Fast Analgesic Effect in Response Test with Topical Phenytoin Cream Correlates with Prolonged Pain Relief After Extended Use in Painful Diabetic Neuropathy
Abstract
:1. Introduction
2. Results
2.1. Fast Analgesic Effect in Response Tests
2.2. Pain Relief After Extended Use
2.3. Correlation Between Analgesic Effect in Positive Response Tests and After Extended Use
3. Discussion
4. Materials and Methods
4.1. Response Tests
- (1)
- ORET: Phenytoin cream was applied to the most painful area, with both the patient and the treating physician unblinded. A positive ORET was defined as pain reduction of at least 2 NRS points [25]. To minimize the placebo effect, ORET was substituted with placebo-controlled tests whenever feasible and only performed in the clinic.
- (2)
- SIBRET: In this test, phenytoin cream and a placebo cream were applied to two separate painful areas. Only the patient was blinded in this test [26]. Over time, to further reduce and prevent assessment bias, SIBRET was replaced by the double-blind testing method.
- (3)
- DOBRET: A double-blinded version of SIBRET [27].
4.2. Extended Use and Pain Relief Monitoring
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosenberger, D.C.; Blechschmidt, V.; Timmerman, H.; Wolff, A.; Treede, R.D. Challenges of neuropathic pain: Focus on diabetic neuropathy. J. Neural Transm. 2020, 127, 589–624. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes prevalence and treatment from 1990 to 2022: A pooled analysis of 1108 population-representative studies with 141 million participants. Lancet 2024, 404, 2077–2093. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, Y.; Zhang, X.; Zhu, S.; He, H. Prevalence of peripheral neuropathy in patients with diabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2020, 14, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Ang, L.; Boulton, A.J.M.; Feldman, E.L.; Marcus, R.L.; Mizokami-Stout, K.; Singleton, J.R.; Ziegler, D. Diagnosis and Treatment of Painful Diabetic Peripheral Neuropathy; American Diabetes Association: Arlington, VA, USA, 2022. [Google Scholar]
- Zakir, M.; Ahuja, N.; Surksha, M.A.; Sachdev, R.; Kalariya, Y.; Nasir, M.; Kashif, M.; Shahzeen, F.; Tayyab, A.; Khan, M.S.M.; et al. Cardiovascular Complications of Diabetes: From Microvascular to Macrovascular Pathways. Cureus 2023, 15, e45835. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Asghar, S.; Shahid, S.; Tanvir, H.; Ejaz, M.H.; Akram, M. Prevalence of Metabolic Syndrome and Its Risk Factors Influence on Microvascular Complications in Patients with Type 1 and Type 2 Diabetes Mellitus. Cureus 2024, 16, e55478. [Google Scholar] [CrossRef] [PubMed]
- Otero Sanchez, L.; Zhan, C.Y.; Gomes da Silveira Cauduro, C.; Crenier, L.; Njimi, H.; Englebert, G.; Putignano, A.; Lepida, A.; Degré, D.; Boon, N.; et al. A machine learning-based classification of adult-onset diabetes identifies patients at risk of liver-related complications. JHEP Rep. 2023, 5, 100791. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Hu, Z.; Luo, Y.; Liu, Y.; Luo, W.; Du, X.; Luo, Z.; Hu, J.; Peng, S. Diabetic peripheral neuropathy: Pathogenetic mechanisms and treatment. Front. Endocrinol. 2024, 14, 1265372. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ye, Y.; Yang, L.; Xiao, L.; Liu, J.; Zhang, W.; Du, G. Painful diabetic neuropathy: The role of ion channels. Biomed. Pharmacother. 2024, 173, 116417. [Google Scholar] [CrossRef]
- Tesfaye, S.; Brill, S.; Eerdekens, M.; Labrador, M.M.; Petersen, G.; de Rooij-Peek, A.; Reta, A.; Ryan, D.; Schaper, N.; Tölle, T.; et al. Diagnosis, management and impact of painful diabetic peripheral neuropathy: A patient survey in four European countries. J. Diabetes Complicat. 2023, 37, 108417. [Google Scholar] [CrossRef]
- Themistocleous, A.C.; Ramirez, J.D.; Shillo, P.R.; Lees, J.G.; Selvarajah, D.; Orengo, C.; Tesfaye, S.; Rice, A.S.C.; Bennett, D.L.H. The Pain in Neuropathy Study (PiNS): A cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain 2016, 157, 1132–1145. [Google Scholar] [CrossRef]
- Tsuji, M.; Yasuda, T.; Kaneto, H.; Matsuoka, T.A.; Hirose, T.; Kawamori, R.; Iseki, M.; Shimomura, I.; Shibata, M. Painful diabetic neuropathy in Japanese diabetic patients is common but underrecognized. Pain Res. Treat. 2013, 2013, 318352. [Google Scholar] [CrossRef]
- Ziegler, D.; Landgraf, R.; Lobmann, R.; Reiners, K.; Rett, K.; Schnell, O.; Strom, A. Painful and painless neuropathies are distinct and largely undiagnosed entities in subjects participating in an educational initiative (PROTECT study). Diabetes Res. Clin. Pract. 2018, 139, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Landgraf, R.; Lobmann, R.; Reiners, K.; Rett, K.; Schnell, O.; Strom, A. Polyneuropathy is inadequately treated despite increasing symptom intensity in individuals with and without diabetes (PROTECT follow-up study). J. Diabetes Investig. 2020, 11, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Bouhassira, D.; Attal, N.; Alchaar, H.; Boureau, F.; Brochet, B.; Bruxelle, J.; Cunin, G.; Fermanian, J.; Ginies, P.; Grun-Overdyking, A.; et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005, 114, 29–36. [Google Scholar] [CrossRef]
- Attal, N.; Bouhassira, D.; Baron, R. Diagnosis and assessment of neuropathic pain through questionnaires. Lancet Neurol. 2018, 17, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, D.; Fonseca, V. From guideline to patient: A review of recent recommendations for pharmacotherapy of painful diabetic neuropathy. J. Diabetes Complicat. 2015, 29, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Price, R.; Smith, D.; Franklin, G.; Gronseth, G.; Pignone, M.; David, W.S.; Armon, C.; Perkins, B.A.; Bril, V.; Rae-Grant, A.; et al. Oral and Topical Treatment of Painful Diabetic Polyneuropathy: Practice Guideline Update Summary: Report of the AAN Guideline Subcommittee. Neurology 2022, 98, 31–43. [Google Scholar] [CrossRef]
- Tesfaye, S.; Sloan, G.; Petrie, J.; White, D.; Bradburn, M.; Julious, S.; Rajbhandari, S.; Sharma, S.; Rayman, G.; Gouni, R.; et al. Comparison of amitriptyline supplemented with pregabalin, pregabalin supplemented with amitriptyline, and duloxetine supplemented with pregabalin for the treatment of diabetic peripheral neuropathic pain (OPTION-DM): A multicentre, double-blind, randomised crossover trial. Lancet 2022, 400, 680–690. [Google Scholar] [CrossRef]
- Waldfogel, J.M.; Nesbit, S.A.; Dy, S.M.; Sharma, R.; Zhang, A.; Wilson, L.M.; Bennett, W.L.; Yeh, H.C.; Chelladurai, Y.; Feldman, D.; et al. Pharmacotherapy for diabetic peripheral neuropathy pain and quality of life: A systematic review. Neurology 2017, 88, 1958–1967. [Google Scholar] [CrossRef] [PubMed]
- Korkusuz, S.; Seçkinoğulları, B.; Yürük, Z.Ö.; Uluğ, N.; Kibar, S. Balance and gait in individuals with diabetic peripheral neuropathy. Neurol. Res. 2024, 46, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Finnerup, N.B.; Kuner, R.; Jensen, T.S. Neuropathic Pain: From Mechanisms to Treatment. Physiol. Rev. 2021, 101, 259–301. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, Z.; Ali, M.N.; Khalid, M. An Insight into Potential Pharmacotherapeutic Agents for Painful Diabetic Neuropathy. J. Diabetes Res. 2022, 2022, 9989272. [Google Scholar] [CrossRef] [PubMed]
- Kocot-Kępska, M.; Zajączkowska, R.; Mika, J.; Kopsky, D.J.; Wordliczek, J.; Dobrogowski, J.; Przeklasa-Muszyńska, A. Topical Treatments and Their Molecular/Cellular Mechanisms in Patients with Peripheral Neuropathic Pain-Narrative Review. Pharmaceutics 2021, 13, 450. [Google Scholar] [CrossRef]
- Kopsky, D.J.; Keppel Hesselink, J.M. Phenytoin Cream for the Treatment for Neuropathic Pain: Case Series. Pharmaceuticals 2018, 11, 53. [Google Scholar] [CrossRef]
- Kopsky, D.J.; Keppel Hesselink, J.M. Single-Blind Placebo-Controlled Response Test with Phenytoin 10% Cream in Neuropathic Pain Patients. Pharmaceuticals 2018, 11, 122. [Google Scholar] [CrossRef]
- Kopsky, D.J.; Vrancken, A.F.J.E.; Keppel Hesselink, J.M.; van Eijk, R.P.A.; Notermans, N.C. Usefulness of a Double-Blind Placebo-Controlled Response Test to Demonstrate Rapid Onset Analgesia with Phenytoin 10% Cream in Polyneuropathy. J. Pain Res. 2020, 13, 877–882. [Google Scholar] [CrossRef]
- Kopsky, D.J.; Keppel Hesselink, J.M.; Russell, A.L.; Vrancken, A.F.J.E. No Detectable Phenytoin Plasma Levels After Topical Phenytoin Cream Application in Chronic Pain: Inferences for Mechanisms of Action. J. Pain Res. 2022, 15, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.M.; Kipnes, M.S.; Stouch, B.C.; Brady, K.L.; Kelly, M.; Schmidt, W.K.; Petersen, K.L.; Rowbotham, M.C.; Campbell, J.N. Randomized control trial of topical clonidine for treatment of painful diabetic neuropathy. Pain 2012, 153, 1815–1823. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Barr, T.P.; Hou, Q.; Dib-Hajj, S.D.; Black, J.A.; Albrecht, P.J.; Petersen, K.; Eisenberg, E.; Wymer, J.P.; Rice, F.L.; et al. Voltage-gated sodium channel expression in rat and human epidermal keratinocytes: Evidence for a role in pain. Pain 2008, 139, 90–105. [Google Scholar] [CrossRef] [PubMed]
- Lacinová, L. Pharmacology of recombinant low-voltage activated calcium channels. Curr. Drug Targets CNS Neurol. Disord. 2004, 3, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Powell, K.L.; Cain, S.M.; Snutch, T.P.; O’Brien, T.J. Low threshold T-type calcium channels as targets for novel epilepsy treatments. Br. J. Clin. Pharmacol. 2014, 77, 729–739. [Google Scholar] [CrossRef]
- Cerne, R.; Wakulchik, M.; Krambis, M.J.; Burris, K.D.; Priest, B.T. IonWorks Barracuda Assay for Assessment of State-Dependent Sodium Channel Modulators. Assay Drug Dev. Technol. 2016, 14, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Messing, R.O.; Carpenter, C.L.; Greenberg, D.A. Mechanism of calcium channel inhibition by phenytoin: Comparison with classical calcium channel antagonists. J. Pharmacol. Exp. Ther. 1985, 235, 407–411. [Google Scholar] [CrossRef]
- Dron, M.Y.; Zhigulin, A.S.; Tikhonov, D.B.; Barygin, O.I. Screening for Activity Against AMPA Receptors Among Anticonvulsants-Focus on Phenytoin. Front. Pharmacol. 2021, 12, 775040. [Google Scholar] [CrossRef] [PubMed]
- Cuttle, L.; Munns, A.J.; Hogg, N.A.; Scott, J.R.; Hooper, W.D.; Dickinson, R.G.; Gillam, E.M. Phenytoin metabolism by human cytochrome P450: Involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug Metab. Dispos. 2000, 28, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Sadegh, A.A.; Gehr, N.L.; Finnerup, N.B. A systematic review and meta-analysis of randomized controlled head-to-head trials of recommended drugs for neuropathic pain. Pain Rep. 2024, 9, e1138. [Google Scholar] [CrossRef]
- Simpson, D.M.; Robinson-Papp, J.; Van, J.; Stoker, M.; Jacobs, H.; Snijder, R.J.; Schregardus, D.S.; Long, S.K.; Lambourg, B.; Katz, N. Capsaicin 8% patch in painful diabetic peripheral neuropathy: A randomized, double-blind, placebocontrolled study. J. Pain 2017, 18, 42–53. [Google Scholar] [CrossRef]
- Jang, H.N.; Oh, T.J. Pharmacological and Nonpharmacological Treatments for Painful Diabetic Peripheral Neuropathy. Diabetes Metab. J. 2023, 47, 743–756. [Google Scholar] [CrossRef]
- Pickering, G.; Engelen, S.; Stupar, M.; Ganry, H.; Eerdekens, M. Is the Capsaicin 179 mg (8% w/w) Cutaneous Patch an Appropriate Treatment Option for Older Patients with Peripheral Neuropathic Pain? J. Pain Res. 2024, 17, 1327–1344. [Google Scholar] [CrossRef] [PubMed]
- Derry, S.; Moore, R.A. Topical capsaicin (low concentration) for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2012, 2012, CD010111. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.Y.; Huh, B.K.; White, W.D.; Yeh, C.C.; Miller, E.J. Topical amitriptyline versus lidocaine in the treatment of neuropathic pain. Clin. J. Pain 2008, 24, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Kiani, J.; Ahmad Nasrollahi, S.; Esna-Ashari, F.; Fallah, P.; Sajedi, F. Amitriptyline 2% cream vs. capsaicin 0.75% cream in the treatment of painful diabetic neuropathy (Double blind, randomized clinical trial of efficacy and safety). Iran. J. Pharm. Res. 2015, 14, 1263–1268. [Google Scholar] [PubMed]
- Serednicki, W.T.; Wrzosek, A.; Woron, J.; Garlicki, J.; Dobrogowski, J.; Jakowicka-Wordliczek, J.; Wordliczek, J.; Zajaczkowska, R. Topical clonidine for neuropathic pain in adults. Cochrane Database Syst. Rev. 2022, 5, CD010967. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, J.M.; Vardaxis, V.; Moore, J.L.; Hall, A.M.; Haffner, K.E.; Peterson, M.C. Topical ketamine cream in the treatment of painful diabetic neuropathy: A randomized, placebo-controlled, double-blind initial study. J. Am. Podiatr. Med. Assoc. 2012, 102, 178–183. [Google Scholar] [CrossRef]
- Yang, X.D.; Fang, P.F.; Xiang, D.X.; Yang, Y.Y. Topical treatments for diabetic neuropathic pain. Exp. Ther. Med. 2019, 17, 1963–1976. [Google Scholar] [CrossRef]
- Casselini, C.M.; Parson, H.K.; Frizzi, K.E.; Marquez, A.; Smith, D.R.; Guernsey, L.; Nemmani, R.; Tayarani, A.; Jolivalt, C.G.; Weaver, J.; et al. A muscarinic receptor antagonist reverses multiple indices of diabetic peripheral neuropathy: Preclinical and clinical studies using oxybutynin. Acta Neuropathol. 2024, 147, 60. [Google Scholar] [CrossRef]
- Moore, A.R.; Straube, S.; Paine, J.; Derry, S.; McQuay, H.J. Minimum efficacy criteria for comparisons between treatments using individual patient meta-analysis of acute pain trials: Examples of etoricoxib, paracetamol, ibuprofen, and ibuprofen/paracetamol combinations after third molar extraction. Pain 2011, 152, 982–989. [Google Scholar] [CrossRef] [PubMed]
All Patients n = 65 | ORET+ n = 19 of 42 | SIBRET+ n = 4 of 6 | DOBRET+ n = 8 of 17 | |
---|---|---|---|---|
Age, median (IQR) | 66.0 (58.0–75.0) | 69.0 (56.0–75.0) | 67.5 (58.0–74.0) | 75.0 (61.0–78.8) |
Men/women | 47/18 | 13/6 | 2/2 | 6/2 |
Years of pain, median (IQR) | 4.0 (2.0–9.3) | 5.0 (2.0–10.0) | 6.0 (1.9–16.0) | 2.8 (2.1–5.5) |
Baseline NRS pain intensity, median (IQR) | 7.0 (6.0–8.0) | 8.0 (7.0 –8.0) | 7.0 (5.5–7.8) | 7.0 (5.5–8.0) |
Diabetes Mellitus type 1/2, n/n | 4/61 | 0/19 | 0/4 | 1/7 |
Use of neuropathic pain medication, n (%) | 30 (46.2) | 8 (42.1) | 3 (75.0) | 5 (62.5) |
Use of regular pain medication, n (%) | 12 (18.5) | 6 (31.6) | 0 | 1 (12.5) |
Anatomical Areas of Pain | n (%) | n (%) | n (%) | n (%) |
Toes only | 4 (6.2) | 1 (5.3) | 0 | 1 (12.5) |
Fore feet only | 13 (20.0) | 3 (15.8) | 2 (50.0) | 0 |
Soles only | 2 (3.1) | 0 | 0 | 0 |
Up to Ankles | 24 (36.9) | 10 (52.6) | 0 | 1 (12.5) |
Up to halfway lower legs | 11 (16.9) | 0 | 1 (25.0) | 4 (50.0) |
Up to knees | 11 (16.9) | 5 (26.3) | 1 (25.0) | 2 (25.0) |
Pain Characteristics | n (%) | n (%) | n (%) | n (%) |
Burning | 50 (76.9) | 16 (84.2) | 3 (75.0) | 5 (62.5) |
Painful cold | 23 (35.4) | 9 (47.4) | 0 | 2 (25.0) |
Electric shocks | 18 (27.7) | 6 (31.6) | 1 (25.0) | 1 (12.5) |
Tingling | 54 (83.1) | 17 (89.5) | 4 (100) | 7 (87.5) |
Pins and needles | 58 (89.2) | 18 (94.7) | 3 (75.0) | 7 (87.5) |
Itch | 6 (9.2) | 4 (21.1) | 0 | 1 (12.5) |
Allodynia | 27 (41.5) | 10 (52.6) | 2 (50.0) | 3 (37.5) |
NRS Pain Reduction | Phenytoin | Placebo | Mean Difference | ||||
---|---|---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | Mean | 95% CI | p-Value | |
All patients (n = 17) | 2.1 | 1.3 to 2.8 | 0.3 | −0.5 to 1.0 | 1.8 | 0.8 to 2.8 | 0.001 |
Positive response * (n = 8) | 3.4 | 2.4 to 4.4 | −0.1 | −1.1 to 0.9 | 3.5 | 2.1 to 4.9 | 0.0001 |
Negative response (n = 9) | 0.9 | 0.09 to 1.7 | 0.6 | −0.2 to 1.4 | 0.3 | −0.4 to 1.0 | 0.4 |
% Pain Reduction | Phenytoin | Placebo | Mean Difference | ||||
Mean | 95% CI | Mean | 95% CI | Mean | 95% CI | p-Value | |
All patients (n = 17) | 32.6 | 20.4 to 44.7 | 2.7 | −9.5 to 14.8 | 29.9 | 12.7 to 47.1 | <0.01 |
Positive response * (n = 8) | 52.1 | 34.4 to 69.7 | −3.1 | −20.8 to 14.6 | 55.2 | 30.2 to 80.2 | <0.001 |
Negative response (n = 9) | 15.2 | 1.4 to 29.0 | 7.8 | −6.0 to 21.6 | 7.4 | −7.3 to 22.1 | 0.3 |
All Response Tests+ n = 31 (47.7%) | ORET+ n = 19 (45.2%) | SIBRET+ n = 4 (66.7%) | DOBRET+ n = 8 (47.1%) | |
---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | |
Time to onset of effect (minutes) | 15.0 (10.0–16.3) | 15.0 (10.0–22.5) | 10.0 (6.3–13.8) | 12.5 (3.3–15.0) |
Duration of effect (hours) | 6.0 (3.5–8.0) | 5.0 (3.3–10.0) | 6.0 (5.5–7.0) | 6.0 (3.0–40.0) |
Number of daily applications | 2.3 (2.0–3.0) | 2.0 (2.0–3.4) | 2.5 (2.3–2.8) | 2.0 (0.6–3.5) |
Grams per application | 0.6 (0.6–1.2) | 0.6 (0.6–1.2) | 1.2 (0.9–1.2) | 0.6 (0.6–0.9) |
Grams per daily application | 2.4 (1.7–3.2) | 2.4 (0.9–3.6) | 2.4 (2.1–2.7) | 2.4 (2.1–2.4) |
Duration of use (months) | 3.3 (1.5–12.1) | 3.0 (1.5–10.9) | 5.8 (1.4–11.3) | 6.3 (1.6–34.8) |
Sustained pain reduction (NRS) | 4.0 (3.0–5.0) * | 4.0 (3.0–5.0) * | 4.0 (2.3–6.5) | 3.3 (2.0–4.8) ° |
MPR 30, n (%) | 26 (83.9) | 17 (89.5) | 4 (100) | 5 (62.5) |
MPR 50, n (%) | 21 (67.7) | 16 (84.2) | 2 (50) | 3 (37.5) |
Phenytoin 20% cream use | 15 (48.4) | 9 (47.4) | 0 | 6 (75.0) |
Phenytoin 10% cream use | 16 (51.6) | 10 (52.6) | 4 (100) | 2 (25.0) |
Synonym | Diphenylhydantoin |
---|---|
Chemical formula | C15H12N2O2 |
Chemical name | 5,5-diphenylhydantoin, 5,5-diphenylimidazolidin-2,4-edione |
Molecular weight | 252.268 |
CAS number | 57-41-0 |
Pubchem CID | 1775 |
Melting range: | 286–298 °C |
pKa | 8.3 |
IC50 NaV 1.1: 6.4 ± 1.8 µM (inactivated state) [33] | |
IC50 NaV 1.2: 11.8 ± 1.7 µM (inactivated state) [33] | |
IC50 NaV 1.3: 7.1 µM (inactivated state) [33] | |
IC50 NaV 1.5: 2.1 µM (inactivated state) [33] | |
IC50 NaV 1.6: 7.7 ± 0.8 µM (inactivated state) [33] | |
IC50 NaV 1.7: 4.0 ± 1.2 µM (inactivated state) [33] | |
IC50 L-type CaV: 9.6 ± 2.1 µM [34] | |
IC50 Calcium-impermeable AMPAR: 30 ± 4 µM [35] | |
IC50 Calcium-permeable AMPAR: 250 ± 60 µM [35] | |
Inducer of CYP2C9, CYP2C19, and CYP3A4 [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopsky, D.J.; Vrancken, A.F.J.E.; van Eijk, R.P.A.; Alvarez-Jimenez, R.; Szadek, K.M.; Liebregts, R.; Steegers, M.A.H. Fast Analgesic Effect in Response Test with Topical Phenytoin Cream Correlates with Prolonged Pain Relief After Extended Use in Painful Diabetic Neuropathy. Pharmaceuticals 2025, 18, 228. https://doi.org/10.3390/ph18020228
Kopsky DJ, Vrancken AFJE, van Eijk RPA, Alvarez-Jimenez R, Szadek KM, Liebregts R, Steegers MAH. Fast Analgesic Effect in Response Test with Topical Phenytoin Cream Correlates with Prolonged Pain Relief After Extended Use in Painful Diabetic Neuropathy. Pharmaceuticals. 2025; 18(2):228. https://doi.org/10.3390/ph18020228
Chicago/Turabian StyleKopsky, David J., Alexander F. J. E. Vrancken, Ruben P. A. van Eijk, Ricardo Alvarez-Jimenez, Karolina M. Szadek, Remko Liebregts, and Monique A. H. Steegers. 2025. "Fast Analgesic Effect in Response Test with Topical Phenytoin Cream Correlates with Prolonged Pain Relief After Extended Use in Painful Diabetic Neuropathy" Pharmaceuticals 18, no. 2: 228. https://doi.org/10.3390/ph18020228
APA StyleKopsky, D. J., Vrancken, A. F. J. E., van Eijk, R. P. A., Alvarez-Jimenez, R., Szadek, K. M., Liebregts, R., & Steegers, M. A. H. (2025). Fast Analgesic Effect in Response Test with Topical Phenytoin Cream Correlates with Prolonged Pain Relief After Extended Use in Painful Diabetic Neuropathy. Pharmaceuticals, 18(2), 228. https://doi.org/10.3390/ph18020228