Nanosponge-Encapsulated Polyoxometalates: Unveiling the Multi-Faceted Potential Against Cancers and Metastases Through Comprehensive Preparation, Characterization, and Computational Exploration
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization and Optimization of TiW11Co-NS: A Physical Perspective
2.2. Scanning Electron Microscopy
2.3. Transmission Electron Microscopy
2.4. Stability Test of TiW11Co-NS
2.5. TiW11Co Release Kinetics
2.6. Enzyme Inhibition Studies
2.7. Pharmacological Assessment
2.7.1. SRB Analysis
2.7.2. Method for Evaluating Cell Death Using DAPI Staining
2.7.3. Genotoxicity Analysis
2.7.4. Flow Cytometry Investigation
2.8. In Vivo Studies
2.9. Computation Methods
Docking Studies
3. Materials and Methods
3.1. Synthesis of NS
3.2. Entrapment Efficiency
3.3. Assessing Hydrodynamic Dimension and Zeta Potential: A Measurement Investigation
3.4. Visual Examination Using Scanning Electron Microscopy (SEM)
3.5. Exanimation Through Transmission Electron Microscopy (TEM)
3.6. Release Kinetics of TiW11Co
3.7. Stability Test of TiW11Co-NS
3.8. Enzyme Inhibition Analysis
3.9. Pharmacological Assessment
3.9.1. Sulforhodamine B Assay
3.9.2. DAPI Staining Assessment
3.9.3. Evaluation of Genotoxicity (Comet Test)
3.9.4. Analysis via Flow Cytometry
3.10. Studies Involving Animals
3.11. Computation Methods
Structures Preparation and Docking Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. [Google Scholar] [CrossRef]
- Anusha, A.; Kumar, S.; Kaushik, S.; Jyoti, A. Cancer immunotherapy. J. Pharm. Sci. Res. 2017, 9, 662. [Google Scholar]
- Welch, D.R.; Hurst, D.R. Defining the hallmarks of metastasis. Cancer Res. 2019, 79, 3011–3027. [Google Scholar] [CrossRef]
- Ganesh, K.; Massagué, J. Targeting metastatic cancer. Nat. Med. 2021, 27, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.M.; Shiri, S.; Farsinejad, S. Metastasis review: From bench to bedside. Tumor Biol. 2014, 35, 8483–8523. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.; Lian, K. Polyoxometalate modified inorganic–organic nanocomposite materials for energy storage applications: A review. Curr. Opin. Solid. State Mater. Sci. 2015, 19, 126–137. [Google Scholar] [CrossRef]
- Aureliano, M.; Serrano, A.; Martins, J.; Faleiro, L.; Fonseca, C.; Fraqueza, G.; Lagoa, R. Polyoxometalates with anticancer, antibacterial and antiviral activities. In Polyoxometalates; Jenny Stanford Publishing: Singapore, 2022; pp. 309–358. [Google Scholar]
- Chang, D.; Li, Y.; Chen, Y.; Wang, X.; Dejin, Z.; Liu, T. Polyoxometalates-based nanocomposites for application in antitumor and antibacterial. Nanoscale Adv. 2022, 4, 3689–3706. [Google Scholar] [CrossRef] [PubMed]
- Chi, G.; Wang, L.; Chen, B.; Li, J.; Hu, J.; Liu, S.; Zhao, M.; Ding, X.; Li, Y. Polyoxometalates: Study of inhibitory kinetics and mechanism against α-glucosidase. J. Inorg. Biochem. 2019, 199, 110784. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Wang, M.; Li, N.; Tang, B. Polyoxometalate-Based Nanomaterials Toward Efficient Cancer Diagnosis and Therapy. Chem. A Eur. J. 2021, 27, 6422–6434. [Google Scholar] [CrossRef] [PubMed]
- Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem. Int. Ed. 2019, 58, 2980–2999. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Yang, W.; Min, X.; Liu, J.; Cao, X. Recent advances in synthesis and anti-tumor effect of organism-modified polyoxometalates inorganic organic hybrids. Inorg. Chem. Commun. 2021, 134, 108904. [Google Scholar] [CrossRef]
- Jilsha, G.; Viswanad, V. Nanosponges: A novel approach of drug delivery system. Int. J. Pharm. Sci. Rev. Res. 2013, 19, 119–123. [Google Scholar]
- Thakre, A.; Gholse, Y.; Kasliwal, R. Nanosponges: A novel approach of drug delivery system. J. Med. Pharm. Allied Sci. 2016, 78, 78. [Google Scholar]
- Jagtap, S.R.; Bhusnure, O.G.; Mujewar, I.N.; Gholve, S.B.; Panchabai, V. Nanosponges: A novel trend for targeted drug delivery. J. Drug Deliv. Ther. 2019, 9, 931–938. [Google Scholar] [CrossRef]
- Bhowmik, H.; Venkatesh, D.N.; Kuila, A.; Kumar, K.H. Nanosponges: A review. Int. J. Appl. Pharm. 2018, 10, 1–5. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Nanosponges for Drug Delivery and Cancer Therapy: Recent Advances. Nanomaterials 2022, 12, 2440. [Google Scholar] [CrossRef]
- Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Ruokolainen, J.; Das, B.C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol. 2021, 69, 166–177. [Google Scholar] [CrossRef]
- Betzer, O.; Shilo, M.; Opochinsky, R.; Barnoy, E.; Motiei, M.; Okun, E.; Yadid, G.; Popovtzer, R. The effect of nanoparticle size on the ability to cross the blood–brain barrier: An in vivo study. Nanomedicine 2017, 12, 1533–1546. [Google Scholar] [CrossRef]
- Torchilin, V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv. Drug Deliv. Rev. 2011, 63, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Parmar, K.; Patel, J.; Pathak, Y. Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. In Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 261–272. [Google Scholar]
- Kurpiers, M.; Wolf, J.D.; Steinbring, C.; Zaichik, S.; Bernkop-Schnürch, A. Zeta potential changing nanoemulsions based on phosphate moiety cleavage of a PEGylated surfactant. J. Mol. Liq. 2020, 316, 113868. [Google Scholar] [CrossRef]
- Kamble, S.; Agrawal, S.; Cherumukkil, S.; Sharma, V.; Jasra, R.V.; Munshi, P. Revisiting zeta potential, the key feature of interfacial phenomena, with applications and recent advancements. ChemistrySelect 2022, 7, e202103084. [Google Scholar] [CrossRef]
- Larsson, M.; Hill, A.; Duffy, J. Suspension stability; why particle size, zeta potential and rheology are important. Annu. Trans. Nord. Rheol. Soc. 2012, 20, 6. [Google Scholar]
- Albanese, A.; Tang, P.S.; Chan, W.C. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zein, R.; Sharrouf, W.; Selting, K. Physical properties of nanoparticles that result in improved cancer targeting. J. Oncol. 2020, 2020, 5194780. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, M.; Gao, W.; Sun, Y.; Dong, X. Coassembled Chitosan–Hyaluronic Acid Nanoparticles as a Theranostic Agent Targeting Alzheimer’s β-Amyloid. ACS Appl. Mater. Interfaces 2021, 13, 55879–55889. [Google Scholar] [CrossRef] [PubMed]
- Gumerova, N.I.; Rompel, A. Polyoxometalates in solution: Speciation under spotlight. Chem. Soc. Rev. 2020, 49, 7568–7601. [Google Scholar] [CrossRef] [PubMed]
- Morgulchik, N.; Kamaly, N. Meta-analysis of In Vitro Drug-Release Parameters Reveals Predictable and Robust Kinetics for Redox-Responsive Drug-Conjugated Therapeutic Nanogels. ACS Appl. Nano Mater. 2021, 4, 4256–4268. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, H.; Li, L.; Zhou, X.; Li, J.; Kan, C. Preparation and properties of lambda-cyhalothrin/polyurethane drug-loaded nanoemulsions. RSC Adv. 2017, 7, 52684–52693. [Google Scholar] [CrossRef]
- Arulmozhi, V.; Pandian, K.; Mirunalini, S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf. B Biointerfaces 2013, 110, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Mady, F.M.; Shaker, M.A. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Int. J. Nanomed. 2017, 12, 7405–7417. [Google Scholar] [CrossRef]
- Kumar, A.; Qayum, A.; Sharma, P.R.; Singh, S.K.; Shah, B.A. Synthesis of β-boswellic acid derivatives as cytotoxic and apoptotic agents. Bioorg. Med. Chem. Lett. 2016, 26, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Baharara, J.; Ramezani, T.; Divsalar, A.; Mousavi, M.; Seyedarabi, A. Induction of apoptosis by green synthesized gold nanoparticles through activation of caspase-3 and 9 in human cervical cancer cells. Avicenna J. Med. Biotechnol. 2016, 8, 75. [Google Scholar]
- Mane, S.D.; Kamatham, A.N. Ascorbyl stearate stimulates cell death by oxidative stress-mediated apoptosis and autophagy in HeLa cervical cancer cell line in vitro. 3 Biotech 2019, 9, 115. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Al-Otaibi, W.A.; Alkhatib, M.H.; Wali, A.N. Cytotoxicity and apoptosis enhancement in breast and cervical cancer cells upon coadministration of mitomycin C and essential oils in nanoemulsion formulations. Biomed. Pharmacother. 2018, 106, 946–955. [Google Scholar] [CrossRef]
- Shah, H.S.; Nasrullah, U.; Zaib, S.; Usman, F.; Khan, A.; Gohar, U.F.; Uddin, J.; Khan, I.; Al-Harrasi, A. Preparation, characterization, and pharmacological investigation of withaferin-A loaded nanosponges for cancer therapy; in vitro, in vivo and molecular docking studies. Molecules 2021, 26, 6990. [Google Scholar] [CrossRef] [PubMed]
- Shah, H.S.; Zaib, S.; Sarfraz, M.; Alhadhrami, A.; Ibrahim, M.M.; Mushtaq, A.; Usman, F.; Ishtiaq, M.; Sajjad, M.; Asjad, H.M.M. Fabrication and Evaluation of Anticancer Potential of Eugenol Incorporated Chitosan-Silver Nanocomposites: In Vitro, In Vivo, and In Silico Studies. AAPS PharmSciTech 2023, 24, 168. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, S.; Divya, K.; Jisha, M. In vitro anticancer evaluation of chitosan/biogenic silver nanoparticle conjugate on Si Ha and MDA MB cell lines. Appl. Nanosci. 2020, 10, 715–728. [Google Scholar] [CrossRef]
- Allaoui, A.; Gascón, S.; Benomar, S.; Quero, J.; Osada, J.; Nasri, M.; Rodríguez-Yoldi, M.J.; Boualga, A. Protein hydrolysates from fenugreek (Trigonella foenum graecum) as nutraceutical molecules in colon cancer treatment. Nutrients 2019, 11, 724. [Google Scholar] [CrossRef] [PubMed]
- Almalki, D.A.; Naguib, D.M. Anticancer activity of aqueous fenugreek seed extract against pancreatic cancer, histological evidence. J. Gastrointest. Cancer 2022, 53, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Kemp, J.A.; Shim, M.S.; Heo, C.Y.; Kwon, Y.J. “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug Deliv. Rev. 2016, 98, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Habib, I.; Chohan, T.A.; Chohan, T.A.; Batool, F.; Khurshid, U.; Khursheed, A.; Raza, A.; Ansari, M.; Hussain, A.; Anwar, S. Integrated Computational Approaches for Designing Potent Pyrimidine-Based CDK9 Inhibitors: 3D-QSAR, Docking, and Molecular Dynamics Simulations. Comput. Biol. Chem. 2023, 108, 108003. [Google Scholar] [CrossRef]
- Hamza, S.; Abid, A.; Khanum, A.; Chohan, T.A.; Saleem, H.; Maqbool Khan, K.; Khurshid, U.; Butt, J.; Anwar, S.; Alafnan, A. 3D-QSAR, docking and molecular dynamics simulations of novel Pyrazolo-pyridazinone derivatives as covalent inhibitors of FGFR1: A scientific approach for possible anticancer agents. J. Biomol. Struct. Dyn. 2023, 42, 2242–2256. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Afzal, S.; Abbas, F.; Afzal, I.; Iqbal, M.; Ahmad, S.; Ansari, S.A.; Alkahtani, H.M.; Chohan, T.A.; Khurshid, U. Phytochemical, biological, and in-silico analysis of Colutea armata Hemsl. & Lace.: A possible source of bioactive natural compounds. South. Afr. J. Bot. 2023, 158, 133–141. [Google Scholar]
- Raza, A.; Chohan, T.A.; Sarfraz, M.; Chohan, T.A.; Imran Sajid, M.; Tiwari, R.K.; Ansari, S.A.; Alkahtani, H.M.; Yasmeen Ansari, S.; Khurshid, U. Molecular modeling of pyrrolo-pyrimidine based analogs as potential FGFR1 inhibitors: A scientific approach for therapeutic drugs. J. Biomol. Struct. Dyn. 2023, 41, 14358–14371. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.; Chohan, T.A.; Waheed, I.; Gilani, Z.; Akash, M.S.H. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α-amylase: Evidence from an in vivo and in silico studies. J. Cell. Biochem. 2019, 120, 425–438. [Google Scholar] [CrossRef]
- Saleem, H.; Maqbool Khan, K.; Nadeem, F.; Manan, A.; Islam, M.; Chohan, T.A.; Ansari, S.A.; Alkahtani, H.; Ansari, I.A.; Khurshid, U. Biochemical, Toxicological, and in-silico Aspects of Trillium govanianum Wall. ex D. Don (Trilliaceae): A Rich Source of Natural Bioactive Compounds. Chem. Biodivers. 2023, 21, e202301375. [Google Scholar]
- Çankaya, N.; İzdal, M.; Azarkan, S.Y. Synthesis, Characterization, Biological Evaluation and Molecular Docking Studies of New Oxoacrylate and Acetamide on HeLa Cancer Cell Lines. Curr. Comput.-Aided Drug Des. 2021, 17, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Mahnashi, M.H.; Alqahtani, Y.S.; Alyami, B.A.; Alqarni, A.O.; Ullah, F.; Wadood, A.; Sadiq, A.; Shareef, A.; Ayaz, M. Cytotoxicity, anti-angiogenic, anti-tumor and molecular docking studies on phytochemicals isolated from Polygonum hydropiper L. BMC Complement. Med. Ther. 2021, 21, 239. [Google Scholar] [CrossRef] [PubMed]
- Chohan, T.A.; Chen, J.-J.; Qian, H.-Y.; Pan, Y.-L.; Chen, J.-Z. Molecular modeling studies to characterize N-phenylpyrimidin-2-amine selectivity for CDK2 and CDK4 through 3D-QSAR and molecular dynamics simulations. Mol. Biosyst. 2016, 12, 1250–1268. [Google Scholar] [CrossRef]
- Chohan, T.A.; Qian, H.-Y.; Pan, Y.-L.; Chen, J.-Z. Molecular simulation studies on the binding selectivity of 2-anilino-4-(thiazol-5-yl)-pyrimidines in complexes with CDK2 and CDK7. Mol. Biosyst. 2016, 12, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Chohan, T.A.; Sarfraz, M.; Rehman, K.; Muhammad, T.; Ghori, M.U.; Khan, K.M.; Afzal, I.; Akash, M.S.H.; Malik, A.; Chohan, T.A. Phytochemical profiling, antioxidant and antiproliferation potential of Euphorbia milii var.: Experimental analysis and in-silico validation. Saudi J. Biol. Sci. 2020, 27, 3025–3034. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Wang, X.; Wu, Q.; Liu, S.; Cao, Y.; Guo, X.; Yin, S.; Yin, N.; Li, B.; Fang, M. Identification of potential ATP-competitive cyclin-dependent kinase 1 inhibitors: De novo drug generation, molecular docking, and molecular dynamics simulation. Comput. Biol. Med. 2023, 155, 106645. [Google Scholar] [CrossRef]
- Pushpalatha, R.; Selvamuthukumar, S.; Kilimozhi, D. Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-Physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Deliv. Sci. Technol. 2018, 45, 45–53. [Google Scholar] [CrossRef]
- Varan, C.; Anceschi, A.; Sevli, S.; Bruni, N.; Giraudo, L.; Bilgic, E.; Korkusuz, P.; Iskit, A.B.; Trotta, F.; Bilensoy, E. Preparation and characterization of cyclodextrin nanosponges for organic toxic molecule removal. Int. J. Pharm. 2020, 585, 119485. [Google Scholar] [CrossRef]
- Mohamed, N. Synthesis of hybrid chitosan silver nanoparticles loaded with doxorubicin with promising anti-cancer activity. BioNanoScience 2020, 10, 758–765. [Google Scholar] [CrossRef]
- Shah, H.S.; Usman, F.; Ashfaq–Khan, M.; Khalil, R.; Ul-Haq, Z.; Mushtaq, A.; Qaiser, R.; Iqbal, J. Preparation and characterization of anticancer niosomal withaferin–A formulation for improved delivery to cancer cells: In vitro, in vivo, and in silico evaluation. J. Drug Deliv. Sci. Technol. 2020, 59, 101863. [Google Scholar] [CrossRef]
- Shah, H.S.; Joshi, S.A.; Haider, A.; Kortz, U.; Iqbal, J. Synthesis of chitosan-coated polyoxometalate nanoparticles against cancer and its metastasis. RSC Adv. 2015, 5, 93234–93242. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Priyadarsini, R.V.; Murugan, R.S.; Maitreyi, S.; Ramalingam, K.; Karunagaran, D.; Nagini, S. The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition. Eur. J. Pharmacol. 2010, 649, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.-J.; Jiang, G.-B.; Xie, Y.-Y.; Huang, H.-L.; Liang, Z.-H.; Liu, Y.-J. Cytotoxicity, apoptosis, cell cycle arrest, reactive oxygen species, mitochondrial membrane potential, and Western blotting analysis of ruthenium (II) complexes. JBIC J. Biol. Inorg. Chem. 2013, 18, 873–882. [Google Scholar] [CrossRef]
- Jain, A.N. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. J. Med. Chem. 2003, 46, 499–511. [Google Scholar] [CrossRef]
- Powell, M.J. A fast algorithm for nonlinearly constrained optimization calculations. In Numerical Analysis; Springer: Berlin/Heidelberg, Germany, 1978; pp. 144–157. [Google Scholar]
- Brown, N.R.; Korolchuk, S.; Martin, M.P.; Stanley, W.A.; Moukhametzianov, R.; Noble, M.E.; Endicott, J.A. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Nat. Commun. 2015, 6, 6769. [Google Scholar] [CrossRef]
- Takaki, T.; Echalier, A.; Brown, N.; Hunt, T.; Endicott, J.; Noble, M. The structure of CDK4/cyclin D3 has implications for models of CDK activation. Proc. Natl. Acad. Sci. USA 2009, 106, 4171–4176. [Google Scholar] [CrossRef] [PubMed]
- Wood, E.R.; Truesdale, A.T.; McDonald, O.B.; Yuan, D.; Hassell, A.; Dickerson, S.H.; Ellis, B.; Pennisi, C.; Horne, E.; Lackey, K. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib) relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells. Cancer Res. 2004, 64, 6652–6659. [Google Scholar] [CrossRef]
- Ghersi, D.; Sanchez, R. Beyond structural genomics: Computational approaches for the identification of ligand binding sites in protein structures. J. Struct. Funct. Genom. 2011, 12, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Onufriev, A.; Bashford, D.; Case, D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct. Funct. Bioinform. 2004, 55, 383–394. [Google Scholar] [CrossRef]
- Jain, A.N. Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities. J. Comput.-Aided Mol. Des. 1996, 10, 427–440. [Google Scholar] [CrossRef]
- Organization for Economic Co-Operation and Development. Guideline for Testing of Chemicals n. 423: Acute Oral Toxicity; OECD: Paris, France, 2001. [Google Scholar]
F1 | F2 | F3 | F4 | |
---|---|---|---|---|
TiW11Co (% w/v) | 1 | 1 | 1 | 1 |
EC (% w/v) | 50 | 50 | 100 | 100 |
PVA (% w/v) | 50 | 100 | 50 | 100 |
rpm | 10,000 | 10,000 | 10,000 | 10,000 |
Particle size mean ± SD (nm) | 126 ± 4 | 109.5 ± 8 | 471 ± 6 | 324 ± 7 |
Loading efficiency | 23.48 ± 7.19 | 34.25 ± 4.37 | 40.57 ± 5.64 | 42.74 ± 6.02 |
Entrapment efficiency | 75.11 ± 6.61 | 82.16 ± 5.91 | 78.32 ± 6.18 | 85.9 ± 3.21 |
PDI mean ± SD | 0.095 ± 0.0027 | 0.031 ± 0.0094 | 0.104 ± 0.083 | 0.136 ± 0.098 |
Zeta potential mean ± SD (mV) | −24.91 ± 6.21 | −27.08 ± 3.79 | −18.57 ± 4.05 | −20.34 ± 2.18 |
Parameters of Comet Assay | Pure TiW11Co | TiW11Co-NS |
---|---|---|
L-Head | 79 | 113 |
L-Tail | 21 | 63 |
L-Comet | 108 | 176 |
Head-DNA | 90.41 | 71.01 |
Tail-DNA | 5.38 | 19.14 |
TM | 0.779 | 11.67 |
OTM | 3.16 | 10.11 |
Inhibitor. | Docking Complex | CScore a | Crash Score b | Polar Score c | D Score d | PMF Score e | G Score f | Chem Score g |
---|---|---|---|---|---|---|---|---|
POM | CDK1 | 48.32 | −10.43 | 36.34 | −5654.41 | −110.74 | −1043.13 | −35.64 |
CDK4 | 23.11 | −3.13 | 66.82 | −1259.23 | −86.34 | −436.87 | −12.64 | |
EGFR | 41.33 | −8.55 | 44.14 | −1985.35 | −98.68 | −876.65 | −17.95 |
Group | Type of Treatment |
---|---|
1 | Mice that did not receive any treatment. |
2 | The cancer-stricken mice were given cisplatin 9.99 µM/kg (dose = IC90) |
3 | The cancer-stricken mice were given pure TiW11Co (4.41 µM/kg) (dose = IC90) |
4 | The cancer-stricken mice were given TiW11Co-NS (1.756 µM/kg) (dose = IC90) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajjad, M.; Malik, M.Z.; Awan, A.B.U.; Shah, H.S.; Sarfraz, M.; Usman, F.; Chohan, T.A.; Wani, T.A.; Zargar, S.; Jawad, Z. Nanosponge-Encapsulated Polyoxometalates: Unveiling the Multi-Faceted Potential Against Cancers and Metastases Through Comprehensive Preparation, Characterization, and Computational Exploration. Pharmaceuticals 2025, 18, 347. https://doi.org/10.3390/ph18030347
Sajjad M, Malik MZ, Awan ABU, Shah HS, Sarfraz M, Usman F, Chohan TA, Wani TA, Zargar S, Jawad Z. Nanosponge-Encapsulated Polyoxometalates: Unveiling the Multi-Faceted Potential Against Cancers and Metastases Through Comprehensive Preparation, Characterization, and Computational Exploration. Pharmaceuticals. 2025; 18(3):347. https://doi.org/10.3390/ph18030347
Chicago/Turabian StyleSajjad, Muhammad, Muhammad Zubair Malik, Ayesha Bint Umar Awan, Hamid Saeed Shah, Muhammad Sarfraz, Faisal Usman, Tahir Ali Chohan, Tanveer A. Wani, Seema Zargar, and Zobia Jawad. 2025. "Nanosponge-Encapsulated Polyoxometalates: Unveiling the Multi-Faceted Potential Against Cancers and Metastases Through Comprehensive Preparation, Characterization, and Computational Exploration" Pharmaceuticals 18, no. 3: 347. https://doi.org/10.3390/ph18030347
APA StyleSajjad, M., Malik, M. Z., Awan, A. B. U., Shah, H. S., Sarfraz, M., Usman, F., Chohan, T. A., Wani, T. A., Zargar, S., & Jawad, Z. (2025). Nanosponge-Encapsulated Polyoxometalates: Unveiling the Multi-Faceted Potential Against Cancers and Metastases Through Comprehensive Preparation, Characterization, and Computational Exploration. Pharmaceuticals, 18(3), 347. https://doi.org/10.3390/ph18030347