α1A-Adrenergic Receptor as a Target for Neurocognition: Cautionary Tale from Nicergoline and Quinazoline Non-Selective Blockers
Abstract
1. Introduction
Norepinephrine and the Adrenergic Receptors: Each Subtype Can Have Distinct Functions
2. NE and AR Activation Increase Memory and Cognition
3. α1-AR Activation Increases Cognition and Memory
4. Nicergoline, an Ergot Derivative Originally Proposed to Treat Dementia Through Vasodilation, Does Not Specifically Block α1A-AR
5. Non-Selective Quinazoline-Derived α1-AR Blockers—The “Osins” Cause “Off-Target” Neuroprotective Effects
6. Tamsulosin Is Not a Quinazoline and May Increase Risk for Dementia
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dongdem, J.T.; Etornam, A.E.; Beletaa, S.; Alidu, I.; Kotey, H.; Wezena, C.A. The β3-Adrenergic Receptor: Structure, Physiopathology of Disease, and Emerging Therapeutic Potential. Adv. Pharmacol. Pharm. Sci. 2024, 2024, 2005589. [Google Scholar] [CrossRef]
- Hein, L.; Altman, J.D.; Kobilka, B.K. Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature 1999, 402, 181–184. [Google Scholar] [CrossRef]
- Philipp, M.; Brede, M.; Hein, L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: One receptor is not enough. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R287–R295. [Google Scholar] [CrossRef] [PubMed]
- Perez, D.M. Current Developments on the Role of a1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front. Cell Dev. Biol. 2021, 9, 652152. [Google Scholar] [PubMed]
- Perez, D.M. α1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front. Pharmacol. 2020, 11, 581098. [Google Scholar] [CrossRef]
- Akinaga, J.; Lima, V.; Kiguti, L.R.; Hebeler-Barbosa, F.; Alcántara-Hernández, R.; García-Sáinz, J.A.; Pupo, A.S. Differential phosphorylation, desensitization, and internalization of α1A-adrenoceptors activated by norepinephrine and oxymetazoline. Mol. Pharmacol. 2013, 83, 870–881. [Google Scholar] [CrossRef]
- da Silva Junior, E.D.; Sato, M.; Merlin, J.; Broxton, N.; Hutchinson, D.S.; Ventura, S.; Evans, B.A.; Summers, R.J. Factors influencing biased agonism in recombinant cells expressing the human α1A -adrenoceptor. Br. J. Pharmacol. 2017, 174, 2318–2333. [Google Scholar] [CrossRef]
- Perez-Aso, M.; Segura, V.; Montó, F.; Barettino, D.; Noguera, M.A.; Milligan, G.; D’Ocon, P. The three α1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation. Biochim. Biophys. Acta 2013, 1833, 2322–2333. [Google Scholar] [CrossRef] [PubMed]
- Segura, V.; Pérez-Aso, M.; Montó, F.; Carceller, E.; Noguera, M.A.; Pediani, J.; Milligan, G.; McGrath, I.C.; D’Ocon, P. Differences in the signaling pathways of α(1A)- and α(1B)-adrenoceptors are related to different endosomal targeting. PLoS ONE 2013, 8, e64996. [Google Scholar] [CrossRef]
- Boyle, N.; Betts, S.; Lu, H. Monoaminergic Modulation of Learning and Cognitive Function in the Prefrontal Cortex. Brain Sci. 2024, 14, 902. [Google Scholar] [CrossRef]
- Zhao, S.; Gu, Z.L.; Yue, Y.N.; Zhang, X.; Dong, Y. Cannabinoids and monoaminergic system: Implications for learning and memory. Front. Neurosci. 2024, 18, 1425532. [Google Scholar] [CrossRef]
- Stahl, S.M. Neurotransmission of cognition, part 2. Selective NRIs are smart drugs: Exploiting regionally selective actions on both dopamine and norepinephrine to enhance cognition. J. Clin. Psychiatry 2003, 64, 110–111. [Google Scholar] [CrossRef]
- Bekdash, R.A. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 1273. [Google Scholar] [CrossRef] [PubMed]
- Hammerschmidt, T.; Kummer, M.P.; Terwel, D.; Martinez, A.; Gorji, A.; Pape, H.C.; Rommelfanger, K.S.; Schroeder, J.P.; Stoll, M.; Schultze, J.; et al. Selective loss of noradrenaline exacerbates early cognitive dysfunction and synaptic deficits in APP/PS1 mice. Biol. Psychiatry 2013, 73, 454–463. [Google Scholar] [CrossRef]
- Thomas, S.A.; Palmiter, R.D. Disruption of the dopamine beta-hydroxylase gene in mice suggests roles for norepinephrine in motor function, learning, and memory. Behav. Neurosci. 1997, 111, 579–589. [Google Scholar] [CrossRef]
- Doze, V.A.; Papay, R.S.; Goldenstein, B.L.; Gupta, M.K.; Collette, K.M.; Nelson, B.W.; Lyons, M.J.; Davis, B.A.; Luger, E.J.; Wood, S.G.; et al. Long-term α1A-adrenergic receptor stimulation improves synaptic plasticity, cognitive function, mood, and longevity. Mol. Pharmacol. 2011, 80, 747–758. [Google Scholar] [CrossRef]
- Hutten, D.R.; Bos, J.H.J.; de Vos, S.; Hak, E. Targeting the Beta-2-Adrenergic Receptor and the Risk of Developing Alzheimer’s Disease: A Retrospective Inception Cohort Study. J. Alzheimers Dis. 2022, 87, 1089–1101. [Google Scholar] [CrossRef]
- Miliotou, A.N.; Kotsoni, A.; Zacharia, L.C. Deciphering the Role of Adrenergic Receptors in Alzheimer’s Disease: Paving the Way for Innovative Therapies. Biomolecules 2025, 15, 128. [Google Scholar] [CrossRef] [PubMed]
- David, M.C.B.; Del Giovane, M.; Liu, K.Y.; Gostick, B.; Rowe, J.B.; Oboh, I.; Howard, R.; Malhotra, P.A. Cognitive and neuropsychiatric effects of noradrenergic treatment in Alzheimer’s disease: Systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 1080–1090. [Google Scholar] [PubMed]
- Maity, S.; Chandanathil, M.; Millis, R.M.; Connor, S.A. Norepinephrine stabilizes translation-dependent, homosynaptic long-term potentiation through mechanisms requiring the cAMP sensor Epac, mTOR and MAPK. Eur. J. Neurosci. 2020, 52, 3679–3688. [Google Scholar] [PubMed]
- Kandel, E.R. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain. 2012, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Y.; Li, X.C.; Kandel, E.R. cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 1994, 79, 69–79. [Google Scholar]
- Schultz, J.; Daly, J.W. Accumulation of cyclic adenosine 3′,5′-monophosphate in cerebral cortical slices from rat and mouse: Stimulatory effect of a- and b -adrenergic agents and adenosine. J. Neurochem. 1973, 21, 1319–1326. [Google Scholar] [CrossRef]
- Johnston, R.D.; Minneman, K.P. Characterization of a1-adrenergic receptors which increase cyclic AMP accumulation in rat cerebral cortex. Eur. J. Pharmacol. 1986, 129, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Thonberg, H.; Fredriksson, J.M.; Nedergaard, J.; Cannon, B. A novel pathway for adrenergic stimulation of cAMP-response-element-binding protein (CREB) phosphorylation: Mediation via a1-adrenoceptors and protein kinase C activation. Biochem. J. 2002, 364 Pt 1, 73–79. [Google Scholar] [CrossRef]
- Lin, R.Z.; Chen, J.; Hu, Z.W.; Hoffman, B.B. Phosphorylation of the cAMP response element binding protein and activation of transcription by a1-adrenergic receptors. J. Biol. Chem. 1998, 273, 30033–30038. [Google Scholar] [CrossRef]
- Indrigo, M.; Morella, I.; Orellana, D.; d’Isa, R.; Papale, A.; Parra, R.; Gurgone, A.; Lecca, D.; Cavaccini, A.; Tigaret, C.M.; et al. Nuclear ERK1/2 signaling potentiation enhances neuroprotection and cognition via Importinα1/KPNA2. EMBO Mol. Med. 2023, 15, e15984. [Google Scholar] [CrossRef]
- Ye, X.; Shao, S.; Wang, Y.; Su, W. Ginsenoside Rg2 alleviates neurovascular damage in 3xTg-AD mice with Alzheimer’s disease through the MAPK-ERK pathway. J. Chem. Neuroanat. 2023, 133, 102346. [Google Scholar] [CrossRef]
- Maity, S.; Rah, S.; Sonenberg, N.; Gkogka, C.G.; Nguyen, P.V. Norepinephrine triggers metaplasticity of LTP by increasing translation of specific mRNAs. Learn. Mem. 2015, 22, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Szot, P.; White, S.S.; Greenup, J.L.; Leverenz, J.B.; Peskind, E.R.; Raskind, M.A. Changes in adrenoreceptors in the prefrontal cortex of subjects with dementia: Evidence of compensatory changes. Neuroscience 2007, 146, 471–480. [Google Scholar] [CrossRef]
- Papay, R.S.; Perez, D.M. Further In Vitro and Ex Vivo Pharmacological and Kinetic Characterizations of CCF219B: A Positive Allosteric Modulator of the α1A-Adrenergic Receptor. Pharmaceuticals 2025, 18, 476. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.J.; Wang, Y.C.; Liu, T.Y.; Liu, H.C.; Tsai, S.J. A study of alpha-adrenoceptor gene polymorphisms and Alzheimer disease. J. Neural. Transm. 2001, 108, 445–450. [Google Scholar] [CrossRef]
- Clark, D.A.; Arranz, M.J.; Mata, I.; Lopéz-Ilundain, J.; Pérez-Nievas, F.; Kerwin, R.W. Polymorphisms in the promoter region of the a1A-adrenoceptor gene are associated with schizophrenia/schizoaffective disorder in a Spanish isolate population. Biol. Psychiatry 2005, 58, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Papay, R.S.; Stauffer, S.R.; Perez, D.M. A PAM of the a1A-Adrenergic receptor rescues biomarker, long-term potentiation, and cognitive deficits in Alzheimer’s disease mouse models without effects on blood pressure. Curr. Res. Pharmacol. Drug Discov. 2023, 5, 100160. [Google Scholar] [CrossRef]
- Fioravanti, M.; Flicker, L. Efficacy of nicergoline in dementia and other age associated forms of cognitive impairment. Cochrane Database Syst. Rev. 2001, 2, Cd003159. [Google Scholar] [CrossRef]
- Saletu, B.; Garg, A.; Shoeb, A. Safety of nicergoline as an agent for management of cognitive function disorders. BioMed. Res. Int. 2014, 2014, 610103. [Google Scholar] [CrossRef]
- Winblad, B.; Carfagna, N.; Bonura, L.; Rossini, B.M.; Wong, E.H.; Battaglia, A. Nicergoline in dementia: A review of its pharmacological properties and therapeutic potential. CNS Drugs 2000, 14, 267–287. [Google Scholar] [CrossRef]
- Zajdel, P.; Bednarski, M.; Sapa, J.; Nowak, G. Ergotamine and nicergoline—Facts and myths. Pharmacol. Rep. 2015, 67, 360–363. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, R.; Zhang, X.; Shang, X.; Huang, D. Drug-induced dementia: A real-world pharmacovigilance study using the FDA Adverse Event Reporting System database. Ther. Adv. Neurol. Disord. 2025, 18, 17562864251315137. [Google Scholar] [CrossRef]
- Boismare, F.; Lefrançois, J. Hämodynamische Wirkungen von Nicergolin beim Menshcen in Ruhe und in Bewegung [Hemodynamic effects of nicergolin in man at rest and during exertion (author’s transl)]. Arzneimittelforschung 1979, 29, 1261–1266. (In German) [Google Scholar] [PubMed]
- Bolli, R.; Ware, J.A.; Brandon, T.A.; Weilbaecher, D.G.; Mace, M.L., Jr. Platelet-mediated thrombosis in stenosed canine coronary arteries: Inhibition by nicergoline, a platelet-active alpha-adrenergic antagonist. J. Am. Coll. Cardiol. 1984, 3, 1417–1426. [Google Scholar] [CrossRef] [PubMed]
- Pogliani, E.; Volpe, A.D.; Ferrari, R.; Recalcati, P.; Praga, C. Inhibition of human platelet aggregation by oral administration of nicergoline. A double blind study. Il Farm. Ed. Pratica. 1975, 30, 630–640. [Google Scholar]
- Winblad, B.; Fioravanti, M.; Dolezal, T.; Logina, I.; Milanov, I.G.; Popescu, D.C.; Solomon, A. Therapeutic use of nicergoline. Clin. Drug Investig. 2008, 28, 533–552. [Google Scholar] [CrossRef]
- Carfagna, N.; Di Clemente, A.; Cavanus, S.; Damiani, D.; Gerna, M.; Salmoiraghi, P.; Cattaneo, B.; Post, C. Modulation of hippocampal ACh release by chronic nicergoline treatment in freely moving young and aged rats. Neurosci. Lett. 1995, 197, 195–198. [Google Scholar] [CrossRef]
- Ogawa, N.; Asanuma, M.; Hirata, H.; Kondo, Y.; Kawada, Y.; Mori, A. Cholinergic deficits in aged rat brain are corrected with nicergoline. Arch. Gerontol. Geriatr. 1993, 16, 103–110. [Google Scholar] [CrossRef]
- McArthur, R.A.; Carfagna, N.; Banfi, L.; Cavanus, S.; Cervini, M.A.; Fariello, R.; Post, C. Effects of nicergoline on age-related decrements in radial maze performance and acetylcholine levels. Brain Res. Bull. 1997, 43, 305–311. [Google Scholar] [CrossRef]
- Nishio, T.; Sunohara, N.; Furukawa, S.; Akiguchi, I.; Kudo, Y. Repeated injections of nicergoline increase the nerve growth factor level in the aged rat brain. Jpn J. Pharmacol. 1998, 76, 321–323. [Google Scholar] [CrossRef]
- Sortino, M.A.; Battaglia, A.; Pamparana, F.; Carfagna, N.; Post, C.; Canonico, P.L. Neuroprotective effects of nicergoline in immortalized neurons. Eur. J. Pharmacol. 1999, 368, 285–290. [Google Scholar] [CrossRef]
- Giardino, L.; Giuliani, A.; Battaglia, A.; Carfagna, N.; Aloe, L.; Calza’, L. Neuroprotection and aging of the cholinergic system: A role for the ergoline derivative nicergoline (Sermion®). Neuroscience 2002, 109, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Arcari, G.; Dorigotti, L.; Fregnan, G.B.; Glässer, A.H. Vasodilating and alpha-receptor blocking activity of a new ergoline derivative. Br. J. Pharmacol. 1968, 34, 700P. [Google Scholar]
- Alvarez-Guerra, M.; Bertholom, N.; Garay, R.P. Selective blockade by nicergoline of vascular responses elicited by stimulation of α1A-adrenoceptor subtype in the rat. Fundam. Clin. Pharmacol. 1999, 13, 50–58. [Google Scholar] [CrossRef]
- Docherty, J.R.; O’Rourke, M. The alpha-adrenoceptor-mediated actions of chloroethylclonidine. Gen. Pharmacol. 1997, 28, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Jeffries, W.B. Kinetics of alkylation of cloned rat alpha1-adrenoceptor subtypes by chloroethylclonidine. Eur. J. Pharmacol. 1998, 347, 319–327. [Google Scholar] [CrossRef]
- Moretti, A.; Carfagna, N.; Caccia, C.; Carpentieri, M. Effect of ergolines on neurotransmitter systems in the rat brain. Arch. Int. Pharmacodyn. Ther. 1988, 294, 33–45. [Google Scholar] [PubMed]
- Cai, R.; Zhang, Y.; Simmering, J.E.; Schultz, J.L.; Li, Y.; Fernandez-Carasa, I.; Consiglio, A.; Raya, A.; Polgreen, P.M.; Narayanan, N.S.; et al. Enhancing glycolysis attenuates Parkinson’s disease progression in models and clinical databases. J. Clin. Investig. 2019, 129, 4539–4549. [Google Scholar] [CrossRef] [PubMed]
- Coelho, B.P.; Gaelzer, M.M.; Dos Santos Petry, F.; Hoppe, J.B.; Trindade, V.M.T.; Salbego, C.G.; Guma, F.T.C.R. Dual Effect of Doxazosin: Anticancer Activity on SH-SY5Y Neuroblastoma Cells and Neuroprotection on an In Vitro Model of Alzheimer’s Disease. Neuroscience 2019, 404, 314–325. [Google Scholar] [CrossRef]
- Malekinejad, Z.; Aghajani, S.; Jeddi, M.; Qahremani, R.; Shahbazi, S.; Bagheri, Y.; Ahmadian, E. Prazosin Treatment Protects Brain and Heart by Diminishing Oxidative Stress and Apoptotic Pathways After Renal Ischemia Reperfusion. Drug Res. 2022, 72, 336–342. [Google Scholar] [CrossRef]
- Schultz, J.L.; Brinker, A.N.; Xu, J.; Ernst, S.E.; Tayyari, F.; Rauckhorst, A.J.; Liu, L.; Uc, E.Y.; Taylor, E.B.; Simmering, J.E.; et al. A pilot to assess target engagement of terazosin in Parkinson’s disease. Park. Relat Disord. 2022, 94, 79–83. [Google Scholar] [CrossRef]
- Chaytow, H.; Carroll, E.; Gordon, D.; Huang, Y.T.; van der Hoorn, D.; Smith, H.L.; Becker, T.; Becker, C.G.; Faller, K.M.E.; Talbot, K.; et al. Targeting phosphoglycerate kinase 1 with terazosin improves motor neuron phenotypes in multiple models of amyotrophic lateral sclerosis. eBioMedicine 2022, 83, 104202. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Gao, J.; Cheng, Q.; Liu, L.; Cai, R. Activation of Pgk1 Results in Reduced Protein Aggregation in Diverse Neurodegenerative Conditions. Mol. Neurobiol. 2023, 60, 5090–5101. [Google Scholar] [CrossRef]
- Weber, M.A.; Sivakumar, K.; Tabakovic, E.E.; Oya, M.; Aldridge, G.M.; Zhang, Q.; Simmering, J.E.; Narayanan, N.S. Glycolysis-enhancing α1-adrenergic antagonists modify cognitive symptoms related to Parkinson’s disease. NPJ Parkinsons Dis. 2023, 9, 32. [Google Scholar] [CrossRef]
- Hart, A.; Aldridge, G.; Zhang, Q.; Narayanan, N.S.; Simmering, J.E. Association of Terazosin, Doxazosin, or Alfuzosin Use and Risk of Dementia With Lewy Bodies in Men. Neurology 2024, 103, e209570. [Google Scholar] [CrossRef]
- Zhang, Q.; Schultz, J.; Simmering, J.; Kirkpatrick, B.Q.; Weber, M.A.; Skuodas, S.; Hicks, T.; Pierce, G.; Laughlin, M.; Bertolli, A.X.; et al. Glycolysis-enhancing α1-adrenergic antagonists are neuroprotective in Alzheimer’s disease. bioRxiv 2025. [Google Scholar] [CrossRef]
- Yoosuf, B.T.; Panda, A.K.; Kt, M.F.; Bharti, S.K.; Devana, S.K.; Bansal, D. Comparative efficacy and safety of alpha-blockers as monotherapy for benign prostatic hyperplasia: A systematic review and network meta-analysis. Sci. Rep. 2024, 14, 11116. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, C.; Li, X.; Wang, T.; Li, Y.; Cao, C.; Ding, Y.; Dong, M.; Finci, L.; Wang, J.H.; et al. Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nat. Chem. Biol. 2015, 11, 19–25. [Google Scholar] [CrossRef]
- Riley, M.J.; Mitchell, C.C.; Ernst, S.E.; Taylor, E.B.; Welsh, M.J. A model for stimulation of enzyme activity by a competitive inhibitor based on the interaction of terazosin and phosphoglycerate kinase 1. Proc. Natl. Acad. Sci. USA 2024, 121, e2318956121. [Google Scholar] [CrossRef] [PubMed]
- Manzo, E.; Lorenzini, I.; Barrameda, D.; O’Conner, A.G.; Barrows, J.M.; Starr, A.; Kovalik, T.; Rabichow, B.E.; Lehmkuhl, E.M.; Shreiner, D.D.; et al. Glycolysis upregulation is neuroprotective as a compensatory mechanism in ALS. eLife 2019, 8, e45114. [Google Scholar] [CrossRef]
- Ingwall, J.S.; Weiss, R.G. Is the Failing Heart Energy Starved?: On Using Chemical Energy to Support Cardiac Function. Circ. Res. 2004, 95, 2. [Google Scholar] [CrossRef] [PubMed]
- Erbsloh, F.; Bernsmeier, A.; Hillesheim, H. Der Glucoseverbrauch des Gehirns und seine Abhängigkeit von der Leber [The glucose consumption of the brain & its dependence on the liver]. Arch. Psychiatr. Nervenkr. Gesamte Neurol. Psychiatr. 1958, 196, 611–626. (In German) [Google Scholar] [CrossRef]
- Herculano-Houzel, S. Scaling of brain metabolism with a fixed energy budget per neuron: Implications for neuronal activity, plasticity and evolution. PLoS ONE 2011, 6, e17514. [Google Scholar] [CrossRef] [PubMed]
- Naeem, U.; Arshad, A.R.; Jawed, A.; Eqbal, F.; Imran, L.; Khan, Z.; Ijaz, F. Glycolysis: The Next Big Breakthrough in Parkinson’s Disease. Neurotox. Res. 2022, 40, 1707–1717. [Google Scholar] [CrossRef]
- Strope, T.A.; Birky, C.J.; Wilkins, H.M. The Role of Bioenergetics in Neurodegeneration. Int. J. Mol. Sci. 2022, 23, 9212. [Google Scholar] [CrossRef]
- Simmering, J.E.; Welsh, M.J.; Liu, L.; Narayanan, N.S.; Pottegård, A. Association of glycolysis-enhancing α-1 blockers with risk of developing Parkinson disease. JAMA Neurol. 2021, 78, 407–413. [Google Scholar] [CrossRef]
- Simmering, J.E.; Welsh, M.J.; Schultz, J.; Narayanan, N.S. Use of glycolysis-enhancing drugs and risk of Parkinson’s disease. Mov. Disord. 2022, 37, 2210–2216. [Google Scholar] [CrossRef]
- Sasane, R.; Bartels, A.; Field, M.; Sierra, M.I.; Duvvuri, S.; Gray, D.L.; Pin, S.S.; Renger, J.J.; Stone, D.J. Parkinson disease among patients treated for benign prostatic hyperplasia with α1 adrenergic receptor antagonists. J. Clin. Investig. 2021, 131, e145112. [Google Scholar] [CrossRef]
- Wang, L.Y.; Shofer, J.B.; Rohde, K.; Hart, K.L.; Hoff, D.J.; McFall, Y.H.; Raskind, M.A.; Peskind, E.R. Prazosin for the treatment of behavioral symptoms in patients with Alzheimer disease with agitation and aggression. Am. J. Geriatr. Psychiatry 2009, 17, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Kingsley, R.; Tyree, S.; Jarsania, D.; Edquist, C.; Palmer, A.; Gerberi, D.; Wilfahrt, R.; Pagali, S. Association Between Alpha-1 Adrenoreceptor Antagonist Use and Cognitive Impairment: A Systematic Review. Int. Neurourol. J. 2024, 28, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, Z.; Podolsky, R.; Yu, J.; Tian, M.; Hojnacki, D.; Schaller, B. Delayed Decline of Cognitive Function by Antihypertensive Agents: A Cohort Study Linked with Genotype Data. J. Prev. Alzheimers Dis. 2022, 9, 679–691. [Google Scholar] [CrossRef]
- Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev. 2018, 38, 775–828. [Google Scholar] [CrossRef]
- Gomaa, H.A.M. A comprehensive review of recent advances in the biological activities of quinazolines. Chem. Biol. Drug Des. 2022, 100, 639–655. [Google Scholar] [CrossRef]
- Kumar, V.; Jangid, K.; Kumar, N.; Kumar, V.; Kumar, V. 3D-QSAR-based pharmacophore modelling of quinazoline derivatives for the identification of acetylcholinesterase inhibitors through virtual screening, molecular docking, molecular dynamics and DFT studies. J. Biomol. Struct. Dyn. 2025, 43, 2631–2645. [Google Scholar] [CrossRef]
- Wang, M.; Qin, H.L.; Leng, J.; Ameeduzzafar Amjad, M.W.; Raja, M.A.G.; Hussain, M.A.; Bukhari, S.N.A. Synthesis and biological evaluation of new tetramethylpyrazine-based chalcone derivatives as potential anti-Alzheimer agents. Chem. Biol. Drug Des. 2018, 92, 1859–1866. [Google Scholar] [CrossRef]
- Richardson, C.D.; Donatucci, C.F.; Page, S.O.; Wilson, K.H.; Schwinn, D.A. Pharmacology of tamsulosin: Saturation-binding isotherms and competition analysis using cloned alpha 1-adrenergic receptor subtypes. Prostate 1997, 33, 55–59. [Google Scholar] [CrossRef]
- Kenny, B.A.; Miller, A.M.; Williamson, I.J.; O’Connell, J.; Chalmers, D.H.; Naylor, A.M. Evaluation of the pharmacological selectivity profile of alpha 1 adrenoceptor antagonists at prostatic alpha 1 adrenoceptors: Binding, functional and in vivo studies. Br. J. Pharmacol. 1996, 118, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Grady, J.J.; Albertsen, P.C.; Helen Wu, Z. Tamsulosin and the risk of dementia in older men with benign prostatic hyperplasia. Pharmacoepidemiol. Drug Saf. 2018, 27, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Holanda, V.A.D.; Oliveira, M.C.; de Oliveira Torres, C.I.; de Almeida Moura, C.; Belchior, H.; da Silva Junior, E.D.; Gavioli, E.C. The alpha1A antagonist tamsulosin impairs memory acquisition, consolidation and retrieval in a novel object recognition task in mice. Behav. Brain Res. 2024, 469, 115027. [Google Scholar] [CrossRef]
- Li, B.; Wang, L.; Xiao, Y.; Tang, Z.; Wang, Y.; Sun, T.; Qi, X. Modulation of neuronal α1-adrenergic receptor reduces tauopathy and neuroinflammation by inhibiting the STING/NF-κB/NLRP3 signaling pathway in Alzheimer’s disease mice. J. Neuroinflammation 2025, 22, 187. [Google Scholar] [CrossRef]
- Jensen, B.C.; Swigart, P.M.; Simpson, P.C. Ten commercial antibodies for alpha-1-adrenergic receptor subtypes are nonspecific. Naunyn Schmiedebergs Arch. Pharmacol. 2009, 379, 409–412. [Google Scholar] [CrossRef]
- Böhmer, T.; Pfeiffer, N.; Gericke, A. Three commercial antibodies against α1-adrenergic receptor subtypes lack specificity in paraffin-embedded sections of murine tissues. Naunyn. Schmiedebergs Arch. Pharmacol. 2014, 387, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Spreng, M.; Cotecchia, S.; Schenk, F. A behavioral study of alpha-1b adrenergic receptor knockout mice: Increased reaction to novelty and selectively reduced learning capacities. Neurobiol. Learn. Mem. 2001, 75, 214–229. [Google Scholar] [CrossRef]
- Knauber, J.; Müller, W.E. Decreased exploratory activity and impaired passive avoidance behaviour in mice deficient for the alpha(1b)-adrenoceptor. Eur. Neuropsychopharmacol. 2000, 10, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Mishima, K.; Tanoue, A.; Tsuda, M.; Hasebe, N.; Fukue, Y.; Egashira, N.; Takano, Y.; Kamiya, H.-O.; Tsujimoto, G.; Iwasaki, K.; et al. Characteristics of behavioral abnormalities in alpha1d-adrenoceptors deficient mice. Behav. Brain Res. 2004, 152, 365–373. [Google Scholar] [CrossRef]
- Collette, K.M.; Zhou, X.D.; Amoth, H.M.; Lyons, M.J.; Papay, R.S.; Sens, D.A.; Perez, D.M.; Doze, V.A. Long-term α1B-adrenergic receptor activation shortens lifespan, while α1A-adrenergic receptor stimulation prolongs lifespan in association with decreased cancer incidence. Age 2014, 36, 9675. [Google Scholar] [CrossRef]
- Zuscik, M.J.; Sands, S.; Ross, S.A.; Waugh, D.J.; Gaivin, R.J.; Morilak, D.; Perez, D.M. Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: Multiple system atrophy. Nat. Med. 2000, 6, 1388–1394. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Gaivin, R.J.; McCune, D.F.; Boongird, A.; Papay, R.S.; Ying, Z.; Gonzalez-Cabrera, P.J.; Najm, I.; Perez, D.M. Gene expression profile of neurodegeneration induced by alpha1B-adrenergic receptor overactivity: NMDA/GABAA dysregulation and apoptosis. Brain 2003, 126, 2667–2681. [Google Scholar] [CrossRef]
- Papay, R.; Zuscik, M.J.; Ross, S.A.; Yun, J.; McCune, D.F.; Gonzalez-Cabrera, P.; Gaivin, R.; Drazba, J.; Perez, D.M. Mice expressing the alpha(1B)-adrenergic receptor induces a synucleinopathy with excessive tyrosine nitration but decreased phosphorylation. J. Neurochem. 2002, 83, 623–634. [Google Scholar] [CrossRef]
- Kunieda, T.; Zuscik, M.J.; Boongird, A.; Perez, D.M.; Lüders, H.O.; Najm, I.M. Systemic overexpression of the alpha 1B-adrenergic receptor in mice: An animal model of epilepsy. Epilepsia 2002, 43, 1324–1329. [Google Scholar] [CrossRef]
- Su, M.; Wang, J.; Xiang, G.; Do, H.N.; Levitz, J.; Miao, Y.; Huang, X.Y. Structural basis of agonist specificity of α1A-adrenergic receptor. Nat. Commun. 2023, 14, 4819. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, Y.; Zhu, A.; Kong, F.; Shan, S.; Zhao, J.; Wang, N.; Sun, X.; Zhang, L.; Yan, C.; Kobilka, B.K.; et al. Structural basis of α1A-adrenergic receptor activation and recognition by an extracellular nanobody. Nat. Commun. 2023, 14, 3655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez, D.M. α1A-Adrenergic Receptor as a Target for Neurocognition: Cautionary Tale from Nicergoline and Quinazoline Non-Selective Blockers. Pharmaceuticals 2025, 18, 1425. https://doi.org/10.3390/ph18101425
Perez DM. α1A-Adrenergic Receptor as a Target for Neurocognition: Cautionary Tale from Nicergoline and Quinazoline Non-Selective Blockers. Pharmaceuticals. 2025; 18(10):1425. https://doi.org/10.3390/ph18101425
Chicago/Turabian StylePerez, Dianne M. 2025. "α1A-Adrenergic Receptor as a Target for Neurocognition: Cautionary Tale from Nicergoline and Quinazoline Non-Selective Blockers" Pharmaceuticals 18, no. 10: 1425. https://doi.org/10.3390/ph18101425
APA StylePerez, D. M. (2025). α1A-Adrenergic Receptor as a Target for Neurocognition: Cautionary Tale from Nicergoline and Quinazoline Non-Selective Blockers. Pharmaceuticals, 18(10), 1425. https://doi.org/10.3390/ph18101425