2024 FDA TIDES (Peptides and Oligonucleotides) Harvest
Abstract
:1. Introduction
2. Oligonucleotides
2.1. Imetelstat (RyteloO™)
2.2. Olezarsen (Tryngolza™)
3. Peptides
3.1. Palopegteriparatide (YorvipathTM)
3.2. Pegulicianine (LumisightTM)
3.3. Levacetylleucine (AqneursaTM)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de la Torre, B.G.; Albericio, F. The Pharmaceutical Industry in 2024: An Analysis of the FDA Drug Approvals from the Perspective of Molecules. Molecules 2025, 30, 482. [Google Scholar] [CrossRef] [PubMed]
- Lauffer, M.C.; van Roon-Mom, W.; Aartsma-Rus, A.; N = 1 Collaborative. Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders. Commun. Med. 2024, 4, 6. [Google Scholar] [CrossRef]
- Padda, I.S.; Mahtani, A.U.; Patel, P.; Parmar, M. Small Interfering RNA (siRNA) Therapy. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Mohammed, A.A.; AlShaer, D.; Al Musaimi, O. Oligonucleotides: Evolution and innovation. Med. Chem. Res. 2024, 33, 2204–2220. [Google Scholar] [CrossRef]
- Defitelio Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/208114lbl.pdf (accessed on 28 January 2021).
- Hoy, S.M. Patisiran: First Global Approval. Drugs 2018, 78, 1625–1631. [Google Scholar] [CrossRef]
- Scott, L.J. Givosiran: First Approval. Drugs 2020, 80, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J. Imetelstat: First Approval. Drugs 2024, 84, 1149–1155. [Google Scholar] [CrossRef]
- Gryaznov, S.M. Oligonucleotide N3′→P5′ Phosphoramidates and Thio-Phoshoramidates as Potential Therapeutic Agents. Chem. Biodivers. 2010, 7, 477–493. [Google Scholar] [CrossRef] [PubMed]
- Curtius, T. Ueber einige neue der Hippursäure analog constituirte, synthetisch dargestellte Amidosäuren. J. Prakt. Chemie 1882, 26, 145–208. [Google Scholar] [CrossRef]
- Fischer, E.; Fourneau, E. Ueber einige Derivate des Glykocolls. Ber. Dtsch. Chem. Bunsenges 1901, 34, 2868–2877. [Google Scholar] [CrossRef]
- Scott, D.A.; Best, C.H. The Preparation of Insulin. Ind. Eng. Chem. 1925, 17, 238–240. [Google Scholar] [CrossRef]
- Al Musaimi, O. Exploring FDA-Approved Frontiers: Insights into Natural and Engineered Peptide Analogues in the GLP-1, GIP, GHRH, CCK, ACTH, and α-MSH Realms. Biomolecules 2024, 14, 264. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018, 26, 2700–2707. [Google Scholar] [CrossRef]
- Merrifield, R.B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149–2154. [Google Scholar] [CrossRef]
- Al Musaimi, O.; Lombardi, L.; Williams, D.R.; Albericio, F. Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals 2022, 15, 1283. [Google Scholar] [CrossRef] [PubMed]
- Rytelo Approval Letter. 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2024/217779Orig1s000ltr.pdf (accessed on 17 February 2025).
- Tryngolz Approval Letter. 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2024/218614Orig1s000ltr.pdf (accessed on 17 February 2025).
- Yorvipath Approval Letter. 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2024/216490Orig1s000ltr.pdf (accessed on 17 February 2025).
- Lumisight Approval Letter. 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2024/214511Orig1s000ltr.pdf (accessed on 17 February 2025).
- Aqneursa Approval Letter. 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2024/219132Orig1s000ltr.pdf (accessed on 17 February 2025).
- Rytelo Drug Label. 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/217779s000lbl.pdf (accessed on 17 February 2025).
- Yu, R.Z.; Graham, M.J.; Post, N.; Riney, S.; Zanardi, T.; Hall, S.; Burkey, J.; Shemesh, C.S.; Prakash, T.P.; Seth, P.P.; et al. Disposition and Pharmacology of a GalNAc3-conjugated ASO Targeting Human Lipoprotein (a) in Mice. Mol. Ther. Nucleic Acids 2016, 5, e317. [Google Scholar] [CrossRef]
- Al Shaer, D.; Al Musaimi, O.; Albericio, F.; de la Torre, B.G. 2023 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals 2024, 17, 243. [Google Scholar] [CrossRef]
- Katzmann, J.L.; Packard, C.J.; Chapman, M.J.; Katzmann, I.; Laufs, U. Targeting RNA with Antisense Oligonucleotides and Small Interfering RNA: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 563–579. [Google Scholar] [CrossRef]
- Lucero, J.; Al-Harbi, S.; Yee, K.W.L. Management of Patients with Lower-Risk Myelodysplastic Neoplasms (MDS). Curr. Oncol. 2023, 30, 6177–6196. [Google Scholar] [CrossRef]
- Asai, A.; Oshima, Y.; Yamamoto, Y.; Uochi, T.A.; Kusaka, H.; Akinaga, S.; Yamashita, Y.; Pongracz, K.; Pruzan, R.; Wunder, E.; et al. A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res. 2003, 63, 3931–3939. [Google Scholar] [PubMed]
- Lennox, A.L.; Huang, F.; Behrs, M.K.; González-Sales, M.; Bhise, N.; Wan, Y.; Sun, L.; Berry, T.; Feller, F.; Morcos, P.N. Imetelstat, a novel, first-in-class telomerase inhibitor: Mechanism of action, clinical, and translational science. Clin. Transl. Sci. 2024, 17, e70076. [Google Scholar] [CrossRef]
- Tryngolz Drug Label. 2024. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/218614s000lbl.pdf (accessed on 17 February 2025).
- Gaudet, D.; Brisson, D.; Tremblay, K.; Alexander, V.J.; Singleton, W.; Hughes, S.G.; Geary, R.S.; Baker, B.F.; Graham, M.J.; Crooke, R.M.; et al. Targeting APOC3 in the Familial Chylomicronemia Syndrome. N. Engl. J. Med. 2014, 371, 2200–2206. [Google Scholar] [CrossRef]
- Karwatowska-Prokopczuk, E.; Lesogor, A.; Yan, J.H.; Hoenlinger, A.; Margolskee, A.; Li, L.; Tsimikas, S. Efficacy and safety of olezarsen in lowering apolipoprotein C-III and triglycerides in healthy Japanese Americans. Lipids Health Dis. 2024, 23, 329. [Google Scholar] [CrossRef] [PubMed]
- Bergmark, B.A.; Marston, N.A.; Prohaska, T.A.; Alexander, V.J.; Zimerman, A.; Moura, F.A.; Murphy, S.A.; Goodrich, E.L.; Zhang, S.; Gaudet, D.; et al. Olezarsen for Hypertriglyceridemia in Patients at High Cardiovascular Risk. N. Engl. J. Med. 2024, 390, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Stroes, E.S.G.; Alexander, V.J.; Karwatowska-Prokopczuk, E.; Hegele, R.A.; Arca, M.; Ballantyne, C.M.; Soran, H.; Prohaska, T.A.; Xia, S.; Ginsberg, H.N.; et al. Olezarsen, Acute Pancreatitis, and Familial Chylomicronemia Syndrome. N. Engl. J. Med. 2024, 390, 1781–1792. [Google Scholar] [CrossRef]
- Spagnuolo, C.M.; Hegele, R.A. Recent advances in treating hypertriglyceridemia in patients at high risk of cardiovascular disease with apolipoprotein C-III inhibitors. Expert Opin. Pharmacother. 2023, 24, 1013–1020. [Google Scholar] [CrossRef] [PubMed]
- Witztum, J.L.; Gaudet, D.; Freedman, S.D.; Alexander, V.J.; Digenio, A.; Williams, K.R.; Yang, Q.; Hughes, S.G.; Geary, R.S.; Arca, M.; et al. Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N. Engl. J. Med. 2019, 381, 531–542. [Google Scholar] [CrossRef]
- Starling, S. Promising findings in PTH replacement therapy trial. Nat. Rev. Endocrinol. 2023, 19, 4. [Google Scholar] [CrossRef]
- Lumisight Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/214511s000lbl.pdf (accessed on 17 February 2025).
- Yorvipath Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/216490s000lbl.pdf (accessed on 17 February 2025).
- Rejnmark, L. Treatment of Hypoparathyroidism by Re-Establishing the Effects of Parathyroid Hormone. Endocrinol. Metab. 2024, 39, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Rejnmark, L.; Gosmanova, E.O.; Khan, A.A.; Makita, N.; Imanishi, Y.; Takeuchi, Y.; Sprague, S.; Shoback, D.M.; Kohlmeier, L.; Rubin, M.R.; et al. Palopegteriparatide Treatment Improves Renal Function in Adults with Chronic Hypoparathyroidism: 1-Year Results from the Phase 3 PaTHway Trial. Adv. Ther. 2024, 41, 2500–2518. [Google Scholar] [CrossRef]
- Khan, A.A.; Rubin, M.R.; Schwarz, P.; Vokes, T.; Shoback, D.M.; Gagnon, C.; Palermo, A.; Marcocci, C.; Clarke, B.L.; Abbott, L.G.; et al. Efficacy and Safety of Parathyroid Hormone Replacement With TransCon PTH in Hypoparathyroidism: 26-Week Results from the Phase 3 PaTHway Trial. J. Bone Miner. Res. 2023, 38, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, P.; Rejnmark, L.; Gosmanova, E.; Khan, A.; Makita, N.; Imanishi, Y.; Takeuchi, Y.; Sprague, S.; Shoback, D.M.; Kohlmeier, L.; et al. Sustained improvement in renal function with palopegteriparatide in adults with chronic hypoparathyroidism: 2-year results from the phase 3 PaTHway trial. In Endocrine Abstracts; Bioscientifica: Bristol, UK, 2024. [Google Scholar] [CrossRef]
- Clarke, B.L.; Khan, A.A.; Rubin, M.R.; Schwarz, P.; Vokes, T.; Shoback, D.M.; Gagnon, C.; Palermo, A.; Abbott, L.G.; Hofbauer, L.C.; et al. Efficacy and Safety of TransCon PTH in Adults With Hypoparathyroidism: 52-Week Results From the Phase 3 PaTHway Trial. J. Clin. Endocrinol. Metab. 2024, dgae693. [Google Scholar] [CrossRef]
- Takacs, I.; Mezosi, E.; Soto, A.; Kamenický, P.; Figueres, L.; Galvez Moreno, M.A.; Lemoine, S.; Borson-Chazot, F.; Capel, I.; Ouldrouis, T.; et al. An Open-label Phase 2 Study of Eneboparatide, a Novel PTH Receptor 1 Agonist, in Hypoparathyroidism. J. Clin. Endocrinol. Metab. 2024, 109, 2199–2209. [Google Scholar] [CrossRef]
- Gafni, R.I.; Hartley, I.R.; Roszko, K.L.; Nemeth, E.F.; Pozo, K.A.; Lombardi, E.; Sridhar, A.V.; Roberts, M.S.; Fox, J.C.; Collins, M.T. Efficacy and Safety of Encaleret in Autosomal Dominant Hypocalcemia Type 1. N. Eng. J. Med. 2023, 389, 1245–1247. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.; Satapathy, P.; Sharma, R.K.; Sharma, D.; Arora, M.; Khatib, M.N.; Gaidhane, S.; Zahiruddin, Q.S.; Rustagi, S. Pegulicianine: A game changer for image-guided breast cancer surgery. Int. J. Surg. Open 2024, 62, 452–453. [Google Scholar] [CrossRef]
- Whitley, M.J.; Cardona, D.M.; Lazarides, A.L.; Spasojevic, I.; Ferrer, J.M.; Cahill, J.; Lee, C.L.; Snuderl, M.; Blazer, D.G., III; Hwang, E.S.; et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci. Transl. Med. 2016, 8, 320ra324. [Google Scholar] [CrossRef] [PubMed]
- Sekar, R.B.; Periasamy, A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 2003, 160, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Wapnir, I.; Hwang, E.S.; Hunt, K.; Carr, D.; Blumencranz, P.; Chang, M.; Smith, K.; Ferrer, J.; Smith, B. Abstract PO5-22-09: Positive pegulicianine fluorescence rate in the lumpectomy cavity correlates with tumor distance to margins in excised tissue. Cancer Res. 2024, 84 (Suppl. S9), PO5-22-09. [Google Scholar] [CrossRef]
- Hwang, E.S.; Beitsch, P.; Blumencranz, P.; Carr, D.; Chagpar, A.; Clark, L.; Dekhne, N.; Dodge, D.; Dyess, D.L.; Gold, L.; et al. Clinical Impact of Intraoperative Margin Assessment in Breast-Conserving Surgery With a Novel Pegulicianine Fluorescence–Guided System: A Nonrandomized Controlled Trial. JAMA Surg. 2022, 157, 573–580. [Google Scholar] [CrossRef]
- Smith, B.L.; Hunt, K.K.; Carr, D.; Blumencranz, P.W.; Hwang, E.S.; Gadd, M.A.; Stone, K.; Dyess, D.L.; Dodge, D.; Valente, S.; et al. Intraoperative Fluorescence Guidance for Breast Cancer Lumpectomy Surgery. NEJM Evid. 2023, 2, EVIDoa2200333. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves Imaging Drug to Assist in Detection of Cancerous Tissue Following Lumpectomy. 2024. Available online: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-imaging-drug-assist-detection-cancerous-tissue-following-lumpectomy (accessed on 17 February 2025).
- Investigation of Novel Surgical Imaging for Tumor Excision (INSITE). Available online: https://clinicaltrials.gov/study/NCT03686215 (accessed on 17 February 2025).
- Aqneurs Drug Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2024/219132s000lbl.pdf (accessed on 17 February 2025).
- Klein, A.D.; Eden, E.R.; Zanlungo, S. Treating Niemann-Pick C lysosomal storage: Approved and emerging approaches. Trends Mol. Med. 2024, 31, 195–196. [Google Scholar] [CrossRef] [PubMed]
- Tifft, C.J. N-Acetyl-l-Leucine and Neurodegenerative Disease. N. Engl. J. Med. 2024, 390, 467–470. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves New Drug to Treat Niemann-Pick Disease, Type C. 2024. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treat-niemann-pick-disease-type-c (accessed on 17 February 2025).
- Pineda, M.; Walterfang, M.; Patterson, M.C. Miglustat in Niemann-Pick disease type C patients: A review. Orphanet J. Rare Dis. 2018, 13, 140. [Google Scholar] [CrossRef] [PubMed]
- Bremova-Ertl, T.; Claassen, J.; Foltan, T.; Gascon-Bayarri, J.; Gissen, P.; Hahn, A.; Hassan, A.; Hennig, A.; Jones, S.A.; Kolnikova, M.; et al. Efficacy and safety of N-acetyl-l-leucine in Niemann–Pick disease type C. J. Neurol. 2022, 269, 1651–1662. [Google Scholar] [CrossRef] [PubMed]
- Kaya, E.; Smith, D.A.; Smith, C.; Boland, B.; Strupp, M.; Platt, F.M. Beneficial Effects of Acetyl-DL-Leucine (ADLL) in a Mouse Model of Sandhoff Disease. J. Clin. Med. 2020, 9, 1050. [Google Scholar] [CrossRef]
- Kaya, E.; Smith, D.A.; Smith, C.; Morris, L.; Bremova-Ertl, T.; Cortina-Borja, M.; Fineran, P.; Morten, K.J.; Poulton, J.; Boland, B.; et al. Acetyl-leucine slows disease progression in lysosomal storage disorders. Brain Commun. 2020, 3, fcaa148. [Google Scholar] [CrossRef] [PubMed]
- Bremova-Ertl, T.; Ramaswami, U.; Brands, M.; Foltan, T.; Gautschi, M.; Gissen, P.; Gowing, F.; Hahn, A.; Jones, S.; Kay, R.; et al. Trial of N-Acetyl-l-Leucine in Niemann–Pick Disease Type C. N. Engl. J. Med. 2024, 390, 421–431. [Google Scholar] [CrossRef]
- Bray, B.L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov. 2003, 2, 587–593. [Google Scholar] [CrossRef]
- Al Musaimi, O. FDA’s stamp of approval: Unveiling peptide breakthroughs in cardiovascular diseases, ACE, HIV, CNS, and beyond. J. Pept. Sci. 2024, 30, e3627. [Google Scholar] [CrossRef] [PubMed]
- del Olmo-Garcia, M.I.; Merino-Torres, J.F. GLP-1 Receptor Agonists and Cardiovascular Disease in Patients with Type 2 Diabetes. J. Diabetes Res. 2018, 2018, 4020492. [Google Scholar] [CrossRef]
- Martins, A.C.; de la Torre, B.G.; Albericio, F. Glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide agonists for the treatment of obesity and diabetes mellitus. Explor. Drug Sci. 2024, 2, 126–143. [Google Scholar] [CrossRef]
- Bicycle Is Developing Several Molecules in the Clinic, and Advancing Many Additional Discovery-Stage Projects. 2024. Available online: https://www.bicycletherapeutics.com/pipeline/pipeline/ (accessed on 17 February 2025).
- Alnylam Pipeline. 2024. Available online: https://www.alnylam.com/alnylam-rnai-pipeline (accessed on 17 February 2025).
- Zealand Pharama Pipeline. 2024. Available online: https://www.zealandpharma.com/pipeline/ (accessed on 17 February 2025).
- Novo Nordisk Pipeline. 2024. Available online: https://www.novonordisk.com/science-and-technology/r-d-pipeline.html (accessed on 17 February 2025).
- Eli Lilly and Company Pipeline. 2024. Available online: https://www.lilly.com/innovation/clinical-development-pipeline# (accessed on 17 February 2025).
- Unveiling the Phenomenal Rise of Peptide Therapeutics: A Whopping 10.8% CAGR Propels Market Value to US$ 106.0 Billion by 2033. Available online: https://www.pharmiweb.com/press-release/2023-07-25/unveiling-the-phenomenal-rise-of-peptide-therapeutics-a-whopping-108-cagr-propels-market-value-to (accessed on 17 February 2025).
- Ma, H.; Zhou, X.; Zhang, Z.; Weng, Z.; Li, G.; Zhou, Y.; Yao, Y. AI-Driven Design of Cell-Penetrating Peptides for Therapeutic Biotechnology. Int. J. Pept. Res. Ther. 2024, 30, 69. [Google Scholar] [CrossRef]
- Chang, L.; Mondal, A.; Singh, B.; Martínez-Noa, Y.; Perez, A. Revolutionizing peptide-based drug discovery: Advances in the post-AlphaFold era. WIREs Comput. Mol. Sci. 2024, 14, e1693. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Li, R.; Zhang, S.; Sun, Y.; Huang, L.; Jiang, M.; Xu, D.; Xu, W. Deep Learning Combined with Quantitative Structure–Activity Relationship Accelerates De Novo Design of Antifungal Peptides. Adv. Sci. 2025, e2412488. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, M.; Liu, F.; Liang, Z.; Hong, R.; Dong, Y.; Luan, H.; Fu, X.; Yuan, W.; Fang, W.; et al. Artificial intelligence using a latent diffusion model enables the generation of diverse and potent antimicrobial peptides. Sci. Adv. 2025, 11, eadp7171. [Google Scholar] [CrossRef] [PubMed]
- Barroso, R.A.; Agüero-Chapin, G.; Sousa, R.; Marrero-Ponce, Y.; Antunes, A. Unlocking Antimicrobial Peptides: In Silico Proteolysis and Artificial Intelligence-Driven Discovery from Cnidarian Omics. Molecules 2025, 30, 550. [Google Scholar] [CrossRef] [PubMed]
No. | Active Ingredient (Trade Name) | Indication | Therapeutic Target | Administration Route | Ref. |
---|---|---|---|---|---|
Oligonucleotides | |||||
1 | Imetelstat (RyteloTM) | Treatment of adult patients with low- to intermediate-1 risk myelodysplastic syndromes (MDSs) with transfusion-dependent anemia for whom erythropoiesis-stimulating agents (ESA) are not suitable. | Telomerase RNA-template | Intravenously | [17] |
2 | Olezarsen (TryngolzaTM) | An adjunct to diet to reduce triglycerides in adults with familial chylomicronemia syndrome (FCS). | APOC-III mRNA | Subcutaneously | [18] |
Peptides | |||||
3 | Palopegteriparatide (YorvipathTM) | To treat hypoparathyroidism in adults. | PTH1R | Subcutaneously | [19] |
4 | Pegulicianine (LumisightTM) | Adjunct to detect cancerous tissue within the resection cavity intraoperatively after removing the primary specimen during lumpectomy. | Cancerous tissue within the resection cavity | Intravenously | [20] |
5 | Levacetylleucine (AqneursaTM) | To treat Niemann–Pick disease type C (NPC). | Unknown | Oral suspension | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Musaimi, O.; AlShaer, D.; de la Torre, B.G.; Albericio, F. 2024 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals 2025, 18, 291. https://doi.org/10.3390/ph18030291
Al Musaimi O, AlShaer D, de la Torre BG, Albericio F. 2024 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals. 2025; 18(3):291. https://doi.org/10.3390/ph18030291
Chicago/Turabian StyleAl Musaimi, Othman, Danah AlShaer, Beatriz G. de la Torre, and Fernando Albericio. 2025. "2024 FDA TIDES (Peptides and Oligonucleotides) Harvest" Pharmaceuticals 18, no. 3: 291. https://doi.org/10.3390/ph18030291
APA StyleAl Musaimi, O., AlShaer, D., de la Torre, B. G., & Albericio, F. (2025). 2024 FDA TIDES (Peptides and Oligonucleotides) Harvest. Pharmaceuticals, 18(3), 291. https://doi.org/10.3390/ph18030291