Side Effects of Immunosuppressant Drugs After Liver Transplant
Abstract
:1. Introduction
2. Methods
3. Immunosuppression After LT: The State of the Art
4. Mechanism of Action of Immunosuppressant Drugs
4.1. Calcineurin Inhibitors (CNIs)
4.2. Corticosteroids
4.3. Antimetabolites Drugs
4.4. Inhibitors of the Mammalian Target of Rapamycin (mTOR-I)
4.5. Basiliximab
5. Side Effects
5.1. Malignancy
5.2. Infections
5.3. Metabolic Disorders
5.4. Nephrotoxicity
5.5. Neurotoxicity
5.6. Myelosuppression
5.7. Osteoporosis
5.8. Frailty
6. Is Immunosuppressive Withdrawal Feasible After LT?
7. Unconventional Strategies in Post-Transplant Immunosuppression
7.1. Costimulatory Blockade Agents
7.2. T-Cell Exhaustion
7.3. Selective Inhibitors of T-Cell Signaling
7.4. Monoclonal Antibodies
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rana, A.; Ackah, R.L.; Webb, G.J.; Halazun, K.J.; Vierling, J.M.; Liu, H.; Wu, M.-F.; Yoeli, D.; Kueht, M.; Mindikoglu, A.L.; et al. No Gains in Long-Term Survival After Liver Transplantation Over the Past Three Decades. Ann. Surg. 2019, 269, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Serrano, M.T.; Sabroso, S.; Esteban, L.M.; Berenguer, M.; Fondevila, C.; Lorente, S.; Cortés, L.; Sanchez-Antolin, G.; Nuño, J.; De la Rosa, G.; et al. Mortality and Causes of Death After Liver Transplantation: Analysis of Sex Differences in a Large Nationwide Cohort. Transpl. Int. 2022, 35, 10263. [Google Scholar] [CrossRef] [PubMed]
- Watt, K.D.S.; Pedersen, R.A.; Kremers, W.K.; Heimbach, J.K.; Charlton, M.R. Evolution of Causes and Risk Factors for Mortality Post-Liver Transplant: Results of the NIDDK Long-Term Follow-up Study. Am. J. Transplant. 2010, 10, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Emmerich, S.D.; Fryar, C.D.; Stierman, B.; Ogden, C.L. Obesity and Severe Obesity Prevalence in Adults: United States, August 2021–August 2023. Available online: https://www.cdc.gov/nchs/products/databriefs/db508.htm (accessed on 16 December 2024).
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef]
- Kwong, A.J.; Kim, W.R.; Lake, J.R.; Schladt, D.P.; Schnellinger, E.M.; Gauntt, K.; McDermott, M.; Weiss, S.; Handarova, D.K.; Snyder, J.J.; et al. OPTN/SRTR 2022 Annual Data Report: Liver. Am. J. Transplant. 2024, 24, S176–S265. [Google Scholar] [CrossRef]
- Kwong, A.J.; Ebel, N.H.; Kim, W.R.; Lake, J.R.; Smith, J.M.; Schladt, D.P.; Schnellinger, E.M.; Handarova, D.; Weiss, S.; Cafarella, M.; et al. OPTN/SRTR 2021 Annual Data Report: Liver. Available online: https://srtr.transplant.hrsa.gov/ADR/Chapter?name=Liver&year=2021 (accessed on 22 January 2024).
- Simon, T.G.; Roelstraete, B.; Khalili, H.; Hagström, H.; Ludvigsson, J.F. Mortality in Biopsy-Confirmed Nonalcoholic Fatty Liver Disease: Results from a Nationwide Cohort. Gut 2021, 70, 1375–1382. [Google Scholar] [CrossRef]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P. The NAFLD Fibrosis Score: A Noninvasive System That Identifies Liver Fibrosis in Patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Calzadilla-Bertot, L.; Wai-Sun Wong, V.; Castellanos, M.; Aller-de la Fuente, R.; Metwally, M.; Eslam, M.; Gonzalez-Fabian, L.; Alvarez-Quiñones Sanz, M.; Conde-Martin, A.F.; et al. Fibrosis Severity as a Determinant of Cause-Specific Mortality in Patients with Advanced Nonalcoholic Fatty Liver Disease: A Multi-National Cohort Study. Gastroenterology 2018, 155, 443–457.e17. [Google Scholar] [CrossRef]
- Haflidadottir, S.; Jonasson, J.G.; Norland, H.; Einarsdottir, S.O.; Kleiner, D.E.; Lund, S.H.; Björnsson, E.S. Long-Term Follow-up and Liver-Related Death Rate in Patients with Non-Alcoholic and Alcoholic Related Fatty Liver Disease. BMC Gastroenterol. 2014, 14, 166. [Google Scholar] [CrossRef]
- Nasr, P.; Ignatova, S.; Kechagias, S.; Ekstedt, M. Natural History of Nonalcoholic Fatty Liver Disease: A Prospective Follow-up Study with Serial Biopsies. Hepatol. Commun. 2018, 2, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Hagström, H.; Nasr, P.; Ekstedt, M.; Hammar, U.; Stål, P.; Hultcrantz, R.; Kechagias, S. Fibrosis Stage but Not NASH Predicts Mortality and Time to Development of Severe Liver Disease in Biopsy-Proven NAFLD. J. Hepatol. 2017, 67, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver. Clinical Practice Guideline Panel: Chair; Samuel, D.; Secretary to the Chair; EASL Governing Board Representative; Panel members EASL Clinical Practice Guidelines on Liver Transplantation. J. Hepatol. 2024, 81, 1040–1086. [Google Scholar] [CrossRef]
- Knechtle, S.J.; Kwun, J. Unique Aspects of Rejection and Tolerance in Liver Transplantation. Semin. Liver Dis. 2009, 29, 91–101. [Google Scholar] [CrossRef]
- Martin, P.; DiMartini, A.; Feng, S.; Brown, R.J.; Fallon, M. Evaluation for Liver Transplantation in Adults: 2013 Practice Guideline by the American Association for the Study of Liver Diseases and the American Society of Transplantation. Hepatology 2014, 59, 1144. [Google Scholar] [CrossRef]
- Panackel, C.; Mathew, J.F.; Fawas, N.M.; Jacob, M. Immunosuppressive Drugs in Liver Transplant: An Insight. J. Clin. Exp. Hepatol. 2022, 12, 1557–1571. [Google Scholar] [CrossRef]
- Liang, W.; Wang, D.; Ling, X.; Kao, A.A.; Kong, Y.; Shang, Y.; Guo, Z.; He, X. Sirolimus-Based Immunosuppression in Liver Transplantation for Hepatocellular Carcinoma: A Meta-Analysis. Liver Transpl. 2012, 18, 62–69. [Google Scholar] [CrossRef]
- Menon, K.V.; Hakeem, A.R.; Heaton, N.D. Meta-Analysis: Recurrence and Survival Following the Use of Sirolimus in Liver Transplantation for Hepatocellular Carcinoma. Aliment. Pharmacol. Ther. 2013, 37, 411–419. [Google Scholar] [CrossRef]
- Cholongitas, E.; Mamou, C.; Rodríguez-Castro, K.I.; Burra, P. Mammalian Target of Rapamycin Inhibitors Are Associated with Lower Rates of Hepatocellular Carcinoma Recurrence after Liver Transplantation: A Systematic Review. Transpl. Int. 2014, 27, 1039–1049. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Li, L.X.; Li, P.; Lv, S.-C.; Pan, B.; He, Q. Sirolimus in Liver Transplant Recipients with Hepatocellular Carcinoma: An Updated Meta-Analysis. J. Investig. Surg. 2019, 32, 632–641. [Google Scholar] [CrossRef]
- Grigg, S.E.; Sarri, G.L.; Gow, P.J.; Yeomans, N.D. Systematic Review with Meta-Analysis: Sirolimus- or Everolimus-Based Immunosuppression Following Liver Transplantation for Hepatocellular Carcinoma. Aliment. Pharmacol. Ther. 2019, 49, 1260–1273. [Google Scholar] [CrossRef] [PubMed]
- Wiesner, R.H.; Fung, J.J. Present State of Immunosuppressive Therapy in Liver Transplant Recipients. Liver Transpl. 2011, 17 (Suppl. S3), S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Azzi, J.R.; Sayegh, M.H.; Mallat, S.G. Calcineurin Inhibitors: 40 Years Later, Can’t Live Without. J. Immunol. 2013, 191, 5785–5791. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, J.; Yuan, J.; Dang, Y.; Yang, C.; Chen, X.; Xu, J.; Yu, L. Characterization of a Human Regulatory Subunit of Protein Phosphatase 3 Gene (PPP3RL) Expressed Specifically in Testis. Mol. Biol. Rep. 2005, 32, 41–45. [Google Scholar] [CrossRef]
- Hurwitz, M.Y.; Putkey, J.A.; Klee, C.B.; Means, A.R. Domain II of Calmodulin Is Involved in Activation of Calcineurin. FEBS Lett. 1988, 238, 82–86. [Google Scholar] [CrossRef]
- Rao, A.; Luo, C.; Hogan, P.G. Transcription Factors of the NFAT Family: Regulation and Function. Annu. Rev. Immunol. 1997, 15, 707–747. [Google Scholar] [CrossRef]
- Matas, A.J. Calcineurin Inhibitors: Short-Term Friend, Long-Term Foe? Clin. Pharmacol. Ther. 2011, 90, 209–211. [Google Scholar] [CrossRef]
- Buttgereit, F.; da Silva, J.A.P.; Boers, M.; Burmester, G.-R.; Cutolo, M.; Jacobs, J.; Kirwan, J.; Köhler, L.; Van Riel, P.; Vischer, T.; et al. Standardised Nomenclature for Glucocorticoid Dosages and Glucocorticoid Treatment Regimens: Current Questions and Tentative Answers in Rheumatology. Ann. Rheum. Dis. 2002, 61, 718–722. [Google Scholar] [CrossRef]
- Meneghini, M.; Bestard, O.; Grinyo, J.M. Immunosuppressive Drugs Modes of Action. Best Pract. Res. Clin. Gastroenterol. 2021, 54–55, 101757. [Google Scholar] [CrossRef]
- Strehl, C.; Ehlers, L.; Gaber, T.; Buttgereit, F. Glucocorticoids-All-Rounders Tackling the Versatile Players of the Immune System. Front. Immunol. 2019, 10, 1744. [Google Scholar] [CrossRef]
- Necela, B.M.; Cidlowski, J.A. Mechanisms of Glucocorticoid Receptor Action in Noninflammatory and Inflammatory Cells. Proc. Am. Thorac. Soc. 2004, 1, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Stahn, C.; Buttgereit, F. Genomic and Nongenomic Effects of Glucocorticoids. Nat. Clin. Pract. Rheumatol. 2008, 4, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Stahn, C.; Löwenberg, M.; Hommes, D.W.; Buttgereit, F. Molecular Mechanisms of Glucocorticoid Action and Selective Glucocorticoid Receptor Agonists. Mol. Cell Endocrinol. 2007, 275, 71–78. [Google Scholar] [CrossRef]
- Wiesner, R.; Rabkin, J.; Klintmalm, G.; McDiarmid, S.; Langnas, A.; Punch, J.; McMaster, P.; Kalayoglu, M.; Levy, G.; Freeman, R.; et al. A Randomized Double-Blind Comparative Study of Mycophenolate Mofetil and Azathioprine in Combination with Cyclosporine and Corticosteroids in Primary Liver Transplant Recipients. Liver Transpl. 2001, 7, 442–450. [Google Scholar] [CrossRef]
- Sterneck, M.; Fischer, L.; Gahlemann, C.; Gundlach, M.; Rogiers, X.; Broelsch, C. Mycophenolate Mofetil for Prevention of Liver Allograft Rejection: Initial Results of a Controlled Clinical Trial. Ann. Transplant. 2000, 5, 43–46. [Google Scholar]
- Fischer, L.; Sterneck, M.; Gahlemann, C.G.; Malago, M.; Rogiers, X.; Broelsch, C.E. A Prospective Study Comparing Safety and Efficacy of Mycophenolate Mofetil versus Azathioprine in Primary Liver Transplant Recipients. Transplant. Proc. 2000, 32, 2125–2127. [Google Scholar] [CrossRef]
- Elion, G.B. The Purine Path to Chemotherapy. Science 1989, 244, 41–47. [Google Scholar] [CrossRef]
- Broen, J.C.A.; van Laar, J.M. Mycophenolate Mofetil, Azathioprine and Tacrolimus: Mechanisms in Rheumatology. Nat. Rev. Rheumatol. 2020, 16, 167–178. [Google Scholar] [CrossRef]
- Van Scoik, K.G.; Johnson, C.A.; Porter, W.R. The Pharmacology and Metabolism of the Thiopurine Drugs 6-Mercaptopurine and Azathioprine. Drug Metab. Rev. 1985, 16, 157–174. [Google Scholar] [CrossRef]
- Van Os, E.C.; Zins, B.J.; Sandborn, W.J.; Mays, D.C.; Tremaine, W.J.; Mahoney, D.W.; Zinsmeister, A.R.; Lipsky, J.J. Azathioprine Pharmacokinetics after Intravenous, Oral, Delayed Release Oral and Rectal Foam Administration. Gut 1996, 39, 63–68. [Google Scholar] [CrossRef]
- Stolk, J.N.; Boerbooms, A.M.; de Abreu, R.A.; de Koning, D.G.; van Beusekom, H.J.; Muller, W.H.; van de Putte, L.B. Reduced Thiopurine Methyltransferase Activity and Development of Side Effects of Azathioprine Treatment in Patients with Rheumatoid Arthritis. Arthritis Rheum. 1998, 41, 1858–1866. [Google Scholar] [CrossRef] [PubMed]
- Maltzman, J.S.; Koretzky, G.A. Azathioprine: Old Drug, New Actions. J. Clin. Investig. 2003, 111, 1122–1124. [Google Scholar] [CrossRef] [PubMed]
- Alsberg, C.; Black, O.F.; United States. Bureau of Plant Industry. Contributions to the Study of Maize Deterioration: Biochemical and Toxicological Investigations of Penicillium Puberulum and Penicillium Stoloniferum; US Government Printing Office: Washington, DC, USA, 1913.
- Lipsky, J.J. Mycophenolate Mofetil. Lancet 1996, 348, 1357–1359. [Google Scholar] [CrossRef] [PubMed]
- Allison, A.C.; Eugui, E.M. Immunosuppressive and Long-Acting Anti-Inflammatory Activity of Mycophenolic Acid and Derivative, RS-61443. Br. J. Rheumatol. 1991, 30 (Suppl. S2), 57–61. [Google Scholar]
- Bullingham, R.E.; Nicholls, A.J.; Kamm, B.R. Clinical Pharmacokinetics of Mycophenolate Mofetil. Clin. Pharmacokinet. 1998, 34, 429–455. [Google Scholar] [CrossRef]
- Ransom, J.T. Mechanism of Action of Mycophenolate Mofetil. Ther. Drug Monit. 1995, 17, 681–684. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, Q.; Zhao, M.; Liang, G.; Wu, H.; Li, D.; Xie, Y.; Tan, Y.; Dai, Y.; Yung, S.; et al. The Effect of Mycophenolic Acid on Epigenetic Modifications in Lupus CD4+T Cells. Clin. Immunol. 2015, 158, 67–76. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, T.; Chen, M.; Zhou, Y.; Yi, D.; Guo, R. The CD40/CD40L System: A New Therapeutic Target for Disease. Immunol. Lett. 2013, 153, 58–61. [Google Scholar] [CrossRef]
- Morales-Cárdenas, A.; Pérez-Madrid, C.; Arias, L.; Ojeda, P.; Mahecha, M.P.; Rojas-Villarraga, A.; Carrillo-Bayona, J.A.; Anaya, J.-M. Pulmonary Involvement in Systemic Sclerosis. Autoimmun. Rev. 2016, 15, 1094–1108. [Google Scholar] [CrossRef]
- Morath, C.; Reuter, H.; Simon, V.; Krautkramer, E.; Muranyi, W.; Schwenger, V.; Goulimari, P.; Grosse, R.; Hahn, M.; Lichter, P.; et al. Effects of Mycophenolic Acid on Human Fibroblast Proliferation, Migration and Adhesion in Vitro and in Vivo. Am. J. Transplant. 2008, 8, 1786–1797. [Google Scholar] [CrossRef]
- Tasdogan, B.E.; Ma, M.; Simsek, C.; Saberi, B.; Gurakar, A. Update on Immunosuppression in Liver Transplantation. Euroasian J. Hepatogastroenterol. 2019, 9, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Laplante, M.; Sabatini, D.M. mTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef]
- Zaza, G.; Granata, S.; Caletti, C.; Signorini, L.; Stallone, G.; Lupo, A. mTOR Inhibition Role in Cellular Mechanisms. Transplantation 2018, 102, S3–S16. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Rudge, D.G.; Koos, J.D.; Vaidialingam, B.; Yang, H.J.; Pavletich, N.P. mTOR Kinase Structure, Mechanism and Regulation. Nature 2013, 497, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Sarbassov, D.D.; Ali, S.M.; Sengupta, S.; Sheen, J.-H.; Hsu, P.P.; Bagley, A.F.; Markhard, A.L.; Sabatini, D.M. Prolonged Rapamycin Treatment Inhibits mTORC2 Assembly and Akt/PKB. Mol. Cell 2006, 22, 159–168. [Google Scholar] [CrossRef]
- Sinclair, M.; Poltavskiy, E.; Dodge, J.L.; Lai, J.C. Frailty Is Independently Associated with Increased Hospitalisation Days in Patients on the Liver Transplant Waitlist. World J. Gastroenterol. 2017, 23, 899–905. [Google Scholar] [CrossRef]
- Thomson, A.W.; Turnquist, H.R.; Raimondi, G. Immunoregulatory Functions of mTOR Inhibition. Nat. Rev. Immunol. 2009, 9, 324–337. [Google Scholar] [CrossRef]
- Wing, K.; Sakaguchi, S. Regulatory T Cells Exert Checks and Balances on Self Tolerance and Autoimmunity. Nat. Immunol. 2010, 11, 7–13. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, S.; Xie, Q.; Wu, S.; Su, J.; Li, S.; Xu, Y.; Li, X.C. Natural CD8+CD122+ T Cells Are More Potent in Suppression of Allograft Rejection than CD4+CD25+ Regulatory T Cells. Am. J. Transplant. 2014, 14, 39–48. [Google Scholar] [CrossRef]
- Battaglia, M.; Stabilini, A.; Roncarolo, M.-G. Rapamycin Selectively Expands CD4+CD25+FoxP3+ Regulatory T Cells. Blood 2005, 105, 4743–4748. [Google Scholar] [CrossRef]
- Kopf, H.; de la Rosa, G.M.; Howard, O.M.Z.; Chen, X. Rapamycin Inhibits Differentiation of Th17 Cells and Promotes Generation of FoxP3+ T Regulatory Cells. Int. Immunopharmacol. 2007, 7, 1819–1824. [Google Scholar] [CrossRef] [PubMed]
- Coenen, J.J.A.; Koenen, H.J.P.M.; van Rijssen, E.; Kasran, A.; Boon, L.; Hilbrands, L.B.; Joosten, I. Rapamycin, Not Cyclosporine, Permits Thymic Generation and Peripheral Preservation of CD4+ CD25+ FoxP3+ T Cells. Bone Marrow Transplant. 2007, 39, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Lu, Y.; El Essawy, B.; Oukka, M.; Kuchroo, V.K.; Strom, T.B. Contrasting Effects of Cyclosporine and Rapamycin in de Novo Generation of Alloantigen-Specific Regulatory T Cells. Am. J. Transplant. 2007, 7, 1722–1732. [Google Scholar] [CrossRef] [PubMed]
- Kapsenberg, M.L. Dendritic-Cell Control of Pathogen-Driven T-Cell Polarization. Nat. Rev. Immunol. 2003, 3, 984–993. [Google Scholar] [CrossRef]
- Taner, T.; Hackstein, H.; Wang, Z.; Morelli, A.E.; Thomson, A.W. Rapamycin-Treated, Alloantigen-Pulsed Host Dendritic Cells Induce Ag-Specific T Cell Regulation and Prolong Graft Survival. Am. J. Transplant. 2005, 5, 228–236. [Google Scholar] [CrossRef]
- Turnquist, H.R.; Raimondi, G.; Zahorchak, A.F.; Fischer, R.T.; Wang, Z.; Thomson, A.W. Rapamycin-Conditioned Dendritic Cells Are Poor Stimulators of Allogeneic CD4+ T Cells, but Enrich for Antigen-Specific Foxp3+ T Regulatory Cells and Promote Organ Transplant Tolerance. J. Immunol. 2007, 178, 7018–7031. [Google Scholar] [CrossRef]
- Hackstein, H.; Taner, T.; Zahorchak, A.F.; Morelli, A.E.; Logar, A.J.; Gessner, A.; Thomson, A.W. Rapamycin Inhibits IL-4--Induced Dendritic Cell Maturation in Vitro and Dendritic Cell Mobilization and Function in Vivo. Blood 2003, 101, 4457–4463. [Google Scholar] [CrossRef]
- Waskow, C.; Liu, K.; Darrasse-Jèze, G.; Guermonprez, P.; Ginhoux, F.; Merad, M.; Shengelia, T.; Yao, K.; Nussenzweig, M. The Receptor Tyrosine Kinase Flt3 Is Required for Dendritic Cell Development in Peripheral Lymphoid Tissues. Nat. Immunol. 2008, 9, 676–683. [Google Scholar] [CrossRef]
- Woltman, A.M.; de Fijter, J.W.; Kamerling, S.W.; van Der Kooij, S.W.; Paul, L.C.; Daha, M.R.; van Kooten, C. Rapamycin Induces Apoptosis in Monocyte- and CD34-Derived Dendritic Cells but Not in Monocytes and Macrophages. Blood 2001, 98, 174–180. [Google Scholar] [CrossRef]
- Monti, P.; Mercalli, A.; Leone, B.E.; Valerio, D.C.; Allavena, P.; Piemonti, L. Rapamycin Impairs Antigen Uptake of Human Dendritic Cells. Transplantation 2003, 75, 137–145. [Google Scholar] [CrossRef]
- Sakata, A.; Kuwahara, K.; Ohmura, T.; Inui, S.; Sakaguchi, N. Involvement of a Rapamycin-Sensitive Pathway in CD40-Mediated Activation of Murine B Cells in Vitro. Immunol. Lett. 1999, 68, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Aagaard-Tillery, K.M.; Jelinek, D.F. Inhibition of Human B Lymphocyte Cell Cycle Progression and Differentiation by Rapamycin. Cell Immunol. 1994, 156, 493–507. [Google Scholar] [CrossRef] [PubMed]
- Heidt, S.; Roelen, D.L.; Eijsink, C.; van Kooten, C.; Claas, F.H.J.; Mulder, A. Effects of Immunosuppressive Drugs on Purified Human B Cells: Evidence Supporting the Use of MMF and Rapamycin. Transplantation 2008, 86, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.A.; Ruscetti, F.W.; Gallo, R. Selective in Vitro Growth of T Lymphocytes from Normal Human Bone Marrows. Science 1976, 193, 1007–1008. [Google Scholar] [CrossRef]
- Robb, R.J.; Greene, W.C.; Rusk, C.M. Low and High Affinity Cellular Receptors for Interleukin 2. Implications for the Level of Tac Antigen. J. Exp. Med. 1984, 160, 1126–1146. [Google Scholar] [CrossRef]
- Feldmann, M.; Basten, A. Cell Interactions in the Immune Response in Vitro. I. Metabolic Activities of T Cells in a Collaborative Antibody Response. Eur. J. Immunol. 1972, 2, 213–224. [Google Scholar] [CrossRef]
- Simulect|European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/simulect (accessed on 15 December 2024).
- Emoto, C.; Vinks, A.A.; Fukuda, T. Risk Assessment of Drug-Drug Interactions of Calcineurin Inhibitors Affecting Sirolimus Pharmacokinetics in Renal Transplant Patients. Ther. Drug Monit. 2016, 38, 607–613. [Google Scholar] [CrossRef]
- Jasiak, N.M.; Park, J.M. Immunosuppression in Solid-Organ Transplantation: Essentials and Practical Tips. Crit. Care Nurs. Q. 2016, 39, 227–240. [Google Scholar] [CrossRef]
- Van Matre, E.T.; Satyanarayana, G.; Page, R.L., II; Levi, M.E.; Lindenfeld, J.; Mueller, S.W. Pharmacokinetic Drug-Drug Interactions Between Immunosuppressant and Anti-Infective Agents: Antimetabolites and Corticosteroids. Ann. Transplant. 2018, 23, 66–74. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, Z.; Zhang, Q.; Li, Z.; Xiang, J.; Yan, S.; Wu, J.; Zhang, M.; Zheng, S. Spectrum of De Novo Cancers and Predictors in Liver Transplantation: Analysis of the Scientific Registry of Transplant Recipients Database. PLoS ONE 2016, 11, e0155179. [Google Scholar] [CrossRef]
- Engels, E.A.; Pfeiffer, R.M.; Fraumeni, J.F.; Kasiske, B.L.; Israni, A.K.; Snyder, J.J.; Wolfe, R.A.; Goodrich, N.P.; Bayakly, A.R.; Clarke, C.A.; et al. Spectrum of Cancer Risk among US Solid Organ Transplant Recipients. JAMA 2011, 306, 1891–1901. [Google Scholar] [CrossRef] [PubMed]
- Manzia, T.M.; Angelico, R.; Gazia, C.; Lenci, I.; Milana, M.; Ademoyero, O.T.; Pedini, D.; Toti, L.; Spada, M.; Tisone, G.; et al. De Novo Malignancies after Liver Transplantation: The Effect of Immunosuppression-Personal Data and Review of Literature. World J. Gastroenterol. 2019, 25, 5356–5375. [Google Scholar] [CrossRef] [PubMed]
- Burra, P.; Rodriguez-Castro, K.I. Neoplastic Disease after Liver Transplantation: Focus on de Novo Neoplasms. World J. Gastroenterol. 2015, 21, 8753–8768. [Google Scholar] [CrossRef] [PubMed]
- Chandok, N.; Watt, K.D. Burden of de Novo Malignancy in the Liver Transplant Recipient. Liver Transpl. 2012, 18, 1277–1289. [Google Scholar] [CrossRef]
- Carenco, C.; Faure, S.; Ursic-Bedoya, J.; Herrero, A.; Pageaux, G.P. Solid, Non-Skin, Post-Liver Transplant Tumors: Key Role of Lifestyle and Immunosuppression Management. World J. Gastroenterol. 2016, 22, 427–434. [Google Scholar] [CrossRef]
- Dierickx, D.; Cardinaels, N. Posttransplant Lymphoproliferative Disorders Following Liver Transplantation: Where Are We Now? World J. Gastroenterol. 2015, 21, 11034–11043. [Google Scholar] [CrossRef]
- Tanner, J.E.; Alfieri, C. The Epstein-Barr Virus and Post-Transplant Lymphoproliferative Disease: Interplay of Immunosuppression, EBV, and the Immune System in Disease Pathogenesis. Transpl. Infect. Dis. 2001, 3, 60–69. [Google Scholar] [CrossRef]
- Rodríguez-Perálvarez, M.; Colmenero, J.; González, A.; Gastaca, M.; Curell, A.; Caballero-Marcos, A.; Sánchez-Martínez, A.; Di Maira, T.; Herrero, J.I.; Almohalla, C.; et al. Cumulative Exposure to Tacrolimus and Incidence of Cancer after Liver Transplantation. Am. J. Transplant. 2022, 22, 1671–1682. [Google Scholar] [CrossRef]
- De Simone, P.; Precisi, A.; Lai, Q.; Ducci, J.; Campani, D.; Marchetti, P.; Gitto, S. Everolimus Mitigates the Risk of Hepatocellular Carcinoma Recurrence after Liver Transplantation. Cancers 2024, 16, 1243. [Google Scholar] [CrossRef]
- Shbaklo, N.; Tandoi, F.; Lupia, T.; Corcione, S.; Romagnoli, R.; De Rosa, F.G. Bacterial and Viral Infections in Liver Transplantation: New Insights from Clinical and Surgical Perspectives. Biomedicines 2022, 10, 1561. [Google Scholar] [CrossRef]
- Fishman, J.A. Infections in Immunocompromised Hosts and Organ Transplant Recipients: Essentials. Liver Transpl. 2011, 17 (Suppl. S3), S34–S37. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.D.P.; Martin, P.; Simkins, J. Infectious Complications After Liver Transplantation. Gastroenterol. Hepatol. 2015, 11, 741–753. [Google Scholar]
- Melenotte, C.; Aimanianda, V.; Slavin, M.; Aguado, J.M.; Armstrong-James, D.; Chen, Y.-C.; Husain, S.; Van Delden, C.; Saliba, F.; Lefort, A.; et al. Invasive Aspergillosis in Liver Transplant Recipients. Transpl. Infect. Dis. 2023, 25, e14049. [Google Scholar] [CrossRef] [PubMed]
- Caner, A.; Döşkaya, M.; Karasu, Z.; Değirmenci, A.; Guy, E.; Kiliç, M.; Zeytunlu, M.; Francis, J.; Bozoklar, A.; Gürüz, Y. Incidence and Diagnosis of Active Toxoplasma Infection among Liver Transplant Recipients in Western Turkey. Liver Transpl. 2008, 14, 1526–1532. [Google Scholar] [CrossRef]
- Choi, Y.-I.; Hwang, S.; Park, G.-C.; Namgoong, J.-M.; Jung, D.-H.; Song, G.-W.; Ha, T.-Y.; Moon, D.-B.; Kim, K.-H.; Ahn, C.-S.; et al. Clinical Outcomes of Pneumocystis Carinii Pneumonia in Adult Liver Transplant Recipients. Transplant. Proc. 2013, 45, 3057–3060. [Google Scholar] [CrossRef]
- Lampertico, P.; Agarwal, K.; Berg, T.; Buti, M.; Janssen, H.L.; Papatheodoridis, G.; Zoulim, F.; Tacke, F. European Association for the Study of the Liver EASL 2017 Clinical Practice Guidelines on the Management of Hepatitis B Virus Infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef]
- Collaborators, G.B.D. GBD 2017 Disease and Injury Incidence and Prevalence Collaborators Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Gabrielli, F.; Alberti, F.; Russo, C.; Cursaro, C.; Seferi, H.; Margotti, M.; Andreone, P. Treatment Options for Hepatitis A and E: A Non-Systematic Review. Viruses 2023, 15, 1080. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. European Association for the Study of the Liver EASL Clinical Practice Guidelines on Hepatitis E Virus Infection. J. Hepatol. 2018, 68, 1256–1271. [Google Scholar] [CrossRef]
- Busch, C.J.; Siegler, B.H.; Werle, H.; Lichtenstern, C.; Bruckner, T.; Heininger, A.; Mehrabi, A.; Weiss, K.H.; Weigand, M.A.; Hochreiter, M. Risk Factors for Early Viral Infections after Liver Transplantation. Langenbecks Arch. Surg. 2018, 403, 509–519. [Google Scholar] [CrossRef]
- Lizaola-Mayo, B.C.; Rodriguez, E.A. Cytomegalovirus Infection after Liver Transplantation. World J. Transplant. 2020, 10, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, Y.; Mori, A.; Uemura, T.; Ogawa, K.; Fujimoto, Y.; Okajima, H.; Kaido, T.; Uemoto, S. Incidence and Risk Factors for Herpes Zoster in Patients Undergoing Liver Transplantation. Transpl. Infect. Dis. 2015, 17, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Herrero, J.I.; Quiroga, J.; Sangro, B.; Pardo, F.; Rotellar, F.; Alvarez-Cienfuegos, J.; Prieto, J. Herpes Zoster after Liver Transplantation: Incidence, Risk Factors, and Complications. Liver Transpl. 2004, 10, 1140–1143. [Google Scholar] [CrossRef] [PubMed]
- Checkley, W.; White, A.C.; Jaganath, D.; Arrowood, M.J.; Chalmers, R.M.; Chen, X.-M.; Fayer, R.; Griffiths, J.K.; Guerrant, R.L.; Hedstrom, L.; et al. A Review of the Global Burden, Novel Diagnostics, Therapeutics, and Vaccine Targets for Cryptosporidium. Lancet Infect. Dis. 2015, 15, 85–94. [Google Scholar] [CrossRef]
- Petry, F.; Jakobi, V.; Tessema, T.S. Host Immune Response to Cryptosporidium Parvum Infection. Exp. Parasitol. 2010, 126, 304–309. [Google Scholar] [CrossRef]
- Lanternier, F.; Amazzough, K.; Favennec, L.; Mamzer-Bruneel, M.-F.; Abdoul, H.; Tourret, J.; Decramer, S.; Zuber, J.; Scemla, A.; Legendre, C.; et al. Cryptosporidium Spp. Infection in Solid Organ Transplantation: The Nationwide “TRANSCRYPTO” Study. Transplantation 2017, 101, 826–830. [Google Scholar] [CrossRef]
- Kosik-Bogacka, D.; Łanocha-Arendarczyk, N.; Korzeniewski, K.; Mularczyk, M.; Kabat-Koperska, J.; Ziętek, P.; Marchelek-Myśliwiec, M. Cryptosporidium spp. Infection in Adult Kidney Transplant Patients: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 6395. [Google Scholar] [CrossRef]
- Yehia, B.R.; Blumberg, E.A. Mycobacterium Tuberculosis Infection in Liver Transplantation. Liver Transpl. 2010, 16, 1129–1135. [Google Scholar] [CrossRef]
- Abad, C.L.R.; Razonable, R.R. Mycobacterium Tuberculosis after Solid Organ Transplantation: A Review of More than 2000 Cases. Clin. Transpl. 2018, 32, e13259. [Google Scholar] [CrossRef]
- Subramanian, A.K.; Theodoropoulos, N.M. Infectious Diseases Community of Practice of the American Society of Transplantation Mycobacterium Tuberculosis Infections in Solid Organ Transplantation: Guidelines from the Infectious Diseases Community of Practice of the American Society of Transplantation. Clin. Transpl. 2019, 33, e13513. [Google Scholar] [CrossRef]
- Holty, J.-E.C.; Gould, M.K.; Meinke, L.; Keeffe, E.B.; Ruoss, S.J. Tuberculosis in Liver Transplant Recipients: A Systematic Review and Meta-Analysis of Individual Patient Data. Liver Transpl. 2009, 15, 894–906. [Google Scholar] [CrossRef] [PubMed]
- Latent Tuberculosis Infection: Updated and Consolidated Guidelines for Programmatic Management. Available online: https://www.who.int/publications/i/item/9789241550239 (accessed on 17 February 2025).
- Lee, Y.W.; Chung, H.; Kim, S.-H.; Sung, H.; Ha, S.-M.; Jwa, E.-K.; Jung, D.-H.; Moon, D.-B.; Lee, S.-G.; Lee, S.-O. Safety and Outcome of Treatment of Latent Tuberculosis Infection in Liver Transplant Recipients. Infection 2024, 52, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Pérez, M.; González-Grande, R.; Omonte Guzmán, E.; Amo Trillo, V.; Rodrigo López, J.M. Metabolic Complications in Liver Transplant Recipients. World J. Gastroenterol. 2016, 22, 6416–6423. [Google Scholar] [CrossRef] [PubMed]
- Charlton, M.; Rinella, M.; Patel, D.; McCague, K.; Heimbach, J.; Watt, K. Everolimus Is Associated with Less Weight Gain Than Tacrolimus 2 Years After Liver Transplantation: Results of a Randomized Multicenter Study. Transplantation 2017, 101, 2873–2882. [Google Scholar] [CrossRef]
- Watt, K.D. Metabolic Syndrome: Is Immunosuppression to Blame? Liver Transpl. 2011, 17 (Suppl. S3), S38–S42. [Google Scholar] [CrossRef]
- Burra, P.; Becchetti, C.; Germani, G. NAFLD and Liver Transplantation: Disease Burden, Current Management and Future Challenges. JHEP Rep. 2020, 2, 100192. [Google Scholar] [CrossRef]
- Gojowy, D.; Adamczak, M.; Dudzicz, S.; Gazda, M.; Karkoszka, H.; Wiecek, A. High Frequency of Arterial Hypertension in Patients After Liver Transplantation. Transplant. Proc. 2016, 48, 1721–1724. [Google Scholar] [CrossRef]
- Gonwa, T.; Mendez, R.; Yang, H.C.; Weinstein, S.; Jensik, S.; Steinberg, S. Prograf Study Group Randomized Trial of Tacrolimus in Combination with Sirolimus or Mycophenolate Mofetil in Kidney Transplantation: Results at 6 Months. Transplantation 2003, 75, 1213–1220. [Google Scholar] [CrossRef]
- Trotter, J.F. Sirolimus in Liver Transplantation. Transplant. Proc. 2003, 35, 193S–200S. [Google Scholar] [CrossRef]
- McKenna, G.J.; Trotter, J.F.; Klintmalm, E.; Ruiz, R.; Onaca, N.; Testa, G.; Saracino, G.; Levy, M.F.; Goldstein, R.M.; Klintmalm, G.B. Sirolimus and Cardiovascular Disease Risk in Liver Transplantation. Transplantation 2013, 95, 215–221. [Google Scholar] [CrossRef]
- Holdaas, H.; Potena, L.; Saliba, F. mTOR Inhibitors and Dyslipidemia in Transplant Recipients: A Cause for Concern? Transplant. Rev. 2015, 29, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Trotter, J.F.; Wachs, M.E.; Trouillot, T.E.; Bak, T.; Kugelmas, M.; Kam, I.; Everson, G. Dyslipidemia during Sirolimus Therapy in Liver Transplant Recipients Occurs with Concomitant Cyclosporine but Not Tacrolimus. Liver Transpl. 2001, 7, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Lawendy, B.; Srinathan, S.; Kotha, S.; Gomes, C.; Misra, S.; Yu, J.; Orchanian-Cheff, A.; Tomlinson, G.; Bhat, M. Systematic Review and Meta-Analysis of Post-Transplant Diabetes Mellitus in Liver Transplant Recipients. Clin. Transplant. 2021, 35, e14340. [Google Scholar] [CrossRef] [PubMed]
- Houde, V.P.; Brûlé, S.; Festuccia, W.T.; Blanchard, P.-G.; Bellmann, K.; Deshaies, Y.; Marette, A. Chronic Rapamycin Treatment Causes Glucose Intolerance and Hyperlipidemia by Upregulating Hepatic Gluconeogenesis and Impairing Lipid Deposition in Adipose Tissue. Diabetes 2010, 59, 1338–1348. [Google Scholar] [CrossRef]
- Øzbay, L.A.; Smidt, K.; Mortensen, D.M.; Carstens, J.; Jørgensen, K.A.; Rungby, J. Cyclosporin and Tacrolimus Impair Insulin Secretion and Transcriptional Regulation in INS-1E Beta-Cells. Br. J. Pharmacol. 2011, 162, 136–146. [Google Scholar] [CrossRef]
- Haddad, E.M.; McAlister, V.C.; Renouf, E.; Malthaner, R.; Kjaer, M.S.; Gluud, L.L. Cyclosporin versus Tacrolimus for Liver Transplanted Patients. Cochrane Database Syst. Rev. 2006, 2006, CD005161. [Google Scholar] [CrossRef]
- Taneja, S.; Roy, A.; Duseja, A. NASH After Liver Transplantation: Impact of Immunosuppression. J. Clin. Exp. Hepatol. 2023, 13, 835–840. [Google Scholar] [CrossRef]
- Weber, M.L.; Ibrahim, H.N.; Lake, J.R. Renal Dysfunction in Liver Transplant Recipients: Evaluation of the Critical Issues. Liver Transplant. 2012, 18, 1290–1301. [Google Scholar] [CrossRef]
- Li, Y.; Li, B.; Wang, W.; Lv, J. Risk Factors for New-Onset Chronic Kidney Disease in Patients Who Have Received a Liver Transplant. Exp. Ther. Med. 2018, 15, 3589–3595. [Google Scholar] [CrossRef]
- Álamo, J.M.; Olivares, C.; Barrera, L.; Marín, L.M.; Suarez, G.; Bernal, C.; Serrano, J.; Muntané, J.; Padillo, F.J.; Gómez, M.A. Conversion from Calcineurin Inhibitors to mTOR Inhibitors Stabilizes Diabetic and Hypertensive Nephropathy after Liver Transplant. World J. Transplant. 2015, 5, 19–25. [Google Scholar] [CrossRef]
- Lin, M.; Mittal, S.; Sahebjam, F.; Rana, A.; Sood, G.K. Everolimus with Early Withdrawal or Reduced-Dose Calcineurin Inhibitors Improves Renal Function in Liver Transplant Recipients: A Systematic Review and Meta-Analysis. Clin. Transplant. 2017, 31, e12872. [Google Scholar] [CrossRef] [PubMed]
- Teperman, L.; Moonka, D.; Sebastian, A.; Sher, L.; Marotta, P.; Marsh, C.; Koneru, B.; Goss, J.; Preston, D.; Roberts, J.P.; et al. Calcineurin Inhibitor-Free Mycophenolate Mofetil/Sirolimus Maintenance in Liver Transplantation: The Randomized Spare-the-Nephron Trial. Liver Transplant. 2013, 19, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Haywood, S.; Abecassis, M.; Levitsky, J. The Renal Benefit of Mycophenolate Mofetil after Liver Transplantation. Clin. Transplant. 2011, 25, E88–E95. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Vekatramanan, R.; Eghtesad, B.; Gadomski, M.; Mohanka, R.; Marcos, A.; Fung, J. Long-Term Outcome of Adding Mycophenolate Mofetil to Tacrolimus for Nephrotoxicity Following Liver Transplantation. Transplantation 2005, 80, 859–864. [Google Scholar] [CrossRef]
- Koch, R.O.; Graziadei, I.W.; Schulz, F.; Nachbaur, K.; Königsrainer, A.; Margreiter, R.; Vogel, W. Long-Term Efficacy and Safety of Mycophenolate Mofetil in Liver Transplant Recipients with Calcineurin Inhibitor-Induced Renal Dysfunction. Transpl. Int. 2004, 17, 518–524. [Google Scholar] [CrossRef]
- Mouzaki, M.; Yap, J.; Avinashi, V.; Babu, A.; Fu, A.; Deangelis, M.; Van Roestel, K.; Ghanekar, A.; Kamath, B.; Avitzur, Y.; et al. Basiliximab with Delayed Introduction of Calcineurin Inhibitors as a Renal-Sparing Protocol Following Liver Transplantation in Children with Renal Impairment. Pediatr. Transplant. 2013, 17, 751–756. [Google Scholar] [CrossRef]
- Gibelli, N.E.M.; Pinho-Apezzato, M.L.; Miyatani, H.T.; Maksoud-Filho, J.G.; Silva, M.M.; Ayoub, A.A.R.; Santos, M.M.; Velhote, M.C.P.; Tannuri, U.; Maksoud, J.G. Basiliximab-Chimeric Anti-IL2-R Monoclonal Antibody in Pediatric Liver Transplantation: Comparative Study. Transplant. Proc. 2004, 36, 956–957. [Google Scholar] [CrossRef]
- Amodio, P.; Biancardi, A.; Montagnese, S.; Angeli, P.; Iannizzi, P.; Cillo, U.; D’Amico, D.; Gatta, A. Neurological Complications after Orthotopic Liver Transplantation. Dig. Liver Dis. 2007, 39, 740–747. [Google Scholar] [CrossRef]
- Zivković, S.A. Neurologic Complications after Liver Transplantation. World J. Hepatol. 2013, 5, 409–416. [Google Scholar] [CrossRef]
- Balderramo, D.; Prieto, J.; Cárdenas, A.; Navasa, M. Hepatic Encephalopathy and Post-Transplant Hyponatremia Predict Early Calcineurin Inhibitor-Induced Neurotoxicity after Liver Transplantation. Transpl. Int. 2011, 24, 812–819. [Google Scholar] [CrossRef]
- Forgacs, B.; Merhav, H.J.; Lappin, J.; Mieles, L. Successful Conversion to Rapamycin for Calcineurin Inhibitor-Related Neurotoxicity Following Liver Transplantation. Transplant. Proc. 2005, 37, 1912–1914. [Google Scholar] [CrossRef] [PubMed]
- Vivarelli, M.; Dazzi, A.; Cucchetti, A.; Gasbarrini, A.; Zanello, M.; Di Gioia, P.; Bianchi, G.; Tamè, M.R.; Gaudio, M.D.; Ravaioli, M.; et al. Sirolimus in Liver Transplant Recipients: A Large Single-Center Experience. Transplant. Proc. 2010, 42, 2579–2584. [Google Scholar] [CrossRef] [PubMed]
- Bilbao, I.; Dopazo, C.; Castells, L.; Lazaro, J.; Caralt, M.; Sapisochin, G.; Charco, R. Immunosuppression Based on Everolimus in Liver Transplant Recipients with Severe Early Post-Transplantation Neurotoxicity. Transplant. Proc. 2014, 46, 3104–3107. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, A.; Mishra, R.; Thuluvath, P.J. Post-Liver-Transplant Anemia: Etiology and Management. Liver Transpl. 2004, 10, 165–173. [Google Scholar] [CrossRef]
- Nosari, A.; Marbello, L.; De Carlis, L.G.; De Gasperi, A.; Muti, G.; Mancini, V.; Morra, E. Bone Marrow Hypoplasia Complicating Tacrolimus (FK506) Therapy. Int. J. Hematol. 2004, 79, 130–132. [Google Scholar] [CrossRef]
- Masetti, M.; Rompianesi, G.; Montalti, R.; Romano, A.; Spaggiari, M.; Ballarin, R.; Guerrini, G.P.; Gerunda, G.E. Effects of Everolimus Monotherapy on Hematological Parameters and Iron Homeostasis in de Novo Liver Transplant Recipients: Preliminary Results. Transplant. Proc. 2008, 40, 1947–1949. [Google Scholar] [CrossRef]
- Dumortier, J.; Guillaud, O.; Pittau, G.; Salandre, J.; Adham, M.; Scoazec, J.-Y.; Boillot, O. Introduction of Mycophenolate Mofetil in Maintenance Liver Transplant Recipients: What Can We Expect? Results of a 10-Year Experience. Transplant. Proc. 2010, 42, 2602–2606. [Google Scholar] [CrossRef]
- Patel, N.; Muñoz, S.J. Bone Disease in Cirrhosis. Clin. Liver Dis. 2015, 6, 96–99. [Google Scholar] [CrossRef]
- Guañabens, N.; Parés, A. Liver and Bone. Arch. Biochem. Biophys. 2010, 503, 84–94. [Google Scholar] [CrossRef]
- Nakchbandi, I.A. Osteoporosis and Fractures in Liver Disease: Relevance, Pathogenesis and Therapeutic Implications. World J. Gastroenterol. 2014, 20, 9427–9438. [Google Scholar] [CrossRef]
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, N.M.; Shane, E. Osteoporosis after Solid Organ Transplantation. J. Clin. Endocrinol. Metab. 2005, 90, 2456–2465. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Ha, J.; Kim, S.W.; Kim, J.-E.; Lee, S.; Choi, H.S.; Hong, N.; Kong, S.H.; Ahn, S.H.; Park, S.Y.; et al. Bone Loss after Solid Organ Transplantation: A Review of Organ-Specific Considerations. Endocrinol. Metab. 2024, 39, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Zavatta, G.; Vitale, G.; Morelli, M.C.; Pianta, P.; Turco, L.; Cappa, F.M.; Ravaioli, M.; Cescon, M.; Piscaglia, F.; Altieri, P.; et al. High Bone Fracture Risk in a Large Modern Cohort of Liver Transplant Recipients. Intern. Emerg. Med. 2024. [CrossRef]
- Lan, G.; Xie, X.; Peng, L.; Liu, L.; Song, L.; Dai, H. Current Status of Research on Osteoporosis after Solid Organ Transplantation: Pathogenesis and Management. Biomed. Res. Int. 2015, 2015, 413169. [Google Scholar] [CrossRef]
- Guichelaar, M.M.J.; Kendall, R.; Malinchoc, M.; Hay, J.E. Bone Mineral Density before and after OLT: Long-Term Follow-up and Predictive Factors. Liver Transpl. 2006, 12, 1390–1402. [Google Scholar] [CrossRef]
- Monegal, A.; Navasa, M.; Guañabens, N.; Peris, P.; Pons, F.; Martinez de Osaba, M.J.; Ordi, J.; Rimola, A.; Rodés, J.; Muñoz-Gómez, J. Bone Disease after Liver Transplantation: A Long-Term Prospective Study of Bone Mass Changes, Hormonal Status and Histomorphometric Characteristics. Osteoporos. Int. 2001, 12, 484–492. [Google Scholar] [CrossRef]
- Giannini, S.; Nobile, M.; Ciuffreda, M.; Iemmolo, R.M.; Dalle Carbonare, L.; Minicuci, N.; Casagrande, F.; Destro, C.; Gerunda, G.E.; Sartori, L.; et al. Long-Term Persistence of Low Bone Density in Orthotopic Liver Transplantation. Osteoporos. Int. 2000, 11, 417–424. [Google Scholar] [CrossRef]
- Pimentel, A.; Ureña-Torres, P.; Zillikens, M.C.; Bover, J.; Cohen-Solal, M. Fractures in Patients with CKD-Diagnosis, Treatment, and Prevention: A Review by Members of the European Calcified Tissue Society and the European Renal Association of Nephrology Dialysis and Transplantation. Kidney Int. 2017, 92, 1343–1355. [Google Scholar] [CrossRef]
- Brunova, J.; Kratochvilova, S.; Stepankova, J. Osteoporosis Therapy with Denosumab in Organ Transplant Recipients. Front. Endocrinol. 2018, 9, 162. [Google Scholar] [CrossRef]
- Bueno, M.V.; Munhoz, L.; Ortega, K.L.; Peres, M.P.S.D.M.; Franco, J.B. Bone Pattern Changes in Post Liver Transplant Patients Using Bisphosphonates. Spec. Care Dent. 2024, 44, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A 2001, 56, M146–M157. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.; Segev, D.L.; McCulloch, C.E.; Covinsky, K.E.; Dodge, J.L.; Feng, S. Physical Frailty after Liver Transplantation. Am. J. Transplant. 2018, 18, 1986–1994. [Google Scholar] [CrossRef] [PubMed]
- Gabrielli, F.; Biagi, F.; Avossa, A.; Falcini, M.; Nascimbeni, F.; Andreone, P.; Gitto, S. Frailty after Liver Transplantation: A Complex Unexplored Issue. J. Clin. Med. 2024, 13, 4537. [Google Scholar] [CrossRef]
- Tandon, P.; Zanetto, A.; Piano, S.; Heimbach, J.K.; Dasarathy, S. Liver Transplantation in the Patient with Physical Frailty. J. Hepatol. 2023, 78, 1105–1117. [Google Scholar] [CrossRef]
- Assy, N.; Adams, P.C.; Myers, P.; Simon, V.; Minuk, G.Y.; Wall, W.; Ghent, C.N. Randomized Controlled Trial of Total Immunosuppression Withdrawal in Liver Transplant Recipients: Role of Ursodeoxycholic Acid. Transplantation 2007, 83, 1571–1576. [Google Scholar] [CrossRef]
- Devlin, J.; Doherty, D.; Thomson, L.; Wong, T.; Donaldson, P.; Portmann, B.; Williams, R. Defining the Outcome of Immunosuppression Withdrawal after Liver Transplantation. Hepatology 1998, 27, 926–933. [Google Scholar] [CrossRef]
- Eason, J.D.; Cohen, A.J.; Nair, S.; Alcantera, T.; Loss, G.E. Tolerance: Is It Worth the Risk? Transplantation 2005, 79, 1157–1159. [Google Scholar] [CrossRef]
- Feng, S.; Ekong, U.D.; Lobritto, S.J.; Demetris, A.J.; Roberts, J.P.; Rosenthal, P.; Alonso, E.M.; Philogene, M.C.; Ikle, D.; Poole, K.M.; et al. Complete Immunosuppression Withdrawal and Subsequent Allograft Function among Pediatric Recipients of Parental Living Donor Liver Transplants. JAMA 2012, 307, 283–293. [Google Scholar] [CrossRef]
- Girlanda, R.; Rela, M.; Williams, R.; O’Grady, J.G.; Heaton, N.D. Long-Term Outcome of Immunosuppression Withdrawal after Liver Transplantation. Transplant. Proc. 2005, 37, 1708–1709. [Google Scholar] [CrossRef]
- Mazariegos, G.V.; Reyes, J.; Marino, I.R.; Demetris, A.J.; Flynn, B.; Irish, W.; McMichael, J.; Fung, J.J.; Starzl, T.E. Weaning of Immunosuppression in Liver Transplant Recipients. Transplantation 1997, 63, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Oike, F.; Yokoi, A.; Nishimura, E.; Ogura, Y.; Fujimoto, Y.; Kasahara, M.; Kaihara, S.; Kiuchi, T.; Egawa, H.; Uemoto, S.; et al. Complete Withdrawal of Immunosuppression in Living Donor Liver Transplantation. Transplant. Proc. 2002, 34, 1521. [Google Scholar] [CrossRef] [PubMed]
- Pons, J.A.; Yélamos, J.; Ramírez, P.; Oliver-Bonet, M.; Sánchez, A.; Rodríguez-Gago, M.; Navarro, J.; Bermejo, J.; Robles, R.; Parrilla, P. Endothelial Cell Chimerism Does Not Influence Allograft Tolerance in Liver Transplant Patients after Withdrawal of Immunosuppression. Transplantation 2003, 75, 1045–1047. [Google Scholar] [CrossRef] [PubMed]
- Takatsuki, M.; Uemoto, S.; Inomata, Y.; Egawa, H.; Kiuchi, T.; Fujita, S.; Hayashi, M.; Kanematsu, T.; Tanaka, K. Weaning of Immunosuppression in Living Donor Liver Transplant Recipients. Transplantation 2001, 72, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Tisone, G.; Orlando, G.; Cardillo, A.; Palmieri, G.; Manzia, T.M.; Baiocchi, L.; Lionetti, R.; Anselmo, A.; Toti, L.; Angelico, M. Complete Weaning off Immunosuppression in HCV Liver Transplant Recipients Is Feasible and Favourably Impacts on the Progression of Disease Recurrence. J. Hepatol. 2006, 44, 702–709. [Google Scholar] [CrossRef]
- Tryphonopoulos, P.; Tzakis, A.G.; Weppler, D.; Garcia-Morales, R.; Kato, T.; Madariaga, J.R.; Levi, D.M.; Nishida, S.; Moon, J.; Selvaggi, G.; et al. The Role of Donor Bone Marrow Infusions in Withdrawal of Immunosuppression in Adult Liver Allotransplantation. Am. J. Transplant. 2005, 5, 608–613. [Google Scholar] [CrossRef]
- Duizendstra, A.A.; de Knegt, R.J.; Betjes, M.G.H.; Coenen, S.; Murad, S.D.; de Man, R.A.; Metselaar, H.J.; Sprengers, D.; Litjens, N.H.R.; Kwekkeboom, J. Immunosuppressive Drug Withdrawal Late after Liver Transplantation Improves the Lipid Profile and Reduces Infections. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1444–1451. [Google Scholar] [CrossRef]
- Feng, S.; Bucuvalas, J. Tolerance after Liver Transplantation: Where Are We? Liver Transpl. 2017, 23, 1601–1614. [Google Scholar] [CrossRef]
- Chandrasekharan, D.; Issa, F.; Wood, K.J. Achieving Operational Tolerance in Transplantation: How Can Lessons from the Clinic Inform Research Directions? Transpl. Int. 2013, 26, 576–589. [Google Scholar] [CrossRef]
- Yoshitomi, M.; Koshiba, T.; Haga, H.; Li, Y.; Zhao, X.; Cheng, D.; Miyagawa, A.; Sakashita, H.; Tsuruyama, T.; Ohe, H.; et al. Requirement of Protocol Biopsy before and after Complete Cessation of Immunosuppression after Liver Transplantation. Transplantation 2009, 87, 606–614. [Google Scholar] [CrossRef]
- Benítez, C.; Londoño, M.-C.; Miquel, R.; Manzia, T.-M.; Abraldes, J.G.; Lozano, J.-J.; Martínez-Llordella, M.; López, M.; Angelico, R.; Bohne, F.; et al. Prospective Multicenter Clinical Trial of Immunosuppressive Drug Withdrawal in Stable Adult Liver Transplant Recipients. Hepatology 2013, 58, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Shaked, A.; DesMarais, M.R.; Kopetskie, H.; Feng, S.; Punch, J.D.; Levitsky, J.; Reyes, J.; Klintmalm, G.B.; Demetris, A.J.; Burrell, B.E.; et al. Outcomes of Immunosuppression Minimization and Withdrawal Early after Liver Transplantation. Am. J. Transplant. 2019, 19, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Levitsky, J.; Burrell, B.E.; Kanaparthi, S.; Turka, L.A.; Kurian, S.; Sanchez-Fueyo, A.; Lozano, J.J.; Demetris, A.; Lesniak, A.; Kirk, A.D.; et al. Immunosuppression Withdrawal in Liver Transplant Recipients on Sirolimus. Hepatology 2020, 72, 569–583. [Google Scholar] [CrossRef]
- Vionnet, J.; Torres-Yaguana, J.; Miquel, R.; Abraldes, J.G.; Wall, J.; Kodela, E.; Lozano, J.-J.; Ruiz, P.; Navasa, M.; Marshall, A.; et al. Randomized Trial Investigating the Utility of a Liver Tissue Transcriptional Biomarker in Identifying Adult Liver Transplant Recipients Not Requiring Maintenance Immunosuppression. Am. J. Transplant. 2024, in press. [Google Scholar] [CrossRef]
- Lerut, J.; Van Thuyne, V.; Mathijs, J.; Lemaire, J.; Talpe, S.; Roggen, F.; Ciccarelli, O.; Zuckermann, M.; Goffette, P.; Hope, J.; et al. Anti-CD2 Monoclonal Antibody and Tacrolimus in Adult Liver Transplantation. Transplantation 2005, 80, 1186. [Google Scholar] [CrossRef]
- Salvadori, M.; Tsalouchos, A. Therapeutic Apheresis in Kidney Transplantation: An Updated Review. World J. Transplant. 2019, 9, 103–122. [Google Scholar] [CrossRef]
- Iesari, S.; Nava, F.L.; Zais, I.E.; Coubeau, L.; Ferraresso, M.; Favi, E.; Lerut, J. Advancing Immunosuppression in Liver Transplantation: A Narrative Review. Hepatobiliary Pancreat. Dis. Int. 2024, 23, 441–448. [Google Scholar] [CrossRef]
- Vincenti, F. Belatacept and Long-Term Outcomes in Kidney Transplantation. N. Engl. J. Med. 2016, 374, 2600–2601. [Google Scholar] [CrossRef]
- Klintmalm, G.B.; Feng, S.; Lake, J.R.; Vargas, H.E.; Wekerle, T.; Agnes, S.; Brown, K.A.; Nashan, B.; Rostaing, L.; Meadows-Shropshire, S.; et al. Belatacept-Based Immunosuppression in de Novo Liver Transplant Recipients: 1-Year Experience from a Phase II Randomized Study. Am. J. Transplant. 2014, 14, 1817–1827. [Google Scholar] [CrossRef]
- Cristea, O.; Karadkhele, G.; Kitchens, W.H.; Vasanth, P.; Larsen, C.P.; Badell, I.R. Belatacept Conversion in Kidney After Liver Transplantation. Transplant. Direct 2021, 7, e780. [Google Scholar] [CrossRef]
- Verbeek, J.S.; Hirose, S.; Nishimura, H. The Complex Association of FcγRIIb with Autoimmune Susceptibility. Front. Immunol. 2019, 10, 2061. [Google Scholar] [CrossRef] [PubMed]
- Fribourg, M.; Anderson, L.; Fischman, C.; Cantarelli, C.; Perin, L.; La Manna, G.; Rahman, A.; Burrell, B.E.; Heeger, P.S.; Cravedi, P. T-Cell Exhaustion Correlates with Improved Outcomes in Kidney Transplant Recipients. Kidney Int. 2019, 96, 436–449. [Google Scholar] [CrossRef] [PubMed]
- Angeletti, A.; Cantarelli, C.; Riella, L.V.; Fribourg, M.; Cravedi, P. T-Cell Exhaustion in Organ Transplantation. Transplantation 2022, 106, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Arruda, L.C.M.; Lima-Júnior, J.R.; Clave, E.; Moraes, D.A.; Douay, C.; Fournier, I.; Moins-Teisserenc, H.; Covas, D.T.; Simões, B.P.; Farge, D.; et al. Homeostatic Proliferation Leads to Telomere Attrition and Increased PD-1 Expression after Autologous Hematopoietic SCT for Systemic Sclerosis. Bone Marrow Transplant. 2018, 53, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Kung, P.; Goldstein, G.; Reinherz, E.L.; Schlossman, S.F. Monoclonal Antibodies Defining Distinctive Human T Cell Surface Antigens. Science 1979, 206, 347–349. [Google Scholar] [CrossRef]
- Wilde, M.I.; Goa, K.L. Muromonab CD3: A Reappraisal of Its Pharmacology and Use as Prophylaxis of Solid Organ Transplant Rejection. Drugs 1996, 51, 865–894. [Google Scholar] [CrossRef]
- Norman, D.J. Mechanisms of Action and Overview of OKT3. Ther. Drug Monit. 1995, 17, 615–620. [Google Scholar] [CrossRef]
- Cvetkovski, F.; Hexham, J.M.; Berglund, E. Strategies for Liver Transplantation Tolerance. Int. J. Mol. Sci. 2021, 22, 2253. [Google Scholar] [CrossRef]
- Morris, P.J.; Russell, N.K. Alemtuzumab (Campath-1H): A Systematic Review in Organ Transplantation. Transplantation 2006, 81, 1361–1367. [Google Scholar] [CrossRef]
- Magliocca, J.F.; Knechtle, S.J. The Evolving Role of Alemtuzumab (Campath-1H) for Immunosuppressive Therapy in Organ Transplantation. Transpl. Int. 2006, 19, 705–714. [Google Scholar] [CrossRef]
- Tzakis, A.G.; Tryphonopoulos, P.; Kato, T.; Nishida, S.; Levi, D.M.; Madariaga, J.R.; Gaynor, J.J.; De Faria, W.; Regev, A.; Esquenazi, V.; et al. Preliminary Experience with Alemtuzumab (Campath-1H) and Low-Dose Tacrolimus Immunosuppression in Adult Liver Transplantation. Transplantation 2004, 77, 1209–1214. [Google Scholar] [CrossRef] [PubMed]
- Tzakis, A.G.; Kato, T.; Nishida, S.; Levi, D.M.; Madariaga, J.R.; Nery, J.R.; Mittal, N.; Regev, A.; Cantwell, P.; Gyamfi, A.; et al. Preliminary Experience with Campath 1H (C1H) in Intestinal and Liver Transplantation. Transplantation 2003, 75, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Tryphonopoulos, P.; Madariaga, J.R.; Kato, T.; Nishida, S.; Levi, D.M.; Moon, J.; Selvaggi, G.; De Faria, W.; Regev, A.; Bejarano, P.; et al. The Impact of Campath 1H Induction in Adult Liver Allotransplantation. Transplant. Proc. 2005, 37, 1203–1204. [Google Scholar] [CrossRef]
- Khan, O.; Giles, J.R.; McDonald, S.; Manne, S.; Ngiow, S.F.; Patel, K.P.; Werner, M.T.; Huang, A.C.; Alexander, K.A.; Wu, J.E.; et al. TOX Transcriptionally and Epigenetically Programs CD8+ T Cell Exhaustion. Nature 2019, 571, 211–218. [Google Scholar] [CrossRef]
- Soliman, T.; Hetz, H.; Burghuber, C.; Györi, G.; Silberhumer, G.; Steininger, R.; Mühlbacher, F.; Berlakovich, G.A. Short-Term Induction Therapy with Anti-Thymocyte Globulin and Delayed Use of Calcineurin Inhibitors in Orthotopic Liver Transplantation. Liver Transpl. 2007, 13, 1039–1044. [Google Scholar] [CrossRef]
- Tchervenkov, J.I.; Tzimas, G.N.; Cantarovich, M.; Barkun, J.S.; Metrakos, P. The Impact of Thymoglobulin on Renal Function and Calcineurin Inhibitor Initiation in Recipients of Orthotopic Liver Transplant: A Retrospective Analysis of 298 Consecutive Patients. Transplant. Proc. 2004, 36, 1747–1752. [Google Scholar] [CrossRef]
- Nair, A.; Coromina Hernandez, L.; Shah, S.; Zervos, X.; Zimmerman, M.; Sasaki, K.; Diago, T.; Hashimoto, K.; Fujiki, M.; Aucejo, F.; et al. Induction Therapy with Antithymocyte Globulin and Delayed Calcineurin Inhibitor Initiation for Renal Protection in Liver Transplantation: A Multicenter Randomized Controlled Phase II-B Trial. Transplantation 2022, 106, 997–1003. [Google Scholar] [CrossRef]
- Rawlings, J.S.; Rosler, K.M.; Harrison, D.A. The JAK/STAT Signaling Pathway. J. Cell Sci. 2004, 117, 1281–1283. [Google Scholar] [CrossRef]
- Qureshy, Z.; Johnson, D.E.; Grandis, J.R. Targeting the JAK/STAT Pathway in Solid Tumors. J. Cancer Metastasis Treat. 2020, 6, 27. [Google Scholar] [CrossRef]
- Jamilloux, Y.; El Jammal, T.; Vuitton, L.; Gerfaud-Valentin, M.; Kerever, S.; Sève, P. JAK Inhibitors for the Treatment of Autoimmune and Inflammatory Diseases. Autoimmun. Rev. 2019, 18, 102390. [Google Scholar] [CrossRef]
- Baan, C.C.; Kannegieter, N.M.; Felipe, C.R.; Tedesco Silva, H. Targeting JAK/STAT Signaling to Prevent Rejection After Kidney Transplantation: A Reappraisal. Transplantation 2016, 100, 1833–1839. [Google Scholar] [CrossRef] [PubMed]
- Säemann, M.D.; Böhmig, G.A.; Osterreicher, C.H.; Staffler, G.; Diakos, C.; Krieger, P.M.; Hörl, W.H.; Stockinger, H.; Zlabinger, G.J. Suppression of Primary T-Cell Responses and Induction of Alloantigen-Specific Hyporesponsiveness in Vitro by the Janus Kinase Inhibitor Tyrphostin AG490. Transplantation 2000, 70, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Zhu, G.; Qin, M.; Li, Z.; Wang, B.; Yang, J.; Wang, T. The Effectiveness of Ruxolitinib for Acute/Chronic Graft-versus-Host Disease in Children: A Retrospective Study. Drug Des. Devel Ther. 2021, 15, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Zand, M.S. Tofacitinab in Renal Transplantation. Transplant. Rev. 2013, 27, 85–89. [Google Scholar] [CrossRef]
- Freitas, M.C.S.; Uchida, Y.; Zhao, D.; Ke, B.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Blockade of Janus Kinase-2 Signaling Ameliorates Mouse Liver Damage Due to Ischemia and Reperfusion. Liver Transpl. 2010, 16, 600–610. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, W.; Cai, X. Anti-Interleukin-2 Receptor Antibodies for the Prevention of Rejection in Liver Transplant Recipients: A Systematic Review and Meta-Analysis. Ann. Med. 2017, 49, 365–376. [Google Scholar] [CrossRef]
- Becker, T.; Foltys, D.; Bilbao, I.; D’Amico, D.; Colledan, M.; Bernardos, A.; Beckebaum, S.; Isoniemi, H.; Pirenne, J.; Jaray, J.; et al. Patient Outcomes in Two Steroid-Free Regimens Using Tacrolimus Monotherapy after Daclizumab Induction and Tacrolimus with Mycophenolate Mofetil in Liver Transplantation. Transplantation 2008, 86, 1689–1694. [Google Scholar] [CrossRef]
- Boillot, O.; Mayer, D.A.; Boudjema, K.; Salizzoni, M.; Gridelli, B.; Filipponi, F.; Trunecka, P.; Krawczyk, M.; Clavien, P.-A.; Ducerf, C.; et al. Corticosteroid-Free Immunosuppression with Tacrolimus Following Induction with Daclizumab: A Large Randomized Clinical Study. Liver Transpl. 2005, 11, 61–67. [Google Scholar] [CrossRef]
- TruneČka, P.; Klempnauer, J.; Bechstein, W.O.; Pirenne, J.; Friman, S.; Zhao, A.; Isoniemi, H.; Rostaing, L.; Settmacher, U.; Mönch, C.; et al. Renal Function in De Novo Liver Transplant Recipients Receiving Different Prolonged-Release Tacrolimus Regimens-The DIAMOND Study. Am. J. Transplant. 2015, 15, 1843–1854. [Google Scholar] [CrossRef]
- Moini, M.; Schilsky, M.L.; Tichy, E.M. Review on Immunosuppression in Liver Transplantation. World J. Hepatol. 2015, 7, 1355–1368. [Google Scholar] [CrossRef]
- Bugelski, P.J.; Martin, P.L. Concordance of Preclinical and Clinical Pharmacology and Toxicology of Therapeutic Monoclonal Antibodies and Fusion Proteins: Cell Surface Targets. Br. J. Pharmacol. 2012, 166, 823–846. [Google Scholar] [CrossRef] [PubMed]
- Penninga, L.; Wettergren, A.; Wilson, C.H.; Chan, A.-W.; Steinbrüchel, D.A.; Gluud, C. Antibody Induction versus Placebo, No Induction, or Another Type of Antibody Induction for Liver Transplant Recipients. Cochrane Database Syst. Rev. 2014, 2014, CD010253. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.; Rabindranath, M.; Chara, B.S.; Simonetto, D.A. Artificial Intelligence, Machine Learning, and Deep Learning in Liver Transplantation. J. Hepatol. 2023, 78, 1216–1233. [Google Scholar] [CrossRef] [PubMed]
- Gulla, A.; Jakiunaite, I.; Juchneviciute, I.; Dzemyda, G. A Narrative Review: Predicting Liver Transplant Graft Survival Using Artificial Intelligence Modeling. Front. Transplant. 2024, 3, 1378378. [Google Scholar] [CrossRef]
- Briceño, J.; Calleja, R.; Hervás, C. Artificial Intelligence and Liver Transplantation: Looking for the Best Donor-Recipient Pairing. Hepatobiliary Pancreat. Dis. Int. 2022, 21, 347–353. [Google Scholar] [CrossRef]
- Lau, L.; Kankanige, Y.; Rubinstein, B.; Jones, R.; Christophi, C.; Muralidharan, V.; Bailey, J. Machine-Learning Algorithms Predict Graft Failure After Liver Transplantation. Transplantation 2017, 101, e125–e132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabrielli, F.; Bernasconi, E.; Toscano, A.; Avossa, A.; Cavicchioli, A.; Andreone, P.; Gitto, S. Side Effects of Immunosuppressant Drugs After Liver Transplant. Pharmaceuticals 2025, 18, 342. https://doi.org/10.3390/ph18030342
Gabrielli F, Bernasconi E, Toscano A, Avossa A, Cavicchioli A, Andreone P, Gitto S. Side Effects of Immunosuppressant Drugs After Liver Transplant. Pharmaceuticals. 2025; 18(3):342. https://doi.org/10.3390/ph18030342
Chicago/Turabian StyleGabrielli, Filippo, Elisa Bernasconi, Arianna Toscano, Alessandra Avossa, Alessia Cavicchioli, Pietro Andreone, and Stefano Gitto. 2025. "Side Effects of Immunosuppressant Drugs After Liver Transplant" Pharmaceuticals 18, no. 3: 342. https://doi.org/10.3390/ph18030342
APA StyleGabrielli, F., Bernasconi, E., Toscano, A., Avossa, A., Cavicchioli, A., Andreone, P., & Gitto, S. (2025). Side Effects of Immunosuppressant Drugs After Liver Transplant. Pharmaceuticals, 18(3), 342. https://doi.org/10.3390/ph18030342