Association of the Serotonin and Kynurenine Pathways as Possible Therapeutic Targets to Modulate Pain in Patients with Fibromyalgia
Abstract
:1. Introduction
2. Physiopathology of Fibromyalgia
3. Tryptophan and Fibromyalgia
4. Role of Serotonin Receptors in Pain in Patients with Fibromyalgia
4.1. 5-HT1 Receptor
4.2. 5-HT2A Receptor
4.3. 5-HT3 Receptor
4.4. Selective Serotonin Reuptake Inhibitors
- -
- **NCT01288807**: Conducted in eight adult female patients, this open study assessed milnacipran at 200 mg daily over 12 weeks but did not report no analgesic effect.
- -
- **NCT00314249**: This large-scale, multicenter, double-blind, placebo-controlled study involving 1025 adult FM patients evaluated milnacipran at 100 mg per day for 12 weeks and reported a positive analgesic effect.
- -
- **NCT00115804**: A pilot trial in six patients with juvenile primary fibromyalgia syndrome treated with fluoxetine (10 to 60 mg daily for 12 weeks) reported a decrease in the analgesic effect.
- -
- **NCT01237587**: In 184 patients with juvenile primary fibromyalgia syndrome, this quadruple-blind, placebo-controlled study assessed duloxetine (30/60 mg/day for 23 weeks) and found a positive analgesic effect.
- -
- **NCT01552057**: A randomized, double-blind, placebo-controlled trial with 393 adult patients with FM that evaluated duloxetine at 60 mg/day for 15 weeks and reported a positive outcome.
- -
- **NCT00797797**: This study combined milnacipran (100 mg/day) and pregabalin (300 or 450 mg/day) over 11 weeks in 364 adult FM patients and reported a positive analgesic effect.
- -
- **NCT01108731** and **NCT01173055**: These studies, which assessed milnacipran at lower doses (12.5 mg for 9 weeks and 200 mg/day, respectively), reported no analgesic effects in their small cohorts.
- -
- **NCT00673452**: A large trial of 530 adult FM patients evaluating duloxetine (60–120 mg/day for 12 weeks), which revealed a positive analgesic effect.
- -
- **NCT01077375**: This multicenter study assessed milnacipran (100 to 200 mg/day for 10 weeks) in 120 adult FM patients and reported a positive analgesic effect.
- -
- **NCT01829243**: Focusing on older adult FM patients (26 participants), this study assessed milnacipran at various doses (12.5–200 mg/day) and found no analgesic effect.
- -
- **NCT00965081**: A quadruple-blind study with 308 adult FM patients evaluated duloxetine at 30 mg/day for 12 weeks and reported a positive effect.
- -
- **NCT01038323**: Milnacipran at 12.5 mg/day for 21 weeks was administered to 58 adult FM patients, and a positive analgesic effect was detected.
5. Role of Kynurenine in Pain in Fibromyalgia
6. Discussion
7. Conclusions
8. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ablin, J.N.; Cohen, H.; Buskila, D. Mechanisms of disease: Genetics of fibromyalgia. Nat. Clin. Pract. Rheumatol. 2006, 2, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.I.; Mangweth, B.; Pope, H.G., Jr.; De Col, C.; Hausmann, A.; Gutweniger, S.; Laird, N.M.; Biebl, W.; Tsuang, M.T. Family study of affective spectrum disorder. Arch. Gen. Psychiatry 2003, 60, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Canales, L.d.M.V.; Berenguer, I.P.; García-Iturrospe, E.A.; Rodríguez, C. Dealing with fibromyalgia in the family context: A qualitative description study. Scand. J. Prim. Health Care 2024, 42, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Roughan, W.H.; Campos, A.I.; García-Marín, L.M.; Cuéllar-Partida, G.; Lupton, M.K.; Hickie, I.B.; Medland, S.E.; Wray, N.R.; Byrne, E.M.; Ngo, T.T.; et al. Comorbid chronic pain and depression: Shared risk factors and differential antidepressant effectiveness. Front. Psychiatry 2021, 12, 643609. [Google Scholar] [CrossRef]
- Yong, R.J.; Mullins, P.M.; Bhattacharyya, N. Prevalence of chronic pain among adults in the United States. Pain 2022, 163, 328–332. [Google Scholar] [CrossRef]
- Arnold, L.M.; Hudson, J.I.; Hess, E.V.; Ware, A.E.; Fritz, D.A.; Auchenbach, M.B.; Starck, L.O.; Keck, P.E., Jr. Family study of fibromyalgia. Arthritis Rheum. 2004, 50, 944–952. [Google Scholar] [CrossRef]
- Hudson, J.I.; Arnold, L.M.; Keck, P.E.; Auchenbach, M.B.; Pope, H.G., Jr. Family study of fibromyalgia and affective spectrum disorder. Biol. Psychiatry 2004, 56, 884–891. [Google Scholar] [CrossRef]
- Bradley, L.A. Pathophysiology of fibromyalgia. Am. J. Med. 2009, 122, 22–30. [Google Scholar] [CrossRef]
- Carli, G.; Suman, A.L.; Biasi, G.; Marcolongo, R. Reactivity to superficial and deep stimuli in patients with chronic musculoskeletal pain. Pain 2002, 100, 259–669. [Google Scholar] [CrossRef]
- David, S.P.; Murthy, N.V.; Rabiner, E.A.; Munafó, M.R.; Johnstone, E.C.; Jacob, R.; Walton, R.T.; Grasby, P.M. A functional genetic variation of the serotonin (5-HT) transporter affects 5-HT 1A receptor binding in humans. J. Neurosci. 2005, 25, 2586–2590. [Google Scholar] [CrossRef]
- Yohn, C.N.; Gergues, M.M.; Samuels, B.A. The role of 5-HT receptors in depression. Mol. Brain 2017, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.A.; Henriksson, K.G. Pathophysiological mechanisms in chronic musculoskeletal pain (fibromyalgia): The role of central and peripheral sensitization and pain disinhibition. Best Pract. Res. Clin. Rheumatol. 2007, 21, 465–480. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 28 June 2024).
- Rayner, L.; Hotopf, M.; Petkova, H.; Matcham, F.; Simpson, A.; McCracken, L.M. Depression in patients with chronic pain attending a specialised pain treatment centre: Prevalence and impact on health care costs. Pain 2016, 157, 1472–1479. [Google Scholar] [CrossRef]
- Kang, H.J.; Voleti, B.; Hajszan, T.; Rajkowska, G.; Stockmeier, C.A.; Licznerski, P.; Lepack, A.; Majik, M.S.; Jeong, L.S.; Banasr, M.; et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat. Med. 2012, 18, 1413–1417. [Google Scholar] [CrossRef]
- Ménard, C.; Hodes, G.E.; Russo, S.J. Pathogenesis of depression: Insights from human and rodent studies. Neuroscience 2016, 321, 138–162. [Google Scholar] [CrossRef]
- Sheng, J.; Liu, S.; Wang, Y.; Cui, R.; Zhang, X. The link between depression and chronic pain: Neural mechanisms in the brain. Neural Plast. 2017, 2017, 9724371. [Google Scholar] [CrossRef] [PubMed]
- Groven, N.; Reitan, S.K.; Fors, E.A.; Guzey, I.C. Kynurenine metabolites and ratios differ between chronic fatigue syndrome, fibromyalgia, and healthy controls. Psychoneuroendocrinology 2021, 131, 105287. [Google Scholar] [CrossRef]
- Cortes-Altamirano, J.L.; Olmos-Hernandez, A.; Jaime, H.B.; Carrillo-Mora, P.; Bandala, C.; Reyes-Long, S.; Alfaro-Rodríguez, A. Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 Receptors and their role in the modulation of pain response in the central nervous system. Curr. Neuropharmacol. 2018, 16, 210–221. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, M.; Chen, X.; Zhang, R.; Le, A.; Hong, M.; Zhang, Y.; Jia, L.; Zang, W.; Jiang, C.; et al. Tryptophan metabolism in central nervous system diseases: Pathophysiology and potential therapeutic strategies. Aging Dis. 2023, 14, 858–878. [Google Scholar] [CrossRef]
- Offenbaecher, M.; Bondy, B.; de Jonge, S.; Glatzeder, K.; Krüger, M.; Schoeps, P.; Ackenheil, M. Possible association of fibromyalgia with a polymorphism in the serotonin transporter gene regulatory region. Arthritis Rheum. 1999, 42, 2482–2488. [Google Scholar] [CrossRef] [PubMed]
- Russell, I.J.; Vaeroy, H.; Javors, M.; Nyberg, F. Cerebrospinal fluid biogenic amine metabolites in fibromyalgia/fibrositis syndrome and rheumatoid arthritis. Arthritis Rheum. 1992, 35, 550–556. [Google Scholar] [CrossRef]
- Wolfe, F.; Russell, I.J.; Vipraio, G.; Ross, K.; Anderson, J. Serotonin levels, pain threshold, and fibromyalgia symptoms in the general population. J. Rheumatol. 1997, 24, 555–559. [Google Scholar]
- Yunus, M.B.; Dailey, J.W.; Aldag, J.C.; Masi, A.T.; Jobe, P.C. Plasma tryptophan and other amino acids in primary fibromyalgia: A controlled study. J. Rheumatol. 1992, 19, 90–94. [Google Scholar]
- Baliki, M.N.; Chialvo, D.R.; Geha, P.Y.; Levy, R.M.; Harden, R.N.; Parrish, T.B.; Apkarian, A.V. Chronic pain and the emotional brain: Specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J. Neurosci. 2006, 26, 12165–12173. [Google Scholar] [CrossRef]
- Walker, A.K.; Kavelaars, A.; Heijnen, C.J.; Dantzer, R. Neuroinflammation and comorbidity of pain and depression. Pharmacol. Rev. 2013, 66, 80–101. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.C.P.; Antunes, G.F.; Matsumoto, M.; Pagano, R.L.; Martinez, R.C.R. Neuroinflammation, pain and depression: An overview of the main findings. Front. Psychol. 2020, 11, 1825. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.H.; Raison, C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016, 16, 22–34. [Google Scholar] [CrossRef]
- Castro-Portuguez, R.; Sutphin, G.L. Kynurenine pathway, NAD+ synthesis, and mitochondrial function: Targeting tryptophan metabolism to promote longevity and healthspan. Exp. Gerontol. 2020, 132, 110841. [Google Scholar] [CrossRef]
- Graeff, F.G. Serotonergic systems. Psychiatr. Clin. N. Am. 1997, 20, 723–739. [Google Scholar] [CrossRef]
- Lee, Y.H.; Choi, S.J.; Ji, J.D.; Song, G.G. Candidate gene studies of fibromyalgia: A systematic review and meta-analysis. Rheumatol. Int. 2012, 32, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhu, M.; Xu, Q.; Ding, F.; Tian, Y.; Zhang, M. Sensation of TRPV1 via 5-hydroxytryptamine signaling modulates pain hypersensitivity in a 6-hydroxydopamine induced mice model of Parkinson’s disease. Biochem. Biophys. Res. Commun. 2020, 521, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Juhl, J.H. Fibromyalgia and the serotonin pathway. Altern. Med. Rev. 1998, 3, 367–375. [Google Scholar]
- Alnigenis, M.N.; Barland, P. Fibromyalgia syndrome and serotonin. Clin. Exp. Rheumatol. 2001, 19, 205–210. [Google Scholar] [PubMed]
- Neyama, H.; Dozono, N.; Uchida, H.; Ueda, H. Mirtazapine, an α 2 antagonist-type antidepressant, reverses pain and lack of morphine analgesia in fibromyalgia-like mouse models. J. Pharmacol. Exp. Ther. 2020, 375, 1–9. [Google Scholar] [CrossRef]
- Albert, P.R.; Vahid-Ansari, F. The 5-HT1A receptor: Signaling to behavior. Biochimie 2019, 161, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Sharp, T.; Barnes, N.M. Central 5-HT receptors and their function; present and future. Neuropharmacology 2020, 177, 108155. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Heinricher, M.M. Descending control mechanisms and chronic pain. Curr. Rheumatol. Rep. 2019, 21, 13. [Google Scholar] [CrossRef]
- Kranz, G.S.; Kasper, S.; Lanzenberger, R. Reward and the serotonergic system. Neuroscience 2010, 166, 1023–1035. [Google Scholar] [CrossRef]
- Smythies, J.; Section, V. Serotonin system. Int. Rev. Neurobiol. 2005, 64, 217–268. [Google Scholar] [CrossRef]
- Sommer, C. Serotonin in pain and pain control. In Handbook of Behavioral Neuroscience; Müller, C.P., Jacobs, B.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 21, pp. 457–471. ISBN 9780123746344. [Google Scholar] [CrossRef]
- Ablin, J.N.; Buskila, D. Update on the genetics of the fibromyalgia syndrome. Best Pract. Res. Clin. Rheumatol. 2015, 29, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Christian, B.T.; Wooten, D.W.; Hillmer, A.T.; Tudorascu, D.L.; Converse, A.K.; Moore, C.F.; Ahlers, E.O.; Barnhart, T.E.; Kalin, N.H.; Barr, C.S.; et al. Serotonin transporter genotype affects serotonin 5-HT 1A binding in primates. J. Neurosci. 2013, 33, 2512–2516. [Google Scholar] [CrossRef] [PubMed]
- Bondy, B.; Spaeth, M.; Offenbaecher, M.; Glatzeder, K.; Stratz, T.; Schwarz, M.; de Jonge, S.; Krüger, M.; Engel, R.R.; Färber, L.; et al. The T102C polymorphism of the 5-HT2A-receptor gene in fibromyalgia. Neurobiol. Dis. 1999, 6, 433–439. [Google Scholar] [CrossRef]
- Lautenschlager, J.; Bruckle, W.; Schnorrenberger, C.C.; Müller, W. Measuring pressure pain of tendons and muscles in healthy probands and patients with generalized tendomyopathy (fibromy-algia syndrome). Z. Rheumatol. 1988, 47, 397–404. [Google Scholar]
- Schwarz, M.J.; Offenbaecher, M.; Neumeister, A.; Ackenheil, M. Experimental evaluation of an altered tryptophan metabolism in fibromyalgia. Adv. Exp. Med. Biol. 2003, 527, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Moldofsky, H.; Harris, H.W.; Archambault, W.T.; Kwong, T.; Lederman, S. Effects of bedtime very low dose cyclobenzaprine on symptoms and sleep physiology in patients with fibromyalgia syndrome: A double-blind randomized placebo-controlled study. J. Rheumatol. 2011, 38, 2653–2663. [Google Scholar] [CrossRef]
- Stratz, T.; Muller, W. Pain modification by the 5-HT3 receptor antagonist tropisetron in secondary fibromyalgias. Fortschr. Med. Orig. 2002, 120, 17–20. [Google Scholar]
- Tzadok, R.; Ablin, J.N. Current and emerging pharmacotherapy for fibromyalgia. Pain Res. Manag. 2020, 2020, 6541798. [Google Scholar] [CrossRef]
- Xue, Y.; Wei, S.Q.; Wang, P.X.; Wang, W.Y.; Liu, E.Q.; Traub, R.J.; Cao, D.Y. Down-regulation of spinal 5-HT2A and 5-HT2C receptors contributes to somatic hyperalgesia induced by orofacial inflammation combined with stress. Neuroscience 2020, 440, 196–209. [Google Scholar] [CrossRef]
- Müller, W.; Stratz, T. Results of the intravenous administration of tropisetron in fibromyalgia patients. Scand. J. Rheumatol. 2000, 113, 59–62. [Google Scholar] [CrossRef]
- Zeitz, K.P.; Guy, N.; Malmberg, A.B.; Dirajlal, S.; Martin, W.J.; Sun, L.; Bonhaus, D.W.; Stucky, C.L.; Julius, D.; Basbaum, A.I. The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J. Neurosci. 2002, 22, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Walitt, B.; Urrútia, G.; Nishishinya, M.B.; Cantrell, S.E.; Häuser, W. Selective serotonin reuptake inhibitors for fibromyalgia syndrome. Cochrane Database Syst. Rev. 2015, 6, CD011735. [Google Scholar] [CrossRef]
- Migliorini, F.; Maffulli, N.; Eschweiler, J.; Baroncini, A.; Bell, A.; Colarossi, G. Duloxetine for fibromyalgia syndrome: A systematic review and meta-analysis. J. Orthop. Surg. 2023, 18, 504. [Google Scholar] [CrossRef] [PubMed]
- Anderberg, U.M.; Marteinsdottir, I.; Von Knorring, L. Citalopram in patients with fibromyalgia--a randomized, double-blind, placebo-controlled study. Eur. J. Pain 2000, 4, 27–35. [Google Scholar] [CrossRef]
- Arnold, L.M.; Hess, E.V.; Hudson, J.I.; Welge, J.A.; Berno, S.E.; Keck, P.E., Jr. A randomized, placebo-controlled, double-blind, flexible-dose study of fluoxetine in the treatment of women with fibromyalgia. Am. J. Med. 2002, 112, 191–1907. [Google Scholar] [CrossRef]
- Debbag, S.; Yalcinkaya, A.; Saricaoglu, F. Nociceptive improvements and kynurenine pathway alterations with diclofenac treatment in a rat model of neuropathic pain created by partial sciatic nerve ligation. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 4239–4247. [Google Scholar] [CrossRef] [PubMed]
- Maganin, A.G.; Souza, G.R.; Fonseca, M.D.; Lopes, A.H.; Guimarães, R.M.; Dagostin, A.; Cecilio, N.T.; Mendes, A.S.; Gonçalves, W.A.; Silva, C.E.; et al. Meningeal dendritic cells drive neuropathic pain through elevation of the kynurenine metabolic pathway in mice. J. Clin. Investig. 2022, 132, e153805. [Google Scholar] [CrossRef]
- Chen, L.M.; Bao, C.H.; Wu, Y.; Liang, S.H.; Wang, D.; Wu, L.Y.; Huang, Y.; Liu, H.R.; Wu, H.G. Tryptophan-kynurenine metabolism: A link between the gut and brain for depression in inflammatory bowel disease. J. Neuroinflamm. 2021, 18, 135. [Google Scholar] [CrossRef]
- Chojnacki, C.; Konrad, P.; Mędrek-Socha, M.; Kaczka, A.; Chojnacki, M.; Błońska, A. Altered tryptophan metabolism in patients with recurrent functional abdominal pain. Pol. Merkur. Lek. 2022, 50, 5–8. [Google Scholar]
- Blankfield, A. A brief historic overview of clinical disorders associated with tryptophan: The relevance to chronic fatigue syndrome (CFS) and fibromyalgia (FM). Int. J. Tryptophan Res. 2012, 5, 27–32. [Google Scholar] [CrossRef]
- Robinson, M.; Turnbull, S.; Lee, B.Y.; Leonenko, Z. The effects of melatonin, serotonin, tryptophan and NAS on the biophysical properties of DPPC monolayers. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183363. [Google Scholar] [CrossRef] [PubMed]
- King, R.B. Pain and tryptophan. J. Neurosurg. 1980, 53, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, L.; Zhang, L.; Li, B.; Wang, D.; Zhang, L.; Wang, T.; Fu, F. Rotigotine-loaded microspheres exerts the antinociceptive effect via central dopaminergic system. Eur. J. Pharmacol. 2021, 910, 174443. [Google Scholar] [CrossRef] [PubMed]
- Gracely, R.H.; Petzke, F.; Wolf, J.M.; Clauw, D.J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002, 46, 1333–1343. [Google Scholar] [CrossRef]
- Gursoy, S. Absence of association of the serotonin transporter gene polymorphism with the mentally healthy subset of fibromyalgia patients. Clin. Rheumatol. 2002, 21, 194–197. [Google Scholar] [CrossRef]
- Potvin, S.; Larouche, A.; Normand, E.; de Souza, J.B.; Gaumond, I.; Marchand, S.; Grignon, S. No relationship between the ins del polymorphism of the serotonin transporter promoter and pain perception in fibromyalgia patients and healthy controls. Eur. J. Pain 2010, 14, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Hunt, S.P.; Suzuki, R.; Rahman, W. Chronic pain and descending facilitation. In Proceedings of the 11th World Congress on Pain: Progress in Research and Management; IASP Press: Seatle, WA, USA, 2006; ISBN 9780931092602. [Google Scholar]
- Jovanovic, F.; Candido, K.D.; Knezevic, N.N. The role of the kynurenine signaling pathway in different chronic pain conditions and potential use of therapeutic agents. Int. J. Mol. Sci. 2020, 21, 6045. [Google Scholar] [CrossRef]
- Ogyu, K.; Kubo, K.; Noda, Y.; Iwata, Y.; Tsugawa, S.; Omura, Y.; Wada, M.; Tarumi, R.; Plitman, E.; Moriguchi, S.; et al. Kynurenine pathway in depression: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2018, 90, 16–25. [Google Scholar] [CrossRef]
- Savitz, J. The kynurenine pathway: A finger in every pie. Mol. Psychiatry 2020, 25, 131–147. [Google Scholar] [CrossRef]
Registry Number | Patients | Study Design | Medication | Dose | Analgesic Effect |
---|---|---|---|---|---|
NCT01288807 | 8 adult female patients with fibromyalgia | Single group assignment, open study | Milnacipran | 200 mg/day for 12 weeks | NO |
NCT00314249 | 1025 adult patients with fibromyalgia | Randomized, multicenter, double-blind, placebo controlled | Milnacipran | 100 mg/day for 12 weeks | YES |
NCT01173055 | 22 adult female patients with fibromyalgia | Randomized, double-blind, two-way placebo controlled | Milnacipran | 200 mg/day for 6 weeks | NO |
NCT01108731 | 37 adult fibromyalgia patients | Quadruple-blind, randomized, placebo controlled | Milnacipran | 12.5 mg/day for 9 weeks | NO |
NCT01077375 | 120 adult patients with fibromyalgia | Multicenter, randomized, double-blind, placebo controlled | Milnacipran | 100 to 200 mg/day for 10 weeks | YES |
NCT01829243 | 26 older adult patients with fibromyalgia | Randomized, double-blind, two-way placebo controlled | Milnacipran | 12.5 mg 200 mg/day for 13 weeks | NO |
NCT01038323 | 58 adult fibromyalgia patients | Triple-blind, randomized, 3-way placebo controlled | Milnacipran | 12.5 mg/day for 21 weeks | YES |
NCT00797797 | 364 adult fibromyalgia patients | Multicenter, randomized, open-label, placebo controlled study | Milnacipran and pregabalin | Milnacipran 100 mg/day and pregabalin 300 or 450 mg/day for 11 weeks | YES |
NCT00673452 | 530 adult fibromyalgia patients | Quadruple-blind, randomized, two-way placebo controlled | Duloxetine | 60–120 mg/day for 12 weeks | YES |
NCT01237587 | 184 patients with juvenile primary fibromyalgia syndrome | Multicenter, quadruple-blind, randomized, placebo-controlled, 2-way crossover | Duloxetine | 30/60 mg/day for 23 weeks | YES |
NCT00965081 | 308 adult fibromyalgia patients | Quadruple-blind, randomized, two-way placebo controlled | Duloxetine | 30 mg/day for 12 weeks | YES |
NCT01552057 | 393 adult fibromyalgia patients | Randomized, double-blind, placebo controlled | Duloxetine | 60 mg/day for 15 weeks | YES |
NCT00115804 | 6 patients with juvenile primary fibromyalgia syndrome | Pilot trial, single group assignment, open study | Fluoxetine | 10 to 60 mg/day for 12 weeks | LOWER |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfaro-Rodríguez, A.; Reyes-Long, S.; Roldan-Valadez, E.; González-Torres, M.; Bonilla-Jaime, H.; Bandala, C.; Avila-Luna, A.; Bueno-Nava, A.; Cabrera-Ruiz, E.; Sanchez-Aparicio, P.; et al. Association of the Serotonin and Kynurenine Pathways as Possible Therapeutic Targets to Modulate Pain in Patients with Fibromyalgia. Pharmaceuticals 2024, 17, 1205. https://doi.org/10.3390/ph17091205
Alfaro-Rodríguez A, Reyes-Long S, Roldan-Valadez E, González-Torres M, Bonilla-Jaime H, Bandala C, Avila-Luna A, Bueno-Nava A, Cabrera-Ruiz E, Sanchez-Aparicio P, et al. Association of the Serotonin and Kynurenine Pathways as Possible Therapeutic Targets to Modulate Pain in Patients with Fibromyalgia. Pharmaceuticals. 2024; 17(9):1205. https://doi.org/10.3390/ph17091205
Chicago/Turabian StyleAlfaro-Rodríguez, Alfonso, Samuel Reyes-Long, Ernesto Roldan-Valadez, Maykel González-Torres, Herlinda Bonilla-Jaime, Cindy Bandala, Alberto Avila-Luna, Antonio Bueno-Nava, Elizabeth Cabrera-Ruiz, Pedro Sanchez-Aparicio, and et al. 2024. "Association of the Serotonin and Kynurenine Pathways as Possible Therapeutic Targets to Modulate Pain in Patients with Fibromyalgia" Pharmaceuticals 17, no. 9: 1205. https://doi.org/10.3390/ph17091205
APA StyleAlfaro-Rodríguez, A., Reyes-Long, S., Roldan-Valadez, E., González-Torres, M., Bonilla-Jaime, H., Bandala, C., Avila-Luna, A., Bueno-Nava, A., Cabrera-Ruiz, E., Sanchez-Aparicio, P., González Maciel, A., Dotor-Llerena, A. L., & Cortes-Altamirano, J. L. (2024). Association of the Serotonin and Kynurenine Pathways as Possible Therapeutic Targets to Modulate Pain in Patients with Fibromyalgia. Pharmaceuticals, 17(9), 1205. https://doi.org/10.3390/ph17091205