Integrating UHPLC-QE-MS and Bioinformatics with Experimental Validation Reveals MAPK/FOS-Mediated Podocyte Apoptosis as the Key Mechanism of Alpiniae oxyphyllae and Saposhnikovia divaricata in Treating Diabetic Kidney Disease
Abstract
1. Introduction
2. Results
2.1. AS Ameliorates Renal Function and Attenuates Podocyte and Tubular Injury in db/db Mice
2.2. Flavonoids Are the Primary Active Compounds in AS-Medicated Serum
2.3. Potential Targets and Functional Insights of Flavonoids in AS for Treating DKD
2.4. Gene Set Enrichment Analysis (GSEA) of DEGs
2.5. Single-Cell RNA Sequencing Analysis of DKD Kidneys Reveals Spatial Distribution of Core Target Genes
2.6. Molecular Docking Simulation of Core Flavonoids in AS with FOS
2.7. AS Significantly Ameliorates ECM Deposition and Apoptosis in Kidneys of db/db Mice
2.8. AS Regulates the MAPK/FOS Signaling Pathway in Kidneys of db/db Mice
3. Discussion
4. Materials and Methods
4.1. Animal Experimentation
4.1.1. Reagents
4.1.2. Experimental Animals and Intervention Protocol
4.1.3. UHPLC-QE-MS Analysis
4.1.4. Histopathological Staining
4.1.5. Biochemical Indicator Analysis
4.1.6. Western Blot
4.2. Bioinformatics Analysis
4.2.1. Microarray Data Acquisition
4.2.2. Analysis of Differential Gene Expression
4.2.3. Screening of AS-Disease Common Targets
4.2.4. GSEA Enrichment Analysis and Single-Cell RNA Sequencing
4.2.5. GO and KEGG Pathway Enrichment Analysis of Genes
4.2.6. PPI Network of Co-Core DEGs
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AS | Alpiniae oxyphyllae-Saposhnikovia divaricata |
DM | Diabetes mellitus |
DKD | Diabetic kidney disease |
ESRD | End-stage renal disease |
ECM | Extracellular matrix |
DEGs | Differentially expressed genes |
MAPK | Mitogen-activated protein kinase |
CA | Canagliflozin |
ELISA | Enzyme-linked immunosorbent assay |
Col-IV | Type IV Collagen |
LN | Laminin |
IL-6 | Interleukin-6 |
IL-17 | Interleukin-17 |
References
- Jia, W.; Chan, J.C.; Wong, T.Y.; Fisher, E.B. Diabetes in China: Epidemiology, pathophysiology and multi-omics. Nat. Metab. 2025, 7, 16–34. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S27–S49. [Google Scholar] [CrossRef] [PubMed]
- Rayego-Mateos, S.; Rodrigues-Diez, R.R.; Fernandez-Fernandez, B.; Mora-Fernández, C.; Marchant, V.; Donate-Correa, J.; Navarro-González, J.F.; Ortiz, A.; Ruiz-Ortega, M. Targeting inflammation to treat diabetic kidney disease: The road to 2030. Kidney Int. 2022, 103, 282–296. [Google Scholar] [CrossRef]
- Młynarska, E.; Buławska, D.; Czarnik, W.; Hajdys, J.; Majchrowicz, G.; Prusinowski, F.; Stabrawa, M.; Rysz, J.; Franczyk, B. Novel Insights into Diabetic Kidney Disease. Int. J. Mol. Sci. 2024, 25, 10222. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Chen, C.; Xiong, X.; Wang, X.; Li, X.; Kuang, Q.; Wei, X.; Gao, L.; Niu, X.; Li, Q.; et al. PS-MPs promotes the progression of inflammation and fibrosis in diabetic nephropathy through NLRP3/Caspase-1 and TGF-β1/Smad2/3 signaling pathways. Ecotoxicol. Environ. Saf. 2024, 273, 116102. [Google Scholar] [CrossRef] [PubMed]
- Vart, P.; Butt, J.H.; Jongs, N.; Schechter, M.; Chertow, G.M.; Wheeler, D.C.; Pecoits-Filho, R.; Langkilde, A.M.; Correa-Rotter, R.; Rossing, P.; et al. Efficacy and Safety of Dapagliflozin in Patients With Chronic Kidney Disease Across the Spectrum of Frailty. J. Gerontol. Ser. A 2024, 79, 181. [Google Scholar] [CrossRef] [PubMed]
- Shulman, R.; Yang, W.; Cohen, D.L.; Reese, P.P.; Cohen, J.B.; Cohen, D.; Appel, L.J.; Chen, J.; Feldman, H.I.; Go, A.S.; et al. Cardiovascular and Kidney Outcomes of Non-Diabetic CKD by Albuminuria Severity: Findings From the CRIC Study. Am. J. Kidney Dis. 2024, 84, 742–750.e1. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice. 1. Improving Care and Promoting Health in Populations: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S14–S26. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Li, Z.; Yue, R.; Liu, G.; Yang, M.; Long, C.; Yan, D. Evidential support for garlic supplements against diabetic kidney disease: A preclinical meta-analysis and systematic review. Food Funct. 2024, 15, 12–36. [Google Scholar] [CrossRef]
- Kuszak, A.J.; Hopp, D.C.; Williamson, J.S.; Betz, J.M.; Sorkin, B.C. Approaches by the US National Institutes of Health to support rigorous scientific research on dietary supplements and natural products. Drug Test. Anal. 2016, 8, 413–417. [Google Scholar] [CrossRef]
- Rao, Z.; Zhou, H.; Li, Q.; Zeng, N.; Wang, Q. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Radix Saposhnikoviae: A review. J. Ethnopharmacol. 2024, 318, 116956. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Chen, B.; Niu, K.; Long, Z.; Yang, F.; Xie, Y. Alpiniae oxyphylla fructus extract promotes longevity and stress resistance of C. elegans via DAF-16 and SKN-1. Front. Pharmacol. 2022, 13, 1034515. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.-J.; Zhang, L.; Han, X.-Y.; Ma, T.-P.; Zhou, S.-J. Alpiniae oxyphyllae Fructus-Saposhnikoviae Radix regulates NLRP3 inflammasome to ameliorate inflammatory response in diabetic kidney disease mice through PI3K/Akt/mTOR signaling pathway. China J. Chin. Mater. Medica 2025, 50, 2798–2809. [Google Scholar] [CrossRef]
- Wang, X.; Liu, C.; Jiang, H.; Chen, B.-C.; Yang, X.; Xiao, M.; Xie, Y.-Q.; Li, K. Network pharmacology and verification experiment-based prediction of active components and potential targets of Alpiniae oxyphyllae Fructus-Saposhnikoviae Radix (Yizhiren-Fangfeng) for treatment of diabetic kidney disease. Tradit. Med. Res. 2023, 8, 26. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, H.; Wang, F.; Chang, H.; Rui, K.; Ma, T.; Zhao, J.; Liu, C.; Yang, X.; Xiao, M.; et al. Based on the Method of Tonifying Kidney and Dispelling Wind Pathogen, the Effects of Alpinia Oxyphylla and Saposhnikoviae Radix and its Dismemberment Study on the Survival Rate and Inflammatory Factors of HK-2 Cells Induced by High Glucose were Studied. Lishizhen Med. Mater. Medica Res. 2022, 33, 68–71. [Google Scholar] [CrossRef]
- Xie, Y.; Xiao, M.; Ni, Y.; Jiang, S.; Feng, G.; Sang, S.; Du, G. Alpinia oxyphylla Miq. Extract Prevents Diabetes in Mice by Modulating Gut Microbiota. J. Diabetes Res. 2018, 2018, 4230590. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.W.; Sung, J.H.; Kwon, J.E.; Ryu, H.Y.; Song, K.S.; Lee, J.K.; Lee, S.R.; Kang, S.C. Toxicological Evaluation of Saposhnikoviae Radix Water Extract and its Antihyperuricemic Potential. Toxicol. Res. 2019, 35, 371–387. [Google Scholar] [CrossRef]
- Gong, Y.X. Research progress of effective components of traditional Chinese medicine in intervening apoptosis of renal tubular epithelial cells in diabetic kidney disease. J. Ethnopharmacol. 2025, 348, 119874. [Google Scholar] [CrossRef]
- Gaddy, A.; Elrggal, M.; Madariaga, H.; Kelly, A.; Lerma, E.; Colbert, G.B. Diabetic Kidney Disease. Dis. Mon. 2025, 71, 101848. [Google Scholar] [CrossRef]
- Bae, J.H. SGLT2 Inhibitors and GLP-1 Receptor Agonists in Diabetic Kidney Disease: Evolving Evidence and Clinical Application. Diabetes Metab. J. 2025, 49, 386–402. [Google Scholar] [CrossRef]
- Neuen, B.L.; Heerspink, H.J.; Vart, P.; Claggett, B.L.; Fletcher, R.A.; Arnott, C.; Costa, J.d.O.; Falster, M.O.; Pearson, S.-A.; Mahaffey, K.W.; et al. Estimated Lifetime Cardiovascular, Kidney, and Mortality Benefits of Combination Treatment With SGLT2 Inhibitors, GLP-1 Receptor Agonists, and Nonsteroidal MRA Compared With Conventional Care in Patients With Type 2 Diabetes and Albuminuria. Circulation 2024, 149, 450–462. [Google Scholar] [CrossRef]
- Yen, F.-S.; Hwu, C.-M.; Liu, J.-S.; Wu, Y.-L.; Chong, K.; Hsu, C.-C. Sodium–Glucose Cotransporter-2 Inhibitors and the Risk for Dialysis and Cardiovascular Disease in Patients With Stage 5 Chronic Kidney Disease. Ann. Intern. Med. 2024, 177, 693–700. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice. 1. Improving Care and Promoting Health in Populations: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47, S11–S19. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Osorio, A.S.; García-Niño, W.R.; González-Reyes, S.; Álvarez-Mejía, A.E.; Guerra-León, S.; Salazar-Segovia, J.; Falcón, I.; de Oca-Solano, H.M.; Madero, M.; Pedraza-Chaverri, J. The Effect of Dietary Supplementation With Curcumin on Redox Status and Nrf2 Activation in Patients With Nondiabetic or Diabetic Proteinuric Chronic Kidney Disease: A Pilot Study. J. Ren. Nutr. 2016, 26, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, M.; Tu, X.; Mo, X.; Zhang, L.; Yang, B.; Wang, F.; Kim, Y.-B.; Huang, C.; Chen, L.; et al. Dietary Polyphenols as Anti-Aging Agents: Targeting the Hallmarks of Aging. Nutrients 2024, 16, 3305. [Google Scholar] [CrossRef]
- Macena, M.d.L.; Nunes, L.F.d.S.; da Silva, A.F.; Pureza, I.R.O.M.; Praxedes, D.R.S.; Santos, J.C.d.F.; Bueno, N.B. Effects of dietary polyphenols in the glycemic, renal, inflammatory, and oxidative stress biomarkers in diabetic nephropathy: A systematic review with meta-analysis of randomized controlled trials. Nutr. Rev. 2022, 80, 2237–2259. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, J.; Fan, J.; Jia, H.; Li, J. Interrelation of Natural Polyphenol and Fibrosis in Diabetic Nephropathy. Molecules 2024, 30, 20. [Google Scholar] [CrossRef]
- Yanowsky-Escatell, F.G.; Andrade-Sierra, J.; Pazarín-Villaseñor, L.; Santana-Arciniega, C.; De Jesus Torres-Vázquez, E.; Chávez-Iñiguez, J.S.; Zambrano-Velarde, M.Á.; Preciado-Figueroa, F.M. The Role of Dietary Antioxidants on Oxidative Stress in Diabetic Nephropathy. Iran. J. Kidney Dis. 2020, 14, 81–94. [Google Scholar] [PubMed]
- Wang, X.; Liang, Q.-F.; Zeng, X.; Huang, G.-X.; Xin, G.-Z.; Xu, Y.-H.; Wang, S.-M.; Tang, D. Effects of soy isoflavone supplementation on patients with diabetic nephropathy: A systematic review and meta-analysis of randomized controlled trials. Food Funct. 2021, 12, 7607–7618. [Google Scholar] [CrossRef]
- Gurley, B.J.; Chittiboyina, A.G.; ElSohly, M.A.; Yates, C.R.; Avula, B.; Walker, L.A.; Khan, S.I.; Khan, I.A. The National Center for Natural Products Research (NCNPR) at 30: A Legacy of Pioneering Research in Natural Products and Dietary Supplements. J. Diet. Suppl. 2024, 22, 193–218. [Google Scholar] [CrossRef]
- Solnier, J.; Chang, C.; Pizzorno, J. Consideration for Flavonoid-Containing Dietary Supplements to Tackle Deficiency and Optimize Health. Int. J. Mol. Sci. 2023, 24, 8663. [Google Scholar] [CrossRef]
- Dini, I.; Grumetto, L. Recent Advances in Natural Polyphenol Research. Molecules 2022, 27, 8777. [Google Scholar] [CrossRef]
- Liu, P.-Y.; Hong, K.-F.; Liu, Y.-D.; Sun, Z.-Y.; Zhao, T.-T.; Li, X.-L.; Lao, C.-C.; Tan, S.-F.; Zhang, H.-Y.; Zhao, Y.-H.; et al. Total flavonoids of Astragalus protects glomerular filtration barrier in diabetic kidney disease. Chin. Med. 2024, 19, 1–13. [Google Scholar] [CrossRef]
- Liu, F.; Nie, J.; Deng, M.-G.; Yang, H.; Feng, Q.; Yang, Y.; Li, X.; Li, X.; Yang, X.; Li, W.; et al. Dietary flavonoid intake is associated with a lower risk of diabetic nephropathy in US adults: Data from NHANES 2007–2008, 2009–2010, and 2017–2018. Food Funct. 2023, 14, 4183–4190. [Google Scholar] [CrossRef] [PubMed]
- Fanti, P.; Sawaya, B.P.; Custer, L.J.; Franke, A.A. Serum levels and metabolic clearance of the isoflavones genistein and daidzein in hemodialysis patients. J. Am. Soc. Nephrol. 1999, 10, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, S.R.; Tappenden, K.A.; Carson, L.; Erdman, J.W.; Jones, R.; Prabhudesai, M.; Marshall, W.P. Isolated soy protein consumption reduces urinary albumin excretion and improves the serum lipid profile in men with type 2 diabetes mellitus and nephropathy. J. Nutr. 2004, 134, 1874–1880. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-M.; Ho, S.C.; Chen, Y.-M.; Tang, N.; Woo, J. Effect of whole soy and purified isoflavone daidzein on renal function—A 6-month randomized controlled trial in equol-producing postmenopausal women with prehypertension. Clin. Biochem. 2014, 47, 1250–1256. [Google Scholar] [CrossRef]
- Wang, L.; Lee, I.-M.; Zhang, S.M.; Blumberg, J.B.; E Buring, J.; Sesso, H.D. Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am. J. Clin. Nutr. 2009, 89, 905–912. [Google Scholar] [CrossRef]
- Okita, K.; Mizokami, T.; Yasuda, O.; Ikeda, Y. Acute kaempferol ingestion lowers oxygen uptake during submaximal exercise and improves high-intensity exercise capacity in well-trained male athletes. Physiol. Rep. 2025, 13, e70369. [Google Scholar] [CrossRef]
- Li, M.; Shi, A.; Pang, H.; Xue, W.; Li, Y.; Cao, G.; Yan, B.; Dong, F.; Li, K.; Xiao, W.; et al. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J. Ethnopharmacol. 2014, 156, 210–215. [Google Scholar] [CrossRef]
- Dong, R.; Li, L.; Gao, H.; Lou, K.; Luo, H.; Hao, S.; Yuan, J.; Liu, Z. Safety, tolerability, pharmacokinetics, and food effect of baicalein tablets in healthy Chinese subjects: A single-center, randomized, double-blind, placebo-controlled, single-dose phase I study. J. Ethnopharmacol. 2021, 274, 114052. [Google Scholar] [CrossRef]
- Niu, X.; Song, H.; Xiao, X.; Yu, J.; Yu, J.; Yang, Y.; Huang, Q.; Zang, L.; Han, T.; Zhang, D.; et al. Tectoridin alleviates lipopolysaccharide-induced inflammation via inhibiting TLR4-NF-kappaB/NLRP3 signaling in vivo and in vitro. Immunopharmacol. Immunotoxicol. 2022, 44, 641–655. [Google Scholar] [CrossRef]
- Pan, Y.; Zhou, M.; Liu, Z.; Hao, C.; Zhai, J.; Liu, R.; Shi, Z.; Sun, J.; Wang, X. Synthesis and activity of arylcoumarin derivatives with therapeutic effects on diabetic nephropathy. Arch. Pharm. 2024, 357, e2300524. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, A.S. Kaempferol attenuates diabetic nephropathy in streptozotocin-induced diabetic rats by a hypoglycaemic effect and concomitant activation of the Nrf-2/Ho-1/antioxidants axis. Arch. Physiol. Biochem. 2021, 129, 984–997. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Li, W.; Hao, Y.; Peng, Z.; Zou, Z.; Liang, W. Baicalin ameliorates renal fibrosis by upregulating CPT1α-mediated fatty acid oxidation in diabetic kidney disease. Phytomedicine 2024, 122, 155162. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Wang, N.; Zhang, C. Podocyte Death in Diabetic Kidney Disease: Potential Molecular Mechanisms and Therapeutic Targets. Int. J. Mol. Sci. 2024, 25, 9035. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Carneiro-Freire, N. Biochemical composition of the glomerular extracellular matrix in patients with diabetic kidney disease. World J. Diabetes 2022, 13, 498–520. [Google Scholar] [CrossRef]
- Liu, F.; Yang, Z.; Li, J.; Wu, T.; Li, X.; Zhao, L.; Wang, W.; Yu, W.; Zhang, G.; Xu, Y. Targeting programmed cell death in diabetic kidney disease: From molecular mechanisms to pharmacotherapy. Mol. Med. 2024, 30, 265. [Google Scholar] [CrossRef]
- Gong, L.; Wang, R.; Wang, X.; Liu, J.; Han, Z.; Li, Q.; Jin, Y.; Liao, H. Research progress of natural active compounds on improving podocyte function to reduce proteinuria in diabetic kidney disease. Ren. Fail. 2023, 45, 2290930. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Z.; Liu, J.; Chen, P.; Li, J.; Shu, H.; Chu, Y.; Li, L. Research progress on multiple cell death pathways of podocytes in diabetic kidney disease. Mol. Med. 2023, 29, 135. [Google Scholar] [CrossRef]
- Liu, S.; Wang, H.; Yang, B.; Hou, B.; Sun, L.; Pang, H.; Wang, H.; Fan, Y. CircTAOK1 regulates high glucose induced inflammation, oxidative stress, ECM accumulation, and apoptosis in diabetic nephropathy via targeting miR-142-3p/SOX6 axis. Environ. Toxicol. 2023, 39, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
- Tesch, G.H.; Ma, F.Y.; Nikolic-Paterson, D.J. Targeting apoptosis signal-regulating kinase 1 in acute and chronic kidney disease. Anat. Rec. 2020, 303, 2553–2560. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wu, F.; Shao, Q.; Chen, G.; Xu, L.; Lu, F. Baicalin Alleviates Oxidative Stress and Inflammation in Diabetic Nephropathy via Nrf2 and MAPK Signaling Pathway. Drug Des. Dev. Ther. 2021, 15, 3207–3221. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Ivanov, V.N.; Hei, T.K. 2,3,5,6-Tetramethylpyrazine (TMP) down-regulated arsenic-induced heme oxygenase-1 and ARS2 expression by inhibiting Nrf2, NF-kappaB, AP-1 and MAPK pathways in human proximal tubular cells. Arch. Toxicol. 2016, 90, 2187–2200. [Google Scholar] [CrossRef]
- Zhong, Y.; Jin, C.; Han, J.; Zhu, J.; Liu, Q.; Sun, D.; Xia, X.; Zhang, Y.; Peng, X. Diosgenin Protects Against Kidney Injury and Mitochondrial Apoptosis Induced by 3-MCPD Through the Regulation of ER Stress, Ca(2+) Homeostasis, and Bcl2 Expression. Mol. Nutr. Food Res. 2021, 65, e2001202. [Google Scholar] [CrossRef]
- Li, X.M.; Ma, G.; Liu, J.M.; Zhang, G.M.; Ma, K.M.; Ding, B.M.; Liang, W.; Gao, W.M. The regulatory effect and mechanism of traditional Chinese medicine on the renal inflammatory signal transduction pathways in diabetic kidney disease: A review. Medicine 2024, 103, e39746. [Google Scholar] [CrossRef]
- Vervaeke, A.; Lamkanfi, M. MAP Kinase Signaling at the Crossroads of Inflammasome Activation. Immunol. Rev. 2025, 329, e13436. [Google Scholar] [CrossRef]
- Li, F.; Tian, J.; Zhang, L.; He, H.; Song, D. A multi-omics approach to reveal critical mechanisms of activator protein 1 (AP-1). Biomed. Pharmacother. 2024, 178, 117225. [Google Scholar] [CrossRef]
- Gazon, H.; Barbeau, B.; Mesnard, J.-M.; Peloponese, J.-M., Jr. Hijacking of the AP-1 Signaling Pathway during Development of ATL. Front. Microbiol. 2018, 8, 2686. [Google Scholar] [CrossRef]
- Bai, X.; Geng, J.; Li, X.; Yang, F.; Tian, J. VEGF-A inhibition ameliorates podocyte apoptosis via repression of activating protein 1 in diabetes. Am. J. Nephrol. 2014, 40, 523–534. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, J.W.; Cho, B.-S.; Chung, J.-H. Association of FOS-like antigen 1 promoter polymorphism with podocyte foot process effacement in immunoglobulin a nephropathy patients. J. Clin. Lab. Anal. 2014, 28, 391–397. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, Z.; Wang, L.; Lin, Y.; Ye, Z.; Zeng, X.; Wei, F. MicroRNA-27a-3p directly targets FosB to regulate cell proliferation, apoptosis, and inflammation responses in immunoglobulin a nephropathy. Biochem. Biophys. Res. Commun. 2020, 529, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Shen, C.; Liu, C.; Gao, J. Network expression analysis identifies and experimentally validates the involvement of Fosb in acute kidney injury. FASEB BioAdvances 2025, 7, e70002. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Zhang, L.; Fu, Y.; Yao, L.; Zhou, C.; Chen, G. Saikosaponin-d Alleviates Renal Inflammation and Cell Apoptosis in a Mouse Model of Sepsis via TCF7/FOSL1/Matrix Metalloproteinase 9 Inhibition. Mol. Cell. Biol. 2021, 41, MCB0033221. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Wang, H.; Xin, Y.; Zhang, Y. Fbxo11 maintains mitochondrial function and prevents podocyte injury in adriamycin-induced nephropathy by mediating the ubiquitin degradation of Fosl2. Exp. Cell Res. 2025, 444, 114345. [Google Scholar] [CrossRef]
- Zhang, W.-T.; Ge, H.-W.; Wei, Y.; Gao, J.-L.; Tian, F.; Zhou, E.-C. Molecular characterization of PANoptosis-related genes in chronic kidney disease. PLoS ONE 2024, 19, e0312696. [Google Scholar] [CrossRef]
- Guan, T.; Gao, Q.; Chen, P.; Fu, L.; Zhao, H.; Zou, Z.; Mei, C. Effects of polycystin-1 N-terminal fragment fusion protein on the proliferation and apoptosis of rat mesangial cells. Mol. Med. Rep. 2014, 10, 1626–1634. [Google Scholar] [CrossRef]
- Luo, W.; Tang, S.; Xiao, X.; Luo, S.; Yang, Z.; Huang, W.; Tang, S. Translation Animal Models of Diabetic Kidney Disease: Biochemical and Histological Phenotypes, Advantages and Limitations. Diabetes Metab. Syndr. Obes. Targets Ther. 2023, 16, 1297–1321. [Google Scholar] [CrossRef]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef]
- Huang, Q.; Shi, W.; Wang, M.; Zhang, L.; Zhang, Y.; Hu, Y.; Pan, S.; Ling, B.; Zhu, H.; Xiao, W.; et al. Canagliflozin attenuates post-resuscitation myocardial dysfunction in diabetic rats by inhibiting autophagy through the PI3K/Akt/mTOR pathway. iScience 2024, 27, 110429. [Google Scholar] [CrossRef]
- Zhou, Z.; Luo, M.; Zhang, H.; Yin, Y.; Cai, Y.; Zhu, Z.-J. Metabolite annotation from knowns to unknowns through knowledge-guided multi-layer metabolic networking. Nat. Commun. 2022, 13, 6656. [Google Scholar] [CrossRef]
- Lan, J.; Xu, B.; Shi, X.; Pan, Q.; Tao, Q. WTAP-mediated N6-methyladenosine modification of NLRP3 mRNA in kidney injury of diabetic nephropathy. Cell. Mol. Biol. Lett. 2022, 27, 51. [Google Scholar] [CrossRef]
- Chen, Y.; Liao, L.; Wang, B.; Wu, Z. Identification and validation of immune and cuproptosis—Related genes for diabetic nephropathy by WGCNA and machine learning. Front. Immunol. 2024, 15, 1332279. [Google Scholar] [CrossRef]
- Suo, L.; Dai, W.; Qin, X.; Li, G.; Zhang, D.; Cheng, T.; Yao, T.; Zhang, C. Screening of primary open-angle glaucoma diagnostic markers based on immune-related genes and immune infiltration. BMC Genet. 2022, 23, 67. [Google Scholar] [CrossRef]
- Pan, B.; Kusko, R.; Xiao, W.; Zheng, Y.; Liu, Z.; Xiao, C.; Sakkiah, S.; Guo, W.; Gong, P.; Zhang, C.; et al. Similarities and differences between variants called with human reference genome HG19 or HG38. BMC Bioinform. 2019, 20, 101. [Google Scholar] [CrossRef] [PubMed]
- Lecamwasam, A.; Mansell, T.; Ekinci, E.I.; Saffery, R.; Dwyer, K.M. Blood Plasma Metabolites in Diabetes-Associated Chronic Kidney Disease: A Focus on Lipid Profiles and Cardiovascular Risk. Front. Nutr. 2022, 9, 821209. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lin, Q.; Wang, Z.; Huang, H.; Song, X.; Gao, Y.; Yang, X.; Wen, K.; Sun, X. Mechanism of Xue-Jie-San treating Crohn’s disease complicated by atherosclerosis: Network pharmacology, molecular docking and experimental validation. Phytomedicine 2024, 135, 156169. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.C.; Wu, H.; Kirita, Y.; Uchimura, K.; Ledru, N.; Rennke, H.G.; Welling, P.A.; Waikar, S.S.; Humphreys, B.D. The single-cell transcriptomic landscape of early human diabetic nephropathy. Proc. Natl. Acad. Sci. USA 2019, 116, 19619–19625. [Google Scholar] [CrossRef]
- Pyne, T.; Ghosh, P.; Dhauria, M.; Ganguly, K.; Sengupta, D.; Nandagopal, K.; Sengupta, M.; Das, M. Prioritization of human well-being spectrum related GWAS-SNVs using ENCODE-based web-tools predict interplay between PSMC3, ITIH4, and SERPINC1 genes in modulating well-being. J. Psychiatr. Res. 2022, 145, 92–101. [Google Scholar] [CrossRef]
Model | Name | Composite Score | Formula | Mzmed | Rtmed |
---|---|---|---|---|---|
NEG | Daidzein | 0.9738 | C15H10O4 | 253.0503 | 451.447 |
NEG | Tectoridin | 0.9367 | C22H22O11 | 461.1088 | 458.849 |
POS | Baicalin | 0.9428 | C21H18O11 | 447.0934 | 375.644 |
POS | Kaempferol | 0.9174 | C15H10O6 | 463.093 | 406.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, L.; Tang, R.; Zhang, W.; Xie, Y.; Li, K. Integrating UHPLC-QE-MS and Bioinformatics with Experimental Validation Reveals MAPK/FOS-Mediated Podocyte Apoptosis as the Key Mechanism of Alpiniae oxyphyllae and Saposhnikovia divaricata in Treating Diabetic Kidney Disease. Pharmaceuticals 2025, 18, 1449. https://doi.org/10.3390/ph18101449
Wang X, Zhang L, Tang R, Zhang W, Xie Y, Li K. Integrating UHPLC-QE-MS and Bioinformatics with Experimental Validation Reveals MAPK/FOS-Mediated Podocyte Apoptosis as the Key Mechanism of Alpiniae oxyphyllae and Saposhnikovia divaricata in Treating Diabetic Kidney Disease. Pharmaceuticals. 2025; 18(10):1449. https://doi.org/10.3390/ph18101449
Chicago/Turabian StyleWang, Xian, Lin Zhang, Rongxin Tang, Wenlong Zhang, Yiqiang Xie, and Kai Li. 2025. "Integrating UHPLC-QE-MS and Bioinformatics with Experimental Validation Reveals MAPK/FOS-Mediated Podocyte Apoptosis as the Key Mechanism of Alpiniae oxyphyllae and Saposhnikovia divaricata in Treating Diabetic Kidney Disease" Pharmaceuticals 18, no. 10: 1449. https://doi.org/10.3390/ph18101449
APA StyleWang, X., Zhang, L., Tang, R., Zhang, W., Xie, Y., & Li, K. (2025). Integrating UHPLC-QE-MS and Bioinformatics with Experimental Validation Reveals MAPK/FOS-Mediated Podocyte Apoptosis as the Key Mechanism of Alpiniae oxyphyllae and Saposhnikovia divaricata in Treating Diabetic Kidney Disease. Pharmaceuticals, 18(10), 1449. https://doi.org/10.3390/ph18101449