostegård A, Haegerstrand A. New Therapeutic Strategies in Retinal Vascular Diseases: A Lipid Target, Phosphatidylserine, and Annexin A5—A Future Theranostic Pairing in Ophthalmology. Pharmaceuticals. 2024; 17(8):979. https://doi.org/10.3390/ph17080979
Chicago/Turabian StyleFrostegård, Anna, and Anders Haegerstrand. 2024. "New Therapeutic Strategies in Retinal Vascular Diseases: A Lipid Target, Phosphatidylserine, and Annexin A5—A Future Theranostic Pairing in Ophthalmology" Pharmaceuticals 17, no. 8: 979. https://doi.org/10.3390/ph17080979
APA StyleFrostegård, A., & Haegerstrand, A. (2024). New Therapeutic Strategies in Retinal Vascular Diseases: A Lipid Target, Phosphatidylserine, and Annexin A5—A Future Theranostic Pairing in Ophthalmology. Pharmaceuticals, 17(8), 979. https://doi.org/10.3390/ph17080979