Microwave-Assisted Synthesis of Morpholine-Based Chalcones as Reversible MAO-A Inhibitors in the Management of Mental Depression
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Assays
2.2.1. MAO Enzymes Inhibition Assay
2.2.2. Reversibility Inhibition Study
2.2.3. Structure–Activity Relationship (SAR) Study
2.2.4. Antioxidant Activity Assay
2.3. Molecular Docking Study
2.4. ADME Pharmacokinetics Study
3. Material and Methods
3.1. General Information
3.2. Conventional Method (CM) of Synthesis
3.3. Microwave-Assisted Method of Synthesis
3.4. Spectral Characterization Data
3.4.1. (E)-3-(4-Bromophenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C1)
3.4.2. (E)-3-(3,4-Dichlorophenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C2)
3.4.3. (E)-3-(4-Fluorophenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C3)
3.4.4. (E)-3-(3,4-Dimethoxyphenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C4)
3.4.5. (E)-3-(4-Bromo-3-fluorophenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C5)
3.4.6. (E)-3-(3,4-Difluorophenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C6)
3.4.7. (E)-3-(4-Chlorophenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C7)
3.4.8. (E)-1-(4-Morpholinophenyl)-3-(m-tolyl)prop-2-en-1-one (C8)
3.4.9. (E)-1-(4-Morpholinophenyl)-3-(p-tolyl)prop-2-en-1-one (C9)
3.4.10. (E)-3-(3-Fluorophenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C10)
3.4.11. (E)-3-(2-Methoxyphenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C11)
3.4.12. (E)-3-(2-Chlorophenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C12)
3.4.13. (E)-3-(4-Ethylphenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C13)
3.4.14. (E)-3-(2,4-Difluorophenyl)-1-(4-morpholinophenyl)prop-2-en-1-one (C14)
3.4.15. (E)-1-(4-Morpholinophenyl)-3-(o-tolyl)prop-2-en-1-one (C15)
3.5. MAO Inhibition Assay
3.6. Reversibility Inhibition Studies
3.7. Antioxidant Assay
3.8. Molecular Docking and ADME Pharmacokinetic Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mei, F.; Wang, Z. Trends in Mental Health: A Review of the Most Influential Research on Depression in Children and Adolescents. Ann. Gen. Psychiatry 2024, 23, 36. [Google Scholar] [CrossRef]
- World Health Organization. Depressive Disorder (Depression). 2023. Available online: Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Depression (accessed on 22 December 2024).
- Choudhary, D.; Kumar, B.; Kaur, R. Nitrogen-Containing Heterocyclic Compounds: A Ray of Hope in Depression? Chem. Biol. Drug Des. 2024, 103, e14479. [Google Scholar] [CrossRef]
- Mohammadi, S.; Seyedmirzaei, H.; Salehi, M.A.; Jahanshahi, A.; Zakavi, S.S.; Dehghani Firouzabadi, F.; Yousem, D.M. Brain-Based Sex Differences in Depression: A Systematic Review of Neuroimaging Studies. Brain Imaging Behav. 2023, 17, 541–569. [Google Scholar] [CrossRef] [PubMed]
- Lovero, K.L.; Dos Santos, P.F.; Come, A.X.; Wainberg, M.L.; Oquendo, M.A. Suicide in Global Mental Health. Curr. Psychiatry Rep. 2023, 25, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Penninx, B.W.J.H.; Solmi, M.; Furukawa, T.A.; Firth, J.; Carvalho, A.F.; Berk, M. Major Depressive Disorder. Nat. Rev. Dis. Prim. 2023, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.W.K.; Georgieva, M.G.; Atanasov, A.G.; Tzvetkov, N.T. Monoamine Oxidases (MAOs) as Privileged Molecular Targets in Neuroscience: Research Literature Analysis. Front. Mol. Neurosci. 2019, 12, 143. [Google Scholar] [CrossRef]
- Gaweska, H.; Fitzpatrick, P.F. Structures and Mechanism of the Monoamine Oxidase Family. Biomol. Concepts 2011, 2, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.N.; Raghanti, M.A. The Role of Monoamine Oxidase Enzymes in the Pathophysiology of Neurological Disorders. J. Chem. Neuroanat. 2021, 114, 101957. [Google Scholar] [CrossRef]
- Bhawna; Kumar, A.; Bhatia, M.; Kapoor, A.; Kumar, P.; Kumar, S. Monoamine Oxidase Inhibitors: A Concise Review with Special Emphasis on Structure Activity Relationship Studies. Eur. J. Med. Chem. 2022, 242, 114655. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.Y.; Jenner, P.; Chen, S. Di Monoamine Oxidase-B Inhibitors for the Treatment of Parkinson’s Disease: Past, Present, and Future. J. Parkinsons Dis. 2022, 12, 477–493. [Google Scholar] [CrossRef]
- Thomas, T. Monoamine Oxidase-B Inhibitors in the Treatment of Alzheimers Disease. Neurobiol. Aging 2000, 21, 343–348. [Google Scholar] [CrossRef]
- Kumar, B.; Sheetal; Mantha, A.K.; Kumar, V. Recent Developments on the Structure-Activity Relationship Studies of MAO Inhibitors and Their Role in Different Neurological Disorders. RSC Adv. 2016, 6, 42660–42683. [Google Scholar] [CrossRef]
- Birkenhager, T.K.; Heijnen, W.T. Monoamine Oxidase Inhibitors: Seriously Underused in the Treatment of Major Depression. Acta Psychiatr. Scand. 2024, 150, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Baweja, G.S.; Gupta, S.; Kumar, B.; Patel, P.; Asati, V. Recent Updates on Structural Insights of MAO-B Inhibitors: A Review on Target-Based Approach. Mol. Divers. 2024, 28, 1823–1845. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, D.; Kaur, R.; Singh, T.G.; Kumar, B. Pyrazoline Derivatives as Promising MAO-A Targeting Antidepressants: An Update. Curr. Top. Med. Chem. 2024, 24, 401–415. [Google Scholar] [CrossRef]
- Hubálek, F.; Pohl, J.; Edmondson, D.E. Structural Comparison of Human Monoamine Oxidases A and B: Mass Spectrometry Monitoring of Cysteine Reactivities. J. Biol. Chem. 2003, 278, 28612–28618. [Google Scholar] [CrossRef] [PubMed]
- Binda, C.; Mattevi, A.; Edmondson, D.E. Structural Properties of Human Monoamine Oxidases A and B. Int. Rev. Neurobiol. 2011, 100, 1–11. [Google Scholar] [CrossRef]
- Geha, R.M.; Chen, K.; Wouters, J.; Shih, J.C. Analysis of Conserved Active Site Residues in Monoamine Oxidase A and B and Their Three-Dimensional Molecular Modeling. J. Biol. Chem. 2002, 277, 17209–17216. [Google Scholar] [CrossRef] [PubMed]
- Shalaby, M.A.; Rizk, S.A.; Fahim, A.M. Synthesis, Reactions and Application of Chalcones: A Systematic Review. Org. Biomol. Chem. 2023, 21, 5317–5346. [Google Scholar] [CrossRef] [PubMed]
- Mellado, M.; Espinoza, L.; Madrid, A.; Mella, J.; Chávez-Weisser, E.; Diaz, K.; Cuellar, M. Design, Synthesis, Antifungal Activity, and Structure–Activity Relationship Studies of Chalcones and Hybrid Dihydrochromane–Chalcones. Mol. Divers. 2020, 24, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Fakhrudin, N.; Pertiwi, K.K.; Takubessi, M.I.; Susiani, E.F.; Nurrochmad, A.; Widyarini, S.; Sudarmanto, A.; Nugroho, A.A.; Wahyuono, S. A Geranylated Chalcone with Antiplatelet Activity from the Leaves of Breadfruit (Artocarpus Altilis). Pharmacia 2020, 67, 173–180. [Google Scholar] [CrossRef]
- Higgs, J.; Wasowski, C.; Marcos, A.; Jukič, M.; Paván, C.H.; Gobec, S.; de Tezanos Pinto, F.; Colettis, N.; Marder, M. Chalcone Derivatives: Synthesis, in Vitro and in Vivo Evaluation of Their Anti-Anxiety, Anti-Depression and Analgesic Effects. Heliyon 2019, 5, e01376. [Google Scholar] [CrossRef] [PubMed]
- Baramaki, I.; Altıntop, M.D.; Arslan, R.; Alyu Altınok, F.; Özdemir, A.; Dallali, I.; Hasan, A.; Bektaş Türkmen, N. Design, Synthesis, and In Vivo Evaluation of a New Series of Indole-Chalcone Hybrids as Analgesic and Anti-Inflammatory Agents. ACS Omega 2024, 9, 12175–12183. [Google Scholar] [CrossRef] [PubMed]
- Escrivani, D.O.; Charlton, R.L.; Caruso, M.B.; Burle-Caldas, G.A.; Borsodi, M.P.G.; Zingali, R.B.; Palmeira-Mello, M.V.; De Jesus, J.B.; Souza, A.M.T.; Abrahim-Vieira, B.; et al. Chalcones Identify CTXNPx as a Potential Antileishmanial Drug Target. PLoS Negl. Trop. Dis. 2021, 15, e0009951. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.; Sousa, A.; Ribeiro, D.; Correia, C.M.; Silva, V.L.M.; Santos, C.M.M.; Silva, A.M.S.; Araújo, A.N.; Fernandes, E.; Freitas, M. A Study towards Drug Discovery for the Management of Type 2 Diabetes: Mellitus through Inhibition of the Carbohydrate-Hydrolyzing Enzymes α-Amylase and α-Glucosidase by Chalcone Derivatives. Food Funct. 2019, 10, 5510–5520. [Google Scholar] [CrossRef]
- Yadav, N.; Dixit, S.K.; Bhattacharya, A.; Mishra, L.C.; Sharma, M.; Awasthi, S.K.; Bhasin, V.K. Antimalarial Activity of Newly Synthesized Chalcone Derivatives In Vitro. Chem. Biol. Drug Des. 2012, 80, 340–347. [Google Scholar] [CrossRef]
- Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021, 11, 894. [Google Scholar] [CrossRef] [PubMed]
- Amole, K.L.; Bello, I.A.; Oyewale, A.O. Synthesis, Characterization and Antibacterial Activities of New Fluorinated Chalcones. Chem. Africa 2019, 2, 47–55. [Google Scholar] [CrossRef]
- Bale, A.T.; Salar, U.; Khan, K.M.; Chigurupati, S.; Fasina, T.; Ali, F.; Ali, M.; Nanda, S.S.; Taha, M.; Perveen, S. Chalcones and Bis-Chalcones Analogs as DPPH and ABTS Radical Scavengers. Lett. Drug Des. Discov. 2020, 18, 249–257. [Google Scholar] [CrossRef]
- Setshedi, K.J.; Beteck, R.M.; Ilbeigi, K.; Mabille, D.; Caljon, G.; Legoabe, L.J. Synthesis and in Vitro Biological Activity of Chalcone Derivatives as Potential Antiparasitic Agents. Med. Chem. Res. 2024, 33, 977–988. [Google Scholar] [CrossRef]
- Mishra, S.; Jana, P. Chalcones as Anti-Infective Agents for Effective Management of Tuberculosis. Polycycl. Aromat. Compd. 2023, 44, 5640–5662. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, B.P.; Abdelgawad, M.A.; Ghoneim, M.M.; Bakr, R.B.; Kim, H.; Mathew, B. Inhibition of Monoamine Oxidases by Heterocyclic Derived Conjugated Dienones: Synthesis and in Vitro and in Silico Investigations. RSC Med. Chem. 2025, 16, 221–231. [Google Scholar] [CrossRef]
- Minders, C.; Petzer, J.P.; Petzer, A.; Lourens, A.C.U. Monoamine Oxidase Inhibitory Activities of Heterocyclic Chalcones. Bioorganic Med. Chem. Lett. 2015, 25, 5270–5276. [Google Scholar] [CrossRef] [PubMed]
- Lakshminarayanan, B.; Baek, S.C.; Lee, J.P.; Kannappan, N.; Mangiatordi, G.F.; Nicolotti, O.; Subburaju, T.; Kim, H.; Mathew, B. Ethoxylated Head of Chalcones as a New Class of Multi-Targeted MAO Inhibitors. ChemistrySelect 2019, 4, 6614–6619. [Google Scholar] [CrossRef]
- Nair, N.P.; Ahmed, S.K.; Kin, N.M. Biochemistry and Pharmacology of Reversible Inhibitors of MAO-A Agents: Focus on Moclobemide. J. Psychiatry Neurosci. 1993, 18, 214–225. [Google Scholar]
- Shalaby, R.; Petzer, J.P.; Petzer, A.; Ashraf, U.M.; Atari, E.; Alasmari, F.; Kumarasamy, S.; Sari, Y.; Khalil, A. SAR and Molecular Mechanism Studies of Monoamine Oxidase Inhibition by Selected Chalcone Analogs. J. Enzyme Inhib. Med. Chem. 2019, 34, 863–876. [Google Scholar] [CrossRef]
- Mathew, B.; Baek, S.C.; Thomas Parambi, D.G.; Lee, J.P.; Mathew, G.E.; Jayanthi, S.; Vinod, D.; Rapheal, C.; Devikrishna, V.; Kondarath, S.S.; et al. Potent and Highly Selective Dual-Targeting Monoamine Oxidase-B Inhibitors: Fluorinated Chalcones of Morpholine versus Imidazole. Arch. Pharm. 2019, 352, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, R.; Eom, B.H.; Heo, J.H.; Park, J.E.; Abdelgawad, M.A.; Musa, A.; Gambacorta, N.; Nicolotti, O.; Manju, S.L.; Mathew, B.; et al. Morpholine-Based Chalcones as Dual-Acting Monoamine Oxidase-B and Acetylcholinesterase Inhibitors: Synthesis and Biochemical Investigations. J. Enzyme Inhib. Med. Chem. 2021, 36, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Parmbil, S.K.; Pandit, N.K.; Kumar, S.; Syed, A.; Elgorban, A.M.; Wong, L.S.; Ranjana; Kim, H.; Mathew, B. Development of Morpholine Ring-Bearing Halogenated α,β-Unsaturated Ketones as Selective Monoamine Oxidase-B Inhibitors. Appl. Biol. Chem. 2024, 67, 6. [Google Scholar] [CrossRef]
- Lenci, E.; Calugi, L.; Trabocchi, A. Occurrence of Morpholine in Central Nervous System Drug Discovery. ACS Chem. Neurosci. 2021, 12, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Karunanidhi, S.; Chandrasekaran, B.; Karpoormath, R.; Patel, H.M.; Kayamba, F.; Merugu, S.R.; Kumar, V.; Dhawan, S.; Kushwaha, B.; Mahlalela, M.C. Novel Thiomorpholine Tethered Isatin Hydrazones as Potential Inhibitors of Resistant Mycobacterium Tuberculosis. Bioorg. Chem. 2021, 115, 105133. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.; Mohanraj, K. Comparison of Conventional and Microwave-Assisted Synthesis of Benzotriazole Derivatives. Indian J. Pharm. Sci. 2014, 76, 46–53. [Google Scholar]
- Henary, M.; Kananda, C.; Rotolo, L.; Savino, B.; Owens, E.A.; Cravotto, G. Benefits and Applications of Microwave-Assisted Synthesis of Nitrogen Containing Heterocycles in Medicinal Chemistry. RSC Adv. 2020, 10, 14170–14197. [Google Scholar] [CrossRef]
- Souza, G.B.; Santos, T.A.C.; Silva, A.P.S.; Barreiros, A.L.B.S.; Nardelli, V.B.; Siqueira, I.B.; Dolabella, S.S.; Costa, E.V.; Alves, P.B.; Scher, R.; et al. Synthesis of Chalcone Derivatives by Claisen-Schmidt Condensation and in Vitro Analyses of Their Antiprotozoal Activities. Nat. Prod. Res. 2024, 38, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, L.; Cheng, C.; Li, G.; Xie, J.; Shen, M.; Chen, Q.; Li, W.; He, W.; Qiu, P.; et al. Design, Synthesis and Biological Evaluation of Chalcone Analogues with Novel Dual Antioxidant Mechanisms as Potential Anti-Ischemic Stroke Agents. Acta Pharm. Sin. B 2019, 9, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Kumar, V.; Prashar, V.; Saini, S.; Dwivedi, A.R.; Bajaj, B.; Mehta, D.; Parkash, J.; Kumar, V. Dipropargyl Substituted Diphenylpyrimidines as Dual Inhibitors of Monoamine Oxidase and Acetylcholinesterase. Eur. J. Med. Chem. 2019, 177, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Kumar Nandi, N.; Das, S.; Choudhary, D.; Saini, S.; Bhatia, R.; Chawla, P.; Kaur, R.; Kalra, S.; Rawat, R.; Eyupoglu, V.; et al. Exploration of Oxadiazole Clubbed Benzhydrylpiperazine Pharmacophoric Features as Structural Feature for Antidepressant Activity: In Vitro, In Vivo and in Silico Analysis. Bioorg. Chem. 2024, 144, 107148. [Google Scholar] [CrossRef] [PubMed]
- Andrés, C.M.C.; Pérez de la Lastra, J.M.; Juan, C.A.; Plou, F.J.; Pérez-Lebeña, E. Chemistry of Hydrogen Peroxide Formation and Elimination in Mammalian Cells, and Its Role in Various Pathologies. Stresses 2022, 2, 256–274. [Google Scholar] [CrossRef]
- Arora, G.; Piplani, P. Synthesis and Biological Evaluation of Some Novel Coumarin-Oxadiazole Conjugates as Potential Candidates for the Treatment of Cognitive Decline. Alzheimer’s Dement. 2024, 20, e093546. [Google Scholar] [CrossRef]
- Son, S.Y.; Ma, J.; Kondou, Y.; Yoshimura, M.; Yamashita, E.; Tsukihara, T. Structure of Human Monoamine Oxidase A at 2.2-Å Resolution: The Control of Opening the Entry for Substrates/Inhibitors. Proc. Natl. Acad. Sci. USA 2008, 105, 5739–5744. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Giardina, S.F.; Werner, D.S.; Pingle, M.; Feinberg, P.B.; Foreman, K.W.; Bergstrom, D.E.; Arnold, L.D.; Barany, F. Novel, Self-Assembling Dimeric Inhibitors of Human β Tryptase. J. Med. Chem. 2020, 63, 3004–3027. [Google Scholar] [CrossRef]
- Chandrasekaran, B.; Bayan, M.F.; Hmedat, A.; Al-Jaidi, B.A.; Al-Tawalbeh, D.M.; Abuarqoub, D.; Rasras, A.J.; Jaradat, D.M.M.; Dakkah, A.N.; Hourani, W.; et al. Synthesis, Anticancer Screening, and In Silico Evaluations of Thieno[2,3-c]Pyridine Derivatives as Hsp90 Inhibitors. Pharmaceuticals 2025, 18, 153. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
Compound | Conventional Method | Microwave Method * | ||
---|---|---|---|---|
Reaction Time (h) | Yield % | Reaction Time (min) | Yield (%) | |
C1 | 12 | 88 | 1 | 96 |
C2 | 10 | 79 | 1 | 88 |
C3 | 11 | 80 | 1.5 | 89 |
C4 | 18 | 84 | 2 | 90 |
C5 | 24 | 77 | 1 | 87 |
C6 | 12 | 75 | 1.2 | 85 |
C7 | 6 | 81 | 1 | 90 |
C8 | 8 | 85 | 2 | 91 |
C9 | 9 | 86 | 1 | 94 |
C10 | 10 | 82 | 2 | 90 |
C11 | 12 | 75 | 1.4 | 85 |
C12 | 24 | 88 | 2 | 95 |
C13 | 12 | 80 | 2 | 90 |
C14 | 13 | 84 | 1 | 91 |
C15 | 24 | 70 | 2 | 82 |
Compound | R | Mol. Formula | Mol. Weight (g/mol) | Color | Melting Point | * Rf |
---|---|---|---|---|---|---|
C1 | 4-Br | C19H18BrNO2 | 372.26 | Yellow | 189–190 °C | 0.4 |
C2 | 3,4-diCl | C19H17Cl2NO2 | 362.25 | Yellow | 127–128 °C | 0.44 |
C3 | 4-F | C19H18FNO2 | 311.35 | Yellow | 150–151 °C | 0.36 |
C4 | 3,4-diOCH3 | C21H23NO4 | 353.41 | Yellow | 159–160 °C | 0.2 |
C5 | 3-F,4-Br | C19H17BrFNO2 | 390.25 | Yellow | 191–192 °C | 0.4 |
C6 | 3,4-diF | C19H17F2NO2 | 329.34 | Yellow | 161–162 °C | 0.4 |
C7 | 4-Cl | C19H18ClNO2 | 327.81 | Yellow | 188–189 °C | 0.35 |
C8 | 3-CH3 | C20H21NO2 | 307.39 | Yellow | 144–145 °C | 0.5 |
C9 | 4-CH3 | C20H21NO2 | 307.39 | Yellow | 186–187 °C | 0.4 |
C10 | 3-F | C19H18FNO2 | 311.36 | Yellow | 124–125 °C | 0.4 |
C11 | 2-OCH3 | C20H21NO3 | 323.39 | Yellow | 144–145 °C | 0.5 |
C12 | 2-Cl | C19H18ClNO2 | 327.80 | Yellow | 163–164 °C | 0.4 |
C13 | 4-CH2CH3 | C21H23NO2 | 321.41 | Yellow | 131–132 °C | 0.4 |
C14 | 2,4-diF | C19H17F2NO2 | 329.34 | Yellow | 171–172 °C | 0.4 |
C15 | 2-CH3 | C20H21NO2 | 307.39 | Light yellow | 130–131 °C | 0.5 |
Compound | Percentage Inhibition at 20 μM | * IC50 Values (μM ± SEM) | ||
---|---|---|---|---|
MAO-A | MAO-B | MAO-A | MAO-B | |
C1 | 13.64 | 6.59 | --- | --- |
C2 | 19.43 | 4.74 | --- | --- |
C3 | 37.74 | 7.11 | --- | --- |
C4 | 15.85 | 5.56 | --- | --- |
C5 | 36.81 | 6.54 | --- | --- |
C6 | 71.67 | 31.94 | 8.45 ± 0.19 | --- |
C7 | 21.41 | 7.43 | --- | --- |
C8 | 3.11 | 6.32 | --- | --- |
C9 | 4.95 | 6.77 | --- | --- |
C10 | 33.93 | 12.37 | --- | --- |
C11 | 21.11 | 18.57 | --- | --- |
C12 | 67.76 | 23.85 | 9.35 ± 0.11 | --- |
C13 | 7.25 | 17.54 | --- | |
C14 | 75.45 | 35.34 | 7.91 ± 0.08 | --- |
C15 | 6.17 | 25.66 | --- | |
Clorgyline | 94.98 | --- | 4.39 ± 1.02 nM | nd |
Pargyline | --- | 98.96 | nd | 0.079 ± 0.004 nM |
Compound | Absorbance at 517 nm (% Antioxidant Activity) | ||||
---|---|---|---|---|---|
10 µM | 25 µM | 50 µM | 75 µM | 100 µM | |
Control | 0.048 | 0.079 | 0.055 | 0.058 | 0.058 |
Ascorbic acid | 0.045(8.03) | 0.064 (20.27) | 0.033 (40.23) | 0.031 (46.33) | 0.024 (58.53) |
C1 | 0.044 (9.24) | 0.062 (21.80) | 0.035 (35.78) | 0.027 (53.13) | 0.026 (54.82) |
C2 | 0.045 (6.63) | 0.059 (25.78) | 0.035 (37.18) | 0.029 (50.91) | 0.027 (53.12) |
C3 | 0.041(14.58) | 0.049 (38.25) | 0.033 (40.31) | 0.027 (53.10) | 0.025 (56.87) |
C4 | 0.040 (16.37) | 0.054 (32.47) | 0.033 (41.07) | 0.039 (33.69) | 0.028 (52.62) |
C5 | 0.039 (19.11) | 0.061 (23.41) | 0.034 (38.15) | 0.029 (49.88) | 0.029 (50.95) |
C6 | 0.042 (12.25) | 0.060 (24.46) | 0.035 (36.03) | 0.027 (53.39) | 0.026 (55.16) |
C7 | 0.042 (13.81) | 0.067 (15.62) | 0.038 (32.06) | 0.028 (52.12) | 0.027 (53.37) |
C8 | 0.040 (16.56) | 0.055 (31.47) | 0.035 (36.01) | 0.029 (49.24) | 0.020 (66.42) |
C9 | 0.044 (8.65) | 0.061 (23.43) | 0.035 (35.75) | 0.035 (39.19) | 0.032 (44.66) |
C10 | 0.040 (17.09) | 0.063 (21.05) | 0.036 (34.56) | 0.034 (42.27) | 0.039 (32.62) |
C11 | 0.042 (13.89) | 0.067 (16.00) | 0.033 (40.26) | 0.042 (27.09) | 0.037 (36.45) |
C12 | 0.047 (3.03) | 0.064 (19.54) | 0.033 (40.88) | 0.032 (44.56) | 0.037 (35.95) |
C13 | 0.047 (2.54) | 0.067 (15.55) | 0.032 (41.40) | 0.045 (22.18) | 0.019 (66.87) |
C14 | 0.043 (10.51) | 0.065 (18.21) | 0.033 (41.12) | 0.027 (53.12) | 0.024 (59.51) |
C15 | 0.045 (6.51) | 0.055 (30.71) | 0.033 (41.06) | 0.039 (32.50) | 0.041 (29.17) |
Compound | Docking Score | Molecular Weight | H-Bond Acceptor | Log P | Log Kp (Skin Permeation) (cm/s) | GI Absorption | BBB Permeability | Bioavailability Score |
---|---|---|---|---|---|---|---|---|
C1 | −7.48 | 372.26 | 2 | 3.39 | −5.64 | High | Yes | 0.55 |
C2 | −8.9 | 362.25 | 2 | 3.37 | −5.17 | High | Yes | 0.55 |
C3 | −9.24 | 311.35 | 3 | 3.17 | −5.69 | High | Yes | 0.55 |
C4 | −6.66 | 353.41 | 4 | 3.37 | −6.06 | High | Yes | 0.55 |
C5 | −8.98 | 390.25 | 3 | 3.37 | −5.68 | High | Yes | 0.55 |
C6 | −9.45 | 329.34 | 4 | 3.16 | −5.72 | High | Yes | 0.55 |
C7 | −7.99 | 327.8 | 2 | 3.31 | −5.41 | High | Yes | 0.55 |
C8 | −8.57 | 307.39 | 2 | 3.24 | −5.48 | High | Yes | 0.55 |
C9 | −9.09 | 307.39 | 2 | 3.17 | −5.48 | High | Yes | 0.55 |
C10 | −8.95 | 311.35 | 3 | 3.16 | −5.69 | High | Yes | 0.55 |
C11 | −8.98 | 323.39 | 3 | 3.2 | −5.55 | High | Yes | 0.55 |
C12 | −9.3 | 327.8 | 2 | 3.21 | −5.28 | High | Yes | 0.55 |
C13 | −7.61 | 321.41 | 2 | 3.4 | −5.25 | High | Yes | 0.55 |
C14 | −9.56 | 329.34 | 4 | 3.15 | −5.72 | High | Yes | 0.55 |
C15 | −8.49 | 307.39 | 2 | 3.13 | −5.48 | High | Yes | 0.55 |
Clorgyline | −4.27 | 272.17 | 2 | 3.43 | −4.99 | High | Yes | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhary, D.; Kumar, B.; Chandrasekaran, B.; Singh, T.G.; Kaur, R.; Aldahish, A.; Vasudevan, R.; Balaji, P. Microwave-Assisted Synthesis of Morpholine-Based Chalcones as Reversible MAO-A Inhibitors in the Management of Mental Depression. Pharmaceuticals 2025, 18, 309. https://doi.org/10.3390/ph18030309
Choudhary D, Kumar B, Chandrasekaran B, Singh TG, Kaur R, Aldahish A, Vasudevan R, Balaji P. Microwave-Assisted Synthesis of Morpholine-Based Chalcones as Reversible MAO-A Inhibitors in the Management of Mental Depression. Pharmaceuticals. 2025; 18(3):309. https://doi.org/10.3390/ph18030309
Chicago/Turabian StyleChoudhary, Diksha, Bhupinder Kumar, Balakumar Chandrasekaran, Thakur Gurjeet Singh, Rajwinder Kaur, Afaf Aldahish, Rajalakshimi Vasudevan, and Prasanalakshmi Balaji. 2025. "Microwave-Assisted Synthesis of Morpholine-Based Chalcones as Reversible MAO-A Inhibitors in the Management of Mental Depression" Pharmaceuticals 18, no. 3: 309. https://doi.org/10.3390/ph18030309
APA StyleChoudhary, D., Kumar, B., Chandrasekaran, B., Singh, T. G., Kaur, R., Aldahish, A., Vasudevan, R., & Balaji, P. (2025). Microwave-Assisted Synthesis of Morpholine-Based Chalcones as Reversible MAO-A Inhibitors in the Management of Mental Depression. Pharmaceuticals, 18(3), 309. https://doi.org/10.3390/ph18030309