Copper Imparts a New Therapeutic Property to Resveratrol by Generating ROS to Deactivate Cell-Free Chromatin
Abstract
:1. Introduction
2. The Damaging Effects of cfChPs
3. Resveratrol–Copper (R-Cu) Combination as an Effective Therapeutic Solution to Deactivate cfChPs
4. Therapeutic Effects of R-Cu in Pre-Clinical and Clinical Studies
4.1. Inhibitory Effect on Toxicity Related to Chemotherapy and Radiotherapy
4.2. Preventive Effect on Sepsis and Viral Infections
4.3. Inhibitory Effect on Aging and Degenerative Conditions
4.4. Inhibitory Effect on Metastases and Cancer Progression
5. R-Cu Induced ROS Does Not Damage Genomic DNA
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burns, J.; Yokota, T.; Ashihara, H.; Lean, M.E.J.; Crozier, A. Plant foods and herbal sources of resveratrol. J. Agric. Food Chem. 2002, 50, 3337–3340. [Google Scholar] [CrossRef]
- Gülçin, I. Antioxidant properties of resveratrol: A structure–activity insight. Innov. Food Sci. Emerg. Technol. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Colica, C.; Milanović, M.; Milić, N.; Aiello, V.; De Lorenzo, A.; Abenavoli, L. A systematic review on natural antioxidant properties of resveratrol. Nat. Prod. Commun. 2018, 13, 1195–1203. [Google Scholar] [CrossRef]
- Cucciolla, V.; Borriello, A.; Oliva, A.; Galletti, P.; Zappia, V.; Ragione, F.D. Resveratrol: From basic science to the clinic. Cell Cycle 2007, 6, 2495–2510. [Google Scholar] [CrossRef]
- Nawaz, W.; Zhou, Z.; Deng, S.; Ma, X.; Ma, X.; Li, C.; Shu, X. Therapeutic versatility of resveratrol derivatives. Nutrients 2007, 9, 1188. [Google Scholar] [CrossRef]
- Xu, G.; Zhao, X.; Fu, J.; Wang, X. Resveratrol increase myocardial Nrf2 expression in type 2 diabetic rats and alleviate myocardial ischemia/reperfusion injury (MIRI). Ann. Palliat. Med. 2019, 8, 565–575. [Google Scholar] [CrossRef]
- Magyar, K.; Halmosi, R.; Palfi, A.; Feher, G.; Czopf, L.; Fulop, A.; Battyany, I.; Sumegi, B.; Toth, K.; Szabados, E. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin. Hemorheol. Microcirc. 2012, 50, 179–187. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, H.; Zou, Y.; Liu, Q.; Guo, C.; Gao, G.; Shao, C.; Gong, Y. Resveratrol modulates angiogenesis through the GSK3β/β-catenin/TCF-dependent pathway in human endothelial cells. Biochem. Pharmacol. 2010, 80, 1386–1395. [Google Scholar] [CrossRef]
- Owjfard, M.; Rahimian, Z.; Karimi, F.; Borhani-Haghighi, A.; Mallahzadeh, A. A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke. Heliyon 2024, 10, e34121. [Google Scholar] [CrossRef]
- Golmohammadi, M.; Meibodi, S.A.A.; Al-Hawary, S.I.S.; Gupta, J.; Sapaev, I.B.; Najm, M.A.; Alwave, M.; Nazifi, M.; Rahmani, M.; Zamanian, M.Y.; et al. Neuroprotective effects of resveratrol on retinal ganglion cells in glaucoma in rodents: A narrative review. Anim. Models Exp. Med. 2024, 7, 195–207. [Google Scholar] [CrossRef]
- Subhan, I.; Siddique, Y.H. Resveratrol: Protective agent against Alzheimer’s disease. Cent. Nerv. Syst. Agents Med. Chem. 2024, 24, 249–263. [Google Scholar] [CrossRef]
- Wong, R.H.X.; Nealon, R.S.; Scholey, A.; Howe, P.R.C. Low dose resveratrol improves cerebrovascular function in type 2 diabetes mellitus. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 393–399. [Google Scholar] [CrossRef]
- Meng, T.; Xiao, D.; Muhammed, A.; Deng, J.; Chen, L.; He, J. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021, 26, 229. [Google Scholar] [CrossRef]
- Bo, S.; Ciccone, G.; Castiglione, A.; Gambino, R.; De Michieli, F.; Villois, P.; Durazzo, M.; Cavallo-Perin, P.; Cassader, M. Anti-inflammatory and antioxidant effects of resveratrol in healthy smokers a randomized, double-blind, placebo-controlled, cross-over trial. Curr. Med. Chem. 2013, 20, 1323–1331. [Google Scholar] [CrossRef]
- Guthrie, A.R.; Chow, H.H.S.; Martinez, J.A. Effects of resveratrol on drug-and carcinogen-metabolizing enzymes, implications for cancer prevention. Pharmacol. Res. Perspect. 2017, 5, e00294. [Google Scholar] [CrossRef]
- Trautmann, D.; Suazo, F.; Torres, K.; Simón, L. Antitumor effects of resveratrol opposing mechanisms of Helicobacter pylori in gastric cancer. Nutrients 2024, 16, 2141. [Google Scholar] [CrossRef]
- Alam, M.K.; Alqhtani, N.R.; Alnufaiy, B.; Alqahtani, A.S.; Elsahn, N.A.; Russo, D.; Di Blasio, M.; Cicciù, M.; Minervini, G. A systematic review and meta-analysis of the impact of resveratrol on oral cancer: Potential therapeutic implications. BMC Oral Health 2024, 24, 412. [Google Scholar] [CrossRef]
- Chitcholtan, K.; Singh, M.; Tino, A.; Garrill, A.; Sykes, P. Effects of resveratrol on in vivo ovarian cancer cells implanted on the chorioallantoic membrane (CAM) of a chicken embryo model. Int. J. Mol. Sci. 2024, 25, 4374. [Google Scholar] [CrossRef]
- Kursvietiene, L.; Kopustinskiene, D.M.; Staneviciene, I.; Mongirdiene, A.; Kubová, K.; Masteikova, R.; Bernatoniene, J. Anti-cancer properties of resveratrol: A focus on its impact on mitochondrial functions. Antioxidants 2023, 12, 2056. [Google Scholar] [CrossRef]
- Berretta, M.; Bignucolo, A.; Di Francia, R.; Comello, F.; Facchini, G.; Ceccarelli, M.; Iaffaioli, R.V.; Quagliariello, V.; Maurea, N. Resveratrol in cancer patients: From bench to bedside. Int. J. Mol. Sci. 2020, 21, 2945. [Google Scholar] [CrossRef]
- Luís, Â.; Marcelino, H.; Domingues, F.; Pereira, L.; Cascalheira, J.F. Therapeutic potential of resveratrol for glioma: A systematic review and meta-analysis of animal model studies. Int. J. Mol. Sci. 2023, 24, 16597. [Google Scholar] [CrossRef]
- Nadile, M.; Retsidou, M.I.; Gioti, K.; Beloukas, A.; Tsiani, E. Resveratrol against cervical cancer: Evidence from in vitro and in vivo studies. Nutrients 2022, 14, 5273. [Google Scholar] [CrossRef]
- Weber, K.; Schulz, B.; Ruhnke, M. Resveratrol and its antifungal activity against Candida species. Mycoses 2011, 54, 30–33. [Google Scholar] [CrossRef]
- Bahrami, R.; Gharibpour, F.; Pourhajibagher, M.; Bahador, A. The flexural strength of orthodontic acrylic resin containing resveratrol nanoparticles as antimicrobial agent: An in vitro study. Int. Orthod. 2024, 22, 100846. [Google Scholar] [CrossRef]
- Paulo, L.; Ferreira, S.; Gallardo, E.; Queiroz, J.A.; Domingues, F. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J. Microbiol. Biotechnol. 2010, 26, 1533–1538. [Google Scholar] [CrossRef]
- Kohandel, Z.; Darrudi, M.; Naseri, K.; Samini, F.; Aschner, M.; Pourbagher-Shahri, A.M.; Samarghandian, S. The role of resveratrol in aging and senescence: A focus on molecular mechanisms. Curr. Mol. Med. 2024, 24, 867–875. [Google Scholar] [CrossRef]
- Zhou, D.D.; Luo, M.; Huang, S.Y.; Saimaiti, A.; Shang, A.; Gan, R.Y.; Li, H.B. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid. Med. Cell. Longev. 2021, 2021, 9932218. [Google Scholar] [CrossRef]
- Podgrajsek, R.; Ban Frangez, H.; Stimpfel, M. Molecular mechanism of resveratrol and its therapeutic potential on female infertility. Int. J. Mol. Sci. 2024, 25, 3613. [Google Scholar] [CrossRef]
- Bi, M.; Qin, Y.; Wang, L.; Zhang, J. The protective role of resveratrol in diabetic wound healing. Phytother. Res. 2023, 37, 5193–5204. [Google Scholar] [CrossRef]
- Moon, D.O. A comprehensive review of the effects of resveratrol on glucose metabolism: Unveiling the molecular pathways and therapeutic potential in diabetes management. Mol. Biol. Rep. 2023, 50, 8743–8755. [Google Scholar] [CrossRef]
- Ponzo, V.; Soldati, L.; Bo, S. Resveratrol: A supplementation for men or for mice? J. Transl. Med. 2014, 12, 158. [Google Scholar] [CrossRef]
- Weiskirchen, S.; Weiskirchen, R. Resveratrol: How much wine do you have to drink to stay healthy? Adv. Nutr. 2016, 7, 706–718. [Google Scholar] [CrossRef]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol. 2017, 1, 35. [Google Scholar] [CrossRef] [PubMed]
- Shaito, A.; Posadino, A.M.; Younes, N.; Hasan, H.; Halabi, S.; Alhababi, D.; Al-Mohannadi, A.; Abdel-Rahman, W.M.; Eid, A.H.; Nasrallah, G.K.; et al. Potential adverse effects of resveratrol: A literature review. Int. J. Mol. Sci. 2020, 21, 2084. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, K.; Miyata, N. Resveratrol as a new type of DNA-cleaving agent. Bioorg. Med. Chem. Lett. 1998, 8, 3187–3192. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, K.; Nagakawa, M.; Nakanishi, I.; Ohkubo, K.; Imai, K.; Urano, S.; Fukuzumi, S.; Ozawa, T.; Ikota, N.; Mochizuki, M.; et al. Structural basis for DNA-cleaving activity of resveratrol in the presence of Cu (II). Bioorg. Med. Chem. Lett. 2006, 14, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Hemnani, T.; Parihar, M.S. Reactive oxygen species and oxidative DNA damage. Indian J. Physiol. Pharmacol. 1998, 42, 440–452. [Google Scholar]
- Yu, T.W.; Anderson, D. Reactive oxygen species-induced DNA damage and its modification: A chemical investigation. Mutat. Res. 1997, 379, 201–210. [Google Scholar] [CrossRef]
- Juan, C.A.; Pérez de la Lastra, J.M.; Plou, F.J.; Pérez-Lebeña, E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Mittra, I.; Khare, N.K.; Raghuram, G.V.; Chaubal, R.; Khambatti, F.; Gupta, D.; Gaikwad, A.; Prasannan, P.; Singh, A.; Iyer, A.; et al. Circulating nucleic acids damage DNA of healthy cells by integrating into their genomes. J. Biosci. 2015, 40, 91–111. [Google Scholar] [CrossRef]
- Mittra, I.; Samant, U.; Sharma, S.; Raghuram, G.V.; Saha, T.; Tidke, P.; Pancholi, N.; Gupta, D.; Prasannan, P.; Gaikwad, A.; et al. Cell-free chromatin from dying cancer cells integrate into genomes of bystander healthy cells to induce DNA damage and inflammation. Cell Death Discov. 2017, 3, 17015. [Google Scholar] [CrossRef]
- Mittra, I.; Pal, K.; Pancholi, N.; Shaikh, A.; Rane, B.; Tidke, P.; Kirolikar, S.; Khare, N.K.; Agrawal, K.; Nagare, H.; et al. Prevention of chemotherapy toxicity by agents that neutralize or degrade cell-free chromatin. Ann. Oncol. 2017, 28, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Raghuram, G.; Chaudhary, S.; Johari, S.; Mittra, I. Illegitimate and repeated genomic integration of cell-free chromatin in the aetiology of somatic mosaicism, ageing, chronic diseases and cancer. Genes 2019, 10, 407. [Google Scholar] [CrossRef] [PubMed]
- Mittra, I.; Pal, K.; Pancholi, N.; Tidke, P.; Siddiqui, S.; Rane, B.; D’souza, J.; Shaikh, A.; Parab, S.; Shinde, S.; et al. Cell-free chromatin particles released from dying host cells are global instigators of endotoxin sepsis in mice. PLoS ONE 2020, 15, e0229017. [Google Scholar] [CrossRef]
- Mittra, I.; Jain, K.; Raghuram, G.V.; Lopes, R.; Khare, N.K.; Shabrish, S. Cell-free chromatin particles damage genomic DNA of healthy cells via an ROS-independent mechanism. BioRxiv 2024. [Google Scholar] [CrossRef]
- Mittra, I.; Mishra, P.K.; Mansoor, S.; Samant, U.; Patkar, V.; Sharma, S.; Ali, M.; Padhy, L.C. Abstract LB-103: Circulating chromatin is a novel DNA damaging agent that induces genomic instability and malignant transformation. Cancer Res. 2010, 70, LB-103. [Google Scholar] [CrossRef]
- Basak, R.; Nair, N.K.; Mittra, I. Evidence for cell-free nucleic acids as continuously arising endogenous DNA mutagens. Mutat. Res. 2016, 793–794, 15–21. [Google Scholar] [CrossRef]
- Kirolikar, S.; Prasannan, P.; Raghuram, G.V.; Pancholi, N.; Saha, T.; Tidke, P.; Chaudhari, P.; Shaikh, A.; Rane, B.; Pandey, R.; et al. Prevention of radiation-induced bystander effects by agents that inactivate cell-free chromatin released from irradiated dying cells. Cell Death Dis. 2018, 9, 1142. [Google Scholar] [CrossRef]
- Raghuram, G.V.; Pal, K.; Sriram, G.; Khan, A.; Joshi, R.; Jadhav, V.; Shinde, S.; Shaikh, A.; Rane, B.; Kangne, H.; et al. Therapeutic interventions on human breast cancer xenografts promote systemic dissemination of oncogenes. PLoS ONE 2024, 19, e0298042. [Google Scholar] [CrossRef]
- Pal, K.; Raghuram, G.V.; Dsouza, J.; Shinde, S.; Jadhav, V.; Shaikh, A.; Rane, B.; Tandel, H.; Kondhalkar, D.; Chaudhary, S.; et al. A pro-oxidant combination of resveratrol and copper down-regulates multiple biological hallmarks of ageing and neurodegeneration in mice. Sci. Rep. 2022, 12, 17209. [Google Scholar] [CrossRef]
- Xie, W.; Guo, Z.; Zhao, L.; Wei, Y. The copper age in cancer treatment: From copper metabolism to cuproptosis. Prog. Mater. Sci. 2023, 138, 101145. [Google Scholar] [CrossRef]
- Shao, S.; Wu, W.; Meng, F.; Duan, M.; Zhang, M. Copper-based nanomaterials: A rising star in cancer therapy. Adv. Ther. 2023, 6, 2300049. [Google Scholar] [CrossRef]
- Park, E.J.; Pezzuto, J.M. The pharmacology of resveratrol in animals and humans. Biochim. Biophys. Acta 2015, 1852, 1071–1113. [Google Scholar] [CrossRef] [PubMed]
- Kopp, P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the ‘French paradox’? Eur. J. Endocrinol. 1998, 138, 619–620. [Google Scholar] [CrossRef] [PubMed]
- Heger, A.; Ferk, F.; Nersesyan, A.; Szekeres, T.; Kundi, M.; Wagner, K.H.; Haidinger, G.; Mišík, M.; Knasmüller, S. Intake of a resveratrol-containing dietary supplement has no impact on DNA stability in healthy subjects. Mutat. Res. 2012, 749, 82–86. [Google Scholar] [CrossRef]
- Xu, B.P.; Yao, M.; Li, Z.J.; Tian, Z.R.; Ye, J.; Wang, Y.J.; Cui, X.J. Neurological recovery and antioxidant effects of resveratrol in rats with spinal cord injury: A meta-analysis. Neural Regen. Res. 2020, 15, 482–490. [Google Scholar]
- Yoshino, J.; Conte, C.; Fontana, L.; Mittendorfer, B.; Imai, S.I.; Schechtman, K.B.; Gu, C.; Kunz, I.; Fanelli, F.R.; Patterson, B.W.; et al. Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metab. 2012, 16, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.C.T.; Ng, Y.F.; Ho, S.; Gyda, M.; Chan, S.W. Resveratrol and cardiovascular health–promising therapeutic or hopeless illusion? Pharmacol. Res. 2014, 90, 88–115. [Google Scholar] [CrossRef]
- Yang, L.; Yang, L.; Tian, W.; Li, J.; Liu, J.; Zhu, M.; Zhang, Y.; Yang, Y.; Liu, F.; Zhang, Q.; et al. Resveratrol plays dual roles in pancreatic cancer cells. J. Cancer Res. Clin. Oncol. 2014, 140, 749–755. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef]
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004, 32, 1377–1382. [Google Scholar] [CrossRef] [PubMed]
- Walle, T. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.S.; Xia, C.; Jiang, B.H.; Stinefelt, B.; Klandorf, H.; Harris, G.K.; Shi, X. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem. Biophys. Res. Commun. 2003, 309, 1017–1026. [Google Scholar] [CrossRef]
- Carrizzo, A.; Forte, M.; Damato, A.; Trimarco, V.; Salzano, F.; Bartolo, M.; Maciag, A.; Puca, A.A.; Vecchione, C. Antioxidant effects of resveratrol in cardiovascular, cerebral and metabolic diseases. Food Chem. Toxicol. 2013, 61, 215–226. [Google Scholar] [CrossRef]
- Gerszon, J.; Rodacka, A.; Puchała, M. Antioxidant properties of resveratrol and its protective effects in neurodegenerative diseases. Med. J. Cell Biol. 2014, 4, 97–117. [Google Scholar] [CrossRef]
- Chupradit, S.; Bokov, D.; Zamanian, M.Y.; Heidari, M.; Hakimizadeh, E. Hepatoprotective and therapeutic effects of resveratrol: A focus on anti-inflammatory and antioxidative activities. Fundam. Clin. Pharmacol. 2022, 36, 468–485. [Google Scholar] [CrossRef]
- Xia, N.; Daiber, A.; Förstermann, U.; Li, H. Antioxidant effects of resveratrol in the cardiovascular system. Br. J. Pharmacol. 2017, 174, 1633–1646. [Google Scholar] [CrossRef]
- de la Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: Mechanisms and clinical implications. Biochem. Soc. Trans. 2007, 35, 1156–1160. [Google Scholar] [CrossRef]
- Martins, L.A.M.; Coelho, B.P.; Behr, G.; Pettenuzzo, L.F.; Souza, I.C.; Moreira, J.C.F.; Borojevic, R.; Gottfried, C.; Guma, F.C.R. Resveratrol induces pro-oxidant effects and time-dependent resistance to cytotoxicity in activated hepatic stellate cells. Cell Biochem. Biophys. 2014, 68, 247–257. [Google Scholar] [CrossRef]
- Lee, W.; Lee, D.G. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium. Biochem. Biophys. Res. Commun. 2017, 489, 228–234. [Google Scholar] [CrossRef]
- Muqbil, I.; Beck, F.; Bao, B.; Sarkar, F.; Mohammad, R.; Hadi, S.; Azmi, A. Old wine in a new bottle: The Warburg effect and anticancer mechanisms of resveratrol. Curr. Pharm. Des. 2012, 18, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Kucinska, M.; Piotrowska, H.; Luczak, M.W.; Mikula-Pietrasik, J.; Ksiazek, K.; Wozniak, M.; Wierzchowski, M.; Dudka, J.; Jäger, W.; Murias, M. Effects of hydroxylated resveratrol analogs on oxidative stress and cancer cells death in human acute T cell leukemia cell line: Prooxidative potential of hydroxylated resveratrol analogs. Chem. Biol. Interact. 2014, 209, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.A.; Clement, M.V.; Pervaiz, S. Pro-oxidant activity of low doses of resveratrol inhibits hydrogen peroxide—Induced apoptosis. Ann. N. Y. Acad. Sci. 2003, 1010, 365–373. [Google Scholar] [CrossRef]
- Heo, J.R.; Kim, S.M.; Hwang, K.A.; Kang, J.H.; Choi, K.C. Resveratrol induced reactive oxygen species and endoplasmic reticulum stress-mediated apoptosis, and cell cycle arrest in the A375SM malignant melanoma cell line. Int. J. Mol. Med. 2018, 42, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Arcanjo, N.M.O.; Luna, C.; Madruga, M.S.; Estévez, M. Antioxidant and pro-oxidant actions of resveratrol on human serum albumin in the presence of toxic diabetes metabolites: Glyoxal and methyl-glyoxal. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1938–1947. [Google Scholar] [CrossRef]
- Murias, M.; Jäger, W.; Handler, N.; Erker, T.; Horvath, Z.; Szekeres, T.; Nohl, H.; Gille, L. Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: Structure–activity relationship. Biochem. Pharmacol. 2005, 69, 903–912. [Google Scholar] [CrossRef]
- Gueguen, N.; Desquiret-Dumas, V.; Leman, G.; Chupin, S.; Baron, S.; Nivet-Antoine, V.; Vessieres, E.; Ayer, A.; Henrion, D.; Lenaers, G.; et al. Resveratrol directly binds to mitochondrial complex I and increases oxidative stress in brain mitochondria of aged mice. PLoS ONE 2015, 10, e0144290. [Google Scholar] [CrossRef]
- Gadacha, W.; Ben-Attia, M.; Bonnefont-Rousselot, D.; Aouani, E.; Ghanem-Boughanmi, N.; Touitou, Y. Resveratrol opposite effects on rat tissue lipoperoxidation: Pro-oxidant during day-time and antioxidant at night. Redox Rep. 2009, 14, 154–158. [Google Scholar] [CrossRef]
- Li, W.; Zhou, P.; Zhang, J.; Zhang, Y.; Zhang, G.; Liu, Y.; Cheng, X. Generation of reactive oxygen species by promoting the Cu (II)/Cu (I) redox cycle with reducing agents in aerobic aqueous solution. Water Sci. Technol. 2018, 78, 1390–1399. [Google Scholar] [CrossRef]
- Mittra, I. Exploiting the damaging effects of ROS for therapeutic use by deactivating cell-free chromatin: The alchemy of resveratrol and copper. Front. Pharmacol. 2024, 15, 1345786. [Google Scholar] [CrossRef]
- Raghuram, G.V.; Tripathy, B.K.; Avadhani, K.; Shabrish, S.; Khare, N.K.; Lopes, R.; Pal, K.; Mittra, I. Cell-free chromatin particles released from dying cells inflict mitochondrial damage and ROS production in living cells. Cell Death Discov. 2024, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- van Soest, D.M.; Polderman, P.E.; den Toom, W.T.; Keijer, J.P.; van Roosmalen, M.J.; Leyten, T.M.; Lehmann, J.; Zwakenberg, S.; De Henau, S.; van Boxtel, R.; et al. Mitochondrial H2O2 release does not directly cause damage to chromosomal DNA. Nat. Commun. 2024, 15, 2725. [Google Scholar] [CrossRef] [PubMed]
- Pilankar, A.; Singhavi, H.; Raghuram, G.V.; Siddiqui, S.; Khare, N.K.; Jadhav, V.; Tandel, H.; Pal, K.; Bhattacharjee, A.; Chaturvedi, P.; et al. A pro-oxidant combination of resveratrol and copper down-regulates hallmarks of cancer and immune checkpoints in patients with advanced oral cancer: Results of an exploratory study (RESCU 004). Front. Oncol. 2022, 12, 1000957. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.; Vohra, I.; Iyer, A.; Nair, N.K.; Mittra, I. A paradoxical relationship between resveratrol and copper (II) with respect to degradation of DNA and RNA. F1000Research 2015, 4, 1145. [Google Scholar] [CrossRef]
- Agarwal, A.; Khandelwal, A.; Pal, K.; Khare, N.K.; Jadhav, V.; Gurjar, M.; Punatar, S.; Gokarn, A.; Bonda, A.; Nayak, L.; et al. A novel pro-oxidant combination of resveratrol and copper reduces transplant related toxicities in patients receiving high dose melphalan for multiple myeloma (RESCU 001). PLoS ONE 2022, 17, e0262212. [Google Scholar] [CrossRef]
- Ostwal, V.; Ramaswamy, A.; Bhargava, P.; Srinivas, S.; Mandavkar, S.; Chaugule, D.; Peelay, Z.; Baheti, A.; Tandel, H.; Jadhav, V.K.; et al. A pro-oxidant combination of resveratrol and copper reduces chemotherapy-related non-haematological toxicities in advanced gastric cancer: Results of a prospective open label phase II single-arm study (RESCU III study). Med. Oncol. 2022, 40, 17. [Google Scholar] [CrossRef]
- Mittra, I.; de Souza, R.; Bhadade, R.; Madke, T.; Shankpal, P.D.; Joshi, M.; Qayyumi, B.; Bhattacharjee, A.; Gota, V.; Gupta, S.; et al. Resveratrol and copper for treatment of severe COVID-19: An observational study (RESCU 002). MedRxiv 2020. [Google Scholar] [CrossRef]
- ter Ellen, B.M.; Kumar, N.D.; Bouma, E.M.; Troost, B.; van de Pol, D.P.; van der Ende-Metselaar, H.H.; Apperloo, L.; van Gosliga, D.; van den Berge, M.; Nawijn, M.C.; et al. Resveratrol and pterostilbene potently inhibit SARS-CoV-2 replication in vitro. BioRxiv 2020. [Google Scholar] [CrossRef]
- Iakovou, E.; Kourti, M. A comprehensive overview of the complex role of oxidative stress in aging, the contributing environmental stressors and emerging antioxidant therapeutic interventions. Front. Aging Neurosci. 2022, 14, 827900. [Google Scholar] [CrossRef]
- Gladyshev, V.N. The free radical theory of aging is dead. Long live the damage theory! Antioxid. Redox Signal. 2014, 20, 727–731. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef] [PubMed]
- Shabrish, S.; Pal, K.; Khare, N.K.; Satsangi, D.; Pilankar, A.; Jadhav, V.; Shinde, S.; Raphael, N.; Sriram, G.; Lopes, R.; et al. Cell-free chromatin particles released from dying cancer cells activate immune checkpoints in human lymphocytes: Implications for cancer therapy. Front. Immunol. 2024, 14, 1331491. [Google Scholar] [CrossRef] [PubMed]
- Yaman, M.; Kaya, G.; Simsek, M. Comparison of trace element concentrations in cancerous and noncancerous human endometrial and ovary tissues. Int. J. Gynecol. Cancer 2007, 17, 220–228. [Google Scholar] [CrossRef] [PubMed]
Type of Study | Condition Examined | Model/Patients | Treatment/Intervention | Results | Reference |
---|---|---|---|---|---|
Pre-clinical | Chemotherapy-induced toxicity | C57BL/6 female mice | Mice were treated with control (saline i.p. b.d); single sub-lethal dose of adriamycin (10 mg/ kg, i.p.); or R-Cu (R 1 mg/kg and Cu 10−4 mg/kg by oral gavage, b.d.) + adriamycin (4 h after R-Cu). | R-Cu treatment inhibited chemotherapy (adriamycin)-induced tissue DNA damage, apoptosis, and inflammation in multiple organs and peripheral blood mononuclear cells. It prevented prolonged neutropenia following a single adriamycin dose and reduced the death rate post lethal dose of adriamycin. | [42] |
Pre-clinical | Radiation-induced toxicity | BALB/c mice | Mice were subjected to lower hemi-body irradiation (HBI; 10 Gy) with or without R-Cu (R = 1 mg/kg and Cu = 10−4 mg/kg twice daily by oral gavage; the first dose of R-Cu was given 4 h prior to HBI) | Radiation-induced activation of bystander effect biomarkers (H2AX, active Caspase-3, NFκB, and IL-6) in the brain cells was prevented by co-treatment of R-Cu. | [48] |
Pre-clinical | Sepsis | C57BL/6 female mice | Mice were administered a single i.p. injection of LPS at a dose of 10 mg/kg or 20 mg/kg with or without concurrent treatment with R-Cu (R = 1 mg/kg and Cu = 10−4 mg/kg; administered 4 h prior to LPS challenge) | R-Cu treatment abrogated the following effects of LPS (i) release of cfCh in extra-cellular spaces of brain, lung, and heart and in circulation; (ii) release of inflammatory cytokines; (iii) activation of DNA damage, apoptosis and inflammation in cells of thymus, spleen and in PBMCs; (iv) DNA damage, apoptosis, and inflammation in cells of lung, liver, heart, brain, kidney, and small intestine; (v) liver and kidney dysfunction and elevation of serum lactate; (vi) coagulopathy, fibrinolysis, and thrombocytopenia; (vii) lethality. | [44] |
Clinical | COVID-19 | Patients with severe COVID-19 requiring inhaled oxygen | Of 230 patients, 30 received R and Cu in addition to standard care at doses of 5.6 mg and 560 ng, respectively, orally, once every 6 h, until discharge or death. | Binary logistic regression analysis revealed a trend towards a reduction (nearly two-fold) in death in patients receiving R-Cu. | [87] |
Clinical | Advanced squamous cell carcinoma of oral cavity | Patients with advanced oral cancer | Of 25 patients, 5 acted as controls and the remaining 20 were given R-Cu in increasing doses, with the lowest dose of R-Cu being 5.6 mg and 560 ng, respectively, and the highest dose being 500 mg and 5 mg, respectively. An initial biopsy was taken from patients at first presentation, and a second biopsy was taken 2 weeks later. R-Cu was administered orally twice daily in the intervening period. | R-Cu treatment reduced cfChPs in the tumor microenvironment and down-regulated 21/23 biomarkers of cancer, with no adverse effects observed. The lower two doses of R-Cu were more effective than the higher doses. | [83] |
Pre-clinical | Aging and neurodegenration | C57BL/6 mice | Of 24 mice, 4 were sacrificed when they were 3 months old (young controls). Of the remaining 16, at 10 months old, 8 were treated with R-Cu (R = 1 mg/kg and Cu = 10−4 mg/kg) twice daily by oral gavage for 12 months and 8 acted as controls. All 16 were sacrificed after 12 months at 22 months- old. | R-Cu treatment reduced the hallmarks of aging, including telomere attrition, amyloid deposition, DNA damage, apoptosis, inflammation, senescence, aneuploidy, and mitochondrial dysfunction | [50] |
Clinical | Bone marrow transplant-related toxicity | Patients with multiple myeloma receiving hematopoietic stem cell transplant with high dose melphalan | Of 25 patients, 5 acted as controls; the remaining 20 received R-Cu twice daily, at dose level I (DL-I; R = 5.6 mg and Cu = 560 ng; N = 15); and DL-II (R = 50 mg and Cu = 5 μg; N = 5). | R-Cu treatment reduced transplant-related toxicities (incidence of grade 3/4 oral mucositis, levels of inflammatory cytokines) | [85] |
Clinical | Chemotherapy-related toxicity in gastric cancer | Patients with advanced gastric cancer receiving docetaxel-based multi-agent chemotherapy | Patients were treated with one of two chemotherapeutic regimens: (1) TEX every 2 weeks [docetaxel (50 mg m−2 iv on day 1), oxaliplatin (85 mg m−2 iv on day 1) and capecitabine (1000 mg m−2, P.O, on days 1–14)] and (2) DOF every 2 weeks [docetaxel (50 mg m−2 iv on day 1, oxaliplatin (85 mg m−2 iv on day 1) and 5-fluoro-uracil (1200 mg m−2, i.v., on days 1–2 via infusional pump) + leucovorin (200 mg m−2 i.v. day 1)]. Patients were administered R-Cu thrice daily 1 h before meals starting one day before the start of chemotherapy. R-Cu was administered for 6 months or till first evidence of disease progression. | R-Cu treatment reduced the incidence of non-hematological toxicities (hand–foot syndrome, diarrhea, and vomiting) without adversely affecting progression-free and overall survival rates. Note that R-Cu treatment did not reduce the overall cumulative incidence of grade ≥ 3 toxicity or of ≥ 3 hematological toxicity. | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanvilkar, S.; Mittra, I. Copper Imparts a New Therapeutic Property to Resveratrol by Generating ROS to Deactivate Cell-Free Chromatin. Pharmaceuticals 2025, 18, 132. https://doi.org/10.3390/ph18010132
Khanvilkar S, Mittra I. Copper Imparts a New Therapeutic Property to Resveratrol by Generating ROS to Deactivate Cell-Free Chromatin. Pharmaceuticals. 2025; 18(1):132. https://doi.org/10.3390/ph18010132
Chicago/Turabian StyleKhanvilkar, Salooni, and Indraneel Mittra. 2025. "Copper Imparts a New Therapeutic Property to Resveratrol by Generating ROS to Deactivate Cell-Free Chromatin" Pharmaceuticals 18, no. 1: 132. https://doi.org/10.3390/ph18010132
APA StyleKhanvilkar, S., & Mittra, I. (2025). Copper Imparts a New Therapeutic Property to Resveratrol by Generating ROS to Deactivate Cell-Free Chromatin. Pharmaceuticals, 18(1), 132. https://doi.org/10.3390/ph18010132