The Cholinergic Amelioration of Sepsis-Induced Baroreflex Dysfunction and Brainstem Inflammation Is Negated by Central Adenosine A3 Receptors
Abstract
:1. Introduction
2. Results
2.1. Nicotine Ameliorates the Baroreflex Dysfunction in Septic Rats
2.2. The Favorable Baroreflex Action of Nicotine in Septic Rats Is Opposed by Central A3ARs
2.3. NFκB and NOX2 Expressions in the Solitary Tract
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs
4.3. Cecal Ligation and Puncture (CLP)
4.4. Intracisternal Cannulation
4.5. Intravascular Cannulation
4.6. BRS Measurement
4.7. Immunohistochemistry
4.8. Protocols and Experimental Design
4.8.1. Modulation by Central A3ARs of Cholinergic Amelioration of CLP-Induced Neuroinflammation and Baroreflex Dysfunction
4.8.2. Modulation by Central PI3K/MAPK/TNFα Signaling of A3AR-Nicotinic Baroreflex Interaction
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BP | Blood pressure |
BRS | Baroreflex sensitivity |
CLP | Cecal ligation and puncture |
ERK | Extracellular signal-regulated kinase |
HR | Heart rate |
JNK | c-Jun N-terminal Kinase |
MAP | Mitogen-activated protein kinase |
NFκB | Nuclear factor kappa B |
NOX2 | Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 2 |
NTS | Nucleus tractus solitarius |
PE | Phenylephrine |
PI3K | Phosphoinositide-3 kinases |
SNP | Sodium nitroprusside |
TNF-α | TNF-α Tumor necrosis factor-α |
References
- Greer, J. Pathophysiology of cardiovascular dysfunction in sepsis. BJA Educ. 2015, 15, 316–321. [Google Scholar] [CrossRef]
- de Castilho, F.M.; Ribeiro, A.L.P.; Nobre, V.; Barros, G.; de Sousa, M.R. Heart rate variability as predictor of mortality in sepsis: A systematic review. PLoS ONE 2018, 13, e0203487. [Google Scholar] [CrossRef] [PubMed]
- Hochstadt, A.; Meroz, Y.; Landesberg, G. Myocardial dysfunction in severe sepsis and septic shock: More questions than answers? J. Cardiothorac. Vasc. Anesth. 2011, 25, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Sergi, C.; Shen, F.; Lim, D.W.; Liu, W.; Zhang, M.; Chiu, B.; Anand, V.; Sun, Z. Cardiovascular dysfunction in sepsis at the dawn of emerging mediators. Biomed. Pharmacother. 2017, 95, 153–160. [Google Scholar] [CrossRef]
- Rudiger, A.; Singer, M. Mechanisms of sepsis-induced cardiac dysfunction. Crit. Care Med. 2007, 35, 1599–1608. [Google Scholar] [CrossRef]
- Shen, F.M.; Guan, Y.F.; Xie, H.H.; Su, D.F. Arterial baroreflex function determines the survival time in lipopolysaccharide-induced shock in rats. Shock 2004, 21, 556–560. [Google Scholar] [CrossRef]
- Pancoto, J.A.; Corrêa, P.B.; Oliveira-Pelegrin, G.R.; Rocha, M.J. Autonomic dysfunction in experimental sepsis induced by cecal ligation and puncture. Auton. Neurosci. 2008, 138, 57–63. [Google Scholar] [CrossRef]
- Sallam, M.Y.; El-Gowilly, S.M.; El-Mas, M.M. Central α7 and α4β2 nicotinic acetylcholine receptors offset arterial baroreceptor dysfunction in endotoxic rats. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 1587–1598. [Google Scholar] [CrossRef]
- Shi, K.Y.; Shen, F.M.; Liu, A.J.; Chu, Z.X.; Cao, Y.L.; Su, D.F. The survival time post-cecal ligation and puncture in sinoaortic denervated rats. J. Cardiovasc. Pharmacol. 2007, 50, 162–167. [Google Scholar] [CrossRef]
- Milanez, M.I.O.; Liberatore, A.M.A.; Nishi, E.E.; Bergamaschi, C.T.; Campos, R.R.; Koh, I.H.J. Patterns of renal and splanchnic sympathetic vasomotor activity in an animal model of survival to experimental sepsis. Braz. J. Med. Biol. Res. 2022, 55, e11873. [Google Scholar] [CrossRef]
- Sayk, F.; Vietheer, A.; Schaaf, B.; Wellhoener, P.; Weitz, G.; Lehnert, H.; Dodt, C. Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R891–R898. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lin, H.; Zou, M.; Yuan, Q.; Huang, Z.; Pan, X.; Zhang, W. Nicotine in Inflammatory Diseases: Anti-Inflammatory and Pro-Inflammatory Effects. Front. Immunol. 2022, 13, 826889. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.E.; Helmy, M.M.; El-Gowilly, S.M.; El-Mas, M.M. Adenosine A1 receptors of the medullary solitary tract arbitrate the nicotine counteraction of neuroinflammation and cardiovascular dysfunction in septic rats. Sci. Rep. 2023, 13, 17818. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, A.E.; Helmy, M.M.; El-Gowilly, S.M.; El-Mas, M.M. Suppression by central adenosine A3 receptors of the cholinergic defense against cardiovascular aberrations of sepsis: Role of PI3K/MAPKs/NFκB signaling. Front. Pharmacol. 2024, 15, 1418981. [Google Scholar] [CrossRef]
- Sallam, M.Y.; El-Gowilly, S.M.; Fouda, M.A.; Abd-Alhaseeb, M.M.; El-Mas, M.M. Brainstem cholinergic pathways diminish cardiovascular and neuroinflammatory actions of endotoxemia in rats: Role of NFκB/α7/α4β2AChRs signaling. Neuropharmacology 2019, 157, 107683. [Google Scholar] [CrossRef]
- van Westerloo, D.J.; Giebelen, I.A.; Florquin, S.; Daalhuisen, J.; Bruno, M.J.; de Vos, A.F.; Tracey, K.J.; van der Poll, T. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J. Infect. Dis. 2005, 191, 2138–2148. [Google Scholar] [CrossRef]
- Kim, T.-H.; Kim, S.-J.; Lee, S.-M. Stimulation of the α7 Nicotinic Acetylcholine Receptor Protects Against Sepsis by Inhibiting Toll-like Receptor via Phosphoinositide 3-Kinase Activation. J. Infect. Dis. 2013, 209, 1668–1677. [Google Scholar] [CrossRef]
- Sallam, M.Y.; El-Gowilly, S.M.; El-Gowelli, H.M.; El-Lakany, M.A.; El-Mas, M.M. Additive counteraction by α7 and α4β2-nAChRs of the hypotension and cardiac sympathovagal imbalance evoked by endotoxemia in male rats. Eur. J. Pharmacol. 2018, 834, 36–44. [Google Scholar] [CrossRef]
- Chen, L.; Lei, X.; Mahnke, K. Adenosine and Its Receptors in the Pathogenesis and Treatment of Inflammatory Skin Diseases. Int. J. Mol. Sci. 2024, 25, 5810. [Google Scholar] [CrossRef]
- Gallos, G.; Ruyle, T.D.; Emala, C.W.; Lee, H.T. A1 adenosine receptor knockout mice exhibit increased mortality, renal dysfunction, and hepatic injury in murine septic peritonitis. Am. J. Physiol. Renal Physiol. 2005, 289, F369–F376. [Google Scholar] [CrossRef]
- Lee, H.T.; Kim, M.; Joo, J.D.; Gallos, G.; Chen, J.F.; Emala, C.W. A3 adenosine receptor activation decreases mortality and renal and hepatic injury in murine septic peritonitis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R959–R969. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.N.; Vance, C.O.; Lechner, M.G.; Matuschak, G.M.; Lechner, A.J. Adenosine A1 receptor antagonist, L-97-1, improves survival and protects the kidney in a rat model of cecal ligation and puncture induced sepsis. Eur. J. Pharmacol. 2014, 740, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Chen, Y.; Hirsh, M.I.; Yip, L.; Junger, W.G. A3 and P2Y2 receptors control the recruitment of neutrophils to the lungs in a mouse model of sepsis. Shock 2008, 30, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Farr, S.A.; Cuzzocrea, S.; Esposito, E.; Campolo, M.; Niehoff, M.L.; Doyle, T.M.; Salvemini, D. Adenosine A(3) receptor as a novel therapeutic target to reduce secondary events and improve neurocognitive functions following traumatic brain injury. J. Neuroinflamm. 2020, 17, 339. [Google Scholar] [CrossRef]
- Janes, K.; Esposito, E.; Doyle, T.; Cuzzocrea, S.; Tosh, D.K.; Jacobson, K.A.; Salvemini, D. A3 adenosine receptor agonist prevents the development of paclitaxel-induced neuropathic pain by modulating spinal glial-restricted redox-dependent signaling pathways. Pain 2014, 155, 2560–2567. [Google Scholar] [CrossRef]
- Li, P.; Li, X.; Deng, P.; Wang, D.; Bai, X.; Li, Y.; Luo, C.; Belguise, K.; Wang, X.; Wei, X.; et al. Activation of adenosine A3 receptor reduces early brain injury by alleviating neuroinflammation after subarachnoid hemorrhage in elderly rats. Aging 2020, 13, 694–713. [Google Scholar] [CrossRef]
- Gyoneva, S.; Davalos, D.; Biswas, D.; Swanger, S.A.; Garnier-Amblard, E.; Loth, F.; Akassoglou, K.; Traynelis, S.F. Systemic inflammation regulates microglial responses to tissue damage In Vivo. Glia 2014, 62, 1345–1360. [Google Scholar] [CrossRef]
- Scislo, T.J.; Ichinose, T.K.; O’Leary, D.S. Stimulation of NTS A1 adenosine receptors differentially resets baroreflex control of regional sympathetic outputs. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H172–H182. [Google Scholar] [CrossRef]
- Scislo, T.J.; Kitchen, A.M.; Augustyniak, R.A.; O’Leary, D.S. Differential patterns of sympathetic responses to selective stimulation of nucleus tractus solitarius purinergic receptor subtypes. Clin. Exp. Pharmacol. Physiol. 2001, 28, 120–124. [Google Scholar] [CrossRef]
- Scislo, T.J.; O’Leary, D.S. Purinergic mechanisms of the nucleus of the solitary tract and neural cardiovascular control. Neurol. Res. 2005, 27, 182–194. [Google Scholar] [CrossRef]
- Dejager, L.; Pinheiro, I.; Dejonckheere, E.; Libert, C. Cecal ligation and puncture: The gold standard model for polymicrobial sepsis? Trends Microbiol. 2011, 19, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Poli-de-Figueiredo, L.F.; Garrido, A.G.; Nakagawa, N.; Sannomiya, P. Experimental models of sepsis and their clinical relevance. Shock 2008, 30, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, L.A.; Mahfoud, F.; Stavrakis, S.; Jespersen, T.; Linz, D. Autonomic Nervous System: A Therapeutic Target for Cardiac End-Organ Damage in Hypertension. Hypertension 2024, 81, 2027–2037. [Google Scholar] [CrossRef] [PubMed]
- El-Mas, M.M.; Afify, E.A.; Mohy El-Din, M.M.; Omar, A.G.; Sharabi, F.M. Testosterone facilitates the baroreceptor control of reflex bradycardia: Role of cardiac sympathetic and parasympathetic components. J. Cardiovasc. Pharmacol. 2001, 38, 754–763. [Google Scholar] [CrossRef]
- Radaelli, A.; Castiglioni, P.; Cerrito, M.G.; De Carlini, C.; Soriano, F.; Di Rienzo, M.; Lavitrano, M.L.; Paolini, G.; Mancia, G. Infusion of Escherichia coli lipopolysaccharide toxin in rats produces an early and severe impairment of baroreflex function in absence of blood pressure changes. Shock 2013, 39, 204–209. [Google Scholar] [CrossRef]
- El-Mas, M.M.; El-Gowilly, S.M.; Fouda, M.A.; Saad, E.I. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control. Toxicol. Appl. Pharmacol. 2011, 254, 229–237. [Google Scholar] [CrossRef]
- Bisserbe, J.C.; Patel, J.; Marangos, P.J. Autoradiographic localization of adenosine uptake sites in rat brain using [3H]nitrobenzylthioinosine. J. Neurosci. 1985, 5, 544–550. [Google Scholar] [CrossRef]
- Lawrence, A.J.; Jarrott, B. Neurochemical modulation of cardiovascular control in the nucleus tractus solitarius. Prog. Neurobiol. 1996, 48, 21–53. [Google Scholar] [CrossRef]
- Ralevic, V.; Burnstock, G. Receptors for purines and pyrimidines. Pharmacol. Rev. 1998, 50, 413–492. [Google Scholar]
- Belikoff, B.G.; Hatfield, S.; Georgiev, P.; Ohta, A.; Lukashev, D.; Buras, J.A.; Remick, D.G.; Sitkovsky, M. A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice. J. Immunol. 2011, 186, 2444–2453. [Google Scholar] [CrossRef]
- Moore, C.C.; Martin, E.N.; Lee, G.H.; Obrig, T.; Linden, J.; Scheld, W.M. An A2A adenosine receptor agonist, ATL313, reduces inflammation and improves survival in murine sepsis models. BMC Infect. Dis. 2008, 8, 141. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Chung, H.J.; Lee, H.W.; Jeong, L.S.; Lee, S.K. Suppression of inflammation response by a novel A3 adenosine receptor agonist thio-Cl-IB-MECA through inhibition of Akt and NF-κB signaling. Immunobiology 2011, 216, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Gobbo, D.; Zhao, N.; Zhang, H.; Awuku, N.-O.; Liu, Q.; Fang, L.-P.; Gampfer, T.M.; Meyer, M.R.; Zhao, R.; et al. Adenosine triggers early astrocyte reactivity that provokes microglial responses and drives the pathogenesis of sepsis-associated encephalopathy in mice. Nat. Commun. 2024, 15, 6340. [Google Scholar] [CrossRef] [PubMed]
- Amorim, M.R.; de Deus, J.L.; Cazuza, R.A.; Mota, C.M.D.; da Silva, L.E.V.; Borges, G.S.; Batalhão, M.E.; Cárnio, E.C.; Branco, L.G.S. Neuroinflammation in the NTS is associated with changes in cardiovascular reflexes during systemic inflammation. J. Neuroinflamm. 2019, 16, 125. [Google Scholar] [CrossRef]
- Takagishi, M.; Waki, H.; Bhuiyan, M.E.R.; Gouraud, S.S.; Kohsaka, A.; Cui, H.; Yamazaki, T.; Paton, J.F.R.; Maeda, M. IL-6 microinjected in the nucleus tractus solitarii attenuates cardiac baroreceptor reflex function in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R183–R190. [Google Scholar] [CrossRef]
- Basak, B.; Akashi-Takamura, S. IRF3 function and immunological gaps in sepsis. Front. Immunol. 2024, 15, 1336813. [Google Scholar] [CrossRef]
- Ouyang, J.; Hong, Y.; Wan, Y.; He, X.; Geng, B.; Yang, X.; Xiang, J.; Cai, J.; Zeng, Z.; Liu, Z.; et al. PVB exerts anti-inflammatory effects by inhibiting the activation of MAPK and NF-κB signaling pathways and ROS generation in neutrophils. Int. Immunopharmacol. 2024, 126, 111271. [Google Scholar] [CrossRef]
- Saha, S. Role of the central nucleus of the amygdala in the control of blood pressure: Descending pathways to medullary cardiovascular nuclei. Clin. Exp. Pharmacol. Physiol. 2005, 32, 450–456. [Google Scholar] [CrossRef]
- Porzionato, A.; Macchi, V.; Stecco, C.; De Caro, R. The Carotid Sinus Nerve—Structure, Function, and Clinical Implications. Anat. Rec. 2019, 302, 575–587. [Google Scholar] [CrossRef]
- Thayer, J.F.; Loerbroks, A.; Sternberg, E.M. Inflammation and cardiorespiratory control: The role of the vagus nerve. Respir. Physiol. Neurobiol. 2011, 178, 387–394. [Google Scholar] [CrossRef]
- Salgado, H.C.; Brognara, F.; Ribeiro, A.B.; Lataro, R.M.; Castania, J.A.; Ulloa, L.; Kanashiro, A. Autonomic Regulation of Inflammation in Conscious Animals. Neuroimmunomodulation 2023, 30, 102–112. [Google Scholar] [CrossRef] [PubMed]
- El-Lakany, M.A.; Wedn, A.M.; El-Mas, M.M. Role of Oxidative Stress and Interrelated Cellular Offences in Sex Modulation of Cardiorenal Sequels of Sepsis. In Oxidative Stress in Cardiovascular-Metabolic Diseases. Oxidative Stress in Applied Basic Research and Clinical Practice; Eid, A.H., Kobeissy, F., El-Yazbi, A.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2024; pp. 227–296. [Google Scholar]
- Żera, T.; Nowiński, A.; Kwiatkowski, P. Centrally administered TNF increases arterial blood pressure independently of nitric oxide synthase. Neuropeptides 2016, 58, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.H.; Chen, I.C.; Lee, C.H.; Wu, C.W.; Lee, Y.C.; Kung, Y.C.; Hung, C.Y.; Wu, K.L.H. Anti-neuroinflammation ameliorates systemic inflammation-induced mitochondrial DNA impairment in the nucleus of the solitary tract and cardiovascular reflex dysfunction. J. Neuroinflamm. 2019, 16, 224. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Zubcevic, J.; Polson, J.W.; Potts, J.T.; Diez-Freire, C.; Zhang, Q.; Paton, J.F.; Raizada, M.K. Shift to an involvement of phosphatidylinositol 3-kinase in angiotensin II actions on nucleus tractus solitarii neurons of the spontaneously hypertensive rat. Circ. Res. 2009, 105, 1248–1255. [Google Scholar] [CrossRef]
- Fouda, M.A.; El-Gowelli, H.M.; El-Gowilly, S.M.; El-Mas, M.M. The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPKERK. Toxicol. Appl. Pharmacol. 2015, 289, 466–473. [Google Scholar] [CrossRef]
- Logan, E.M.; Aileru, A.A.; Shaltout, H.A.; Averill, D.B.; Diz, D.I. The functional role of PI3K in maintenance of blood pressure and baroreflex suppression in (mRen2)27 and mRen2.Lewis rat. J. Cardiovasc. Pharmacol. 2011, 58, 367–373. [Google Scholar] [CrossRef]
- Fouda, M.A.; El-Gowelli, H.M.; El-Gowilly, S.M.; El-Mas, M.M. Hemin blunts the depressant effect of chronic nicotine on reflex tachycardia via activation of central NOS/PI3K pathway in female rats. Pharmacol. Rep. 2018, 70, 455–462. [Google Scholar] [CrossRef]
- Kishi, T.; Hirooka, Y.; Konno, S.; Ogawa, K.; Sunagawa, K. Angiotensin II type 1 receptor-activated caspase-3 through ras/mitogen-activated protein kinase/extracellular signal-regulated kinase in the rostral ventrolateral medulla is involved in sympathoexcitation in stroke-prone spontaneously hypertensive rats. Hypertension 2010, 55, 291–297. [Google Scholar] [CrossRef]
- Jiang, J.; Huang, K.; Xu, S.; Garcia, J.G.N.; Wang, C.; Cai, H. Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction. Redox Biol. 2020, 36, 101638. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Wang, B.; Zhang, Z.; Jiang, L.; Qin, Z.; Zhao, Y.; Su, B. NOX4 is a potential therapeutic target in septic acute kidney injury by inhibiting mitochondrial dysfunction and inflammation. Theranostics 2023, 13, 2863–2878. [Google Scholar] [CrossRef]
- Matsuno, K.; Iwata, K.; Matsumoto, M.; Katsuyama, M.; Cui, W.; Murata, A.; Nakamura, H.; Ibi, M.; Ikami, K.; Zhang, J.; et al. NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis. Free Radic. Biol. Med. 2012, 53, 1718–1728. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.Y.; El-Gowilly, S.M.; Abdel-Galil, A.A.; El-Mas, M.M. Cyclosporine counteracts endotoxemia-evoked reductions in blood pressure and cardiac autonomic dysfunction via central sGC/MAPKs signaling in rats. Eur. J. Pharmacol. 2017, 797, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.Y.; El-Gowilly, S.M.; Abdel-Galil, A.G.; El-Mas, M.M. Modulation by Central MAPKs/PI3K/sGc of the TNF-α/iNOS-dependent Hypotension and Compromised Cardiac Autonomic Control in Endotoxic Rats. J. Cardiovasc. Pharmacol. 2016, 68, 171–181. [Google Scholar] [CrossRef]
- Housmans, B.A.C.; van den Akker, G.G.H.; Neefjes, M.; Timur, U.T.; Cremers, A.; Peffers, M.J.; Caron, M.M.J.; van Rhijn, L.W.; Emans, P.J.; Boymans, T.; et al. Direct comparison of non-osteoarthritic and osteoarthritic synovial fluid-induced intracellular chondrocyte signaling and phenotype changes. Osteoarthr. Cartil. 2023, 31, 60–71. [Google Scholar] [CrossRef]
- Haddad, J.J.; Hanbali, L.B. Hypoxia upregulates MAPK(p38)/MAPK(ERK) phosphorylation In Vitro: Neuroimmunological differential time-dependent expression of MAPKs. Protein Pept. Lett. 2014, 21, 444–451. [Google Scholar] [CrossRef]
- Báez-Pagán, C.A.; Delgado-Vélez, M.; Lasalde-Dominicci, J.A. Activation of the Macrophage α7 Nicotinic Acetylcholine Receptor and Control of Inflammation. J. Neuroimmune Pharmacol. 2015, 10, 468–476. [Google Scholar] [CrossRef]
- Liu, L.; Wu, H.; Cao, Q.; Guo, Z.; Ren, A.; Dai, Q. Stimulation of Alpha7 Nicotinic Acetylcholine Receptor Attenuates Nicotine-Induced Upregulation of MMP, MCP-1, and RANTES through Modulating ERK1/2/AP-1 Signaling Pathway in RAW264.7 and MOVAS Cells. Mediat. Inflamm. 2017, 2017, 2401027. [Google Scholar] [CrossRef]
- Wang, Q.; Gou, J.; Guo, S.; Wei, F.; Han, T.; Lai, R.; Zhang, D.; Diao, Y.; Yin, Y. Nicotine Activating α4β2 Nicotinic Acetylcholine Receptors to Suppress Neuroinflammation via JAK2-STAT3 Signaling Pathway in Ischemic Rats and Inflammatory Cells. Mol. Neurobiol. 2022, 59, 3280–3293. [Google Scholar] [CrossRef]
- Duan, F.; Zeng, C.; Liu, S.; Gong, J.; Hu, J.; Li, H.; Tan, H. α1-nAchR-Mediated Signaling Through Lipid Raft Is Required for Nicotine-Induced NLRP3 Inflammasome Activation and Nicotine-Accelerated Atherosclerosis. Front. Cell Dev. Biol. 2021, 9, 724699. [Google Scholar] [CrossRef]
- Ren, A.; Wu, H.; Liu, L.; Guo, Z.; Cao, Q.; Dai, Q. Nicotine promotes atherosclerosis development in apolipoprotein E-deficient mice through α1-nAChR. J. Cell. Physiol. 2019, 234, 14507–14518. [Google Scholar] [CrossRef]
- Wang, S.; Takayama, K.; Tanaka, K.; Takeshita, M.; Nakagaki, N.; Ijichi, K.; Li, H.; Nakanishi, Y. Nicotine induces resistance to epidermal growth factor receptor tyrosine kinase inhibitor by α1 nicotinic acetylcholine receptor-mediated activation in PC9 cells. J. Thorac. Oncol. 2013, 8, 719–725. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, B.S.; Lehmann, R.; Thiel, U.; Ziemba, P.M.; Beltrán, L.R.; Sherkheli, M.A.; Jeanbourquin, P.; Hugi, A.; Werner, M.; Gisselmann, G.; et al. Direct action and modulating effect of (+)- and (-)-nicotine on ion channels expressed in trigeminal sensory neurons. Eur. J. Pharmacol. 2014, 728, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Engberg, G.; Erhardt, S.; Sharp, T.; Hajós, M. Nicotine inhibits firing activity of dorsal raphe 5-HT neurones in vivo. Naunyn Schmiedebergs Arch. Pharmacol. 2000, 362, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.; Parsons, M.E.; Whelan, C.J. Investigation of nicotine binding to THP-1 cells: Evidence for a non-cholinergic binding site. Biochem. Pharmacol. 2001, 61, 733–740. [Google Scholar] [CrossRef]
- Suemaru, K.; Araki, H.; Gomita, Y. Involvement of 5-hydroxytryptamine(1A) receptors in nicotine-induced tail tremor in rats. Eur. J. Pharmacol. 2000, 408, 19–23. [Google Scholar] [CrossRef]
- Talavera, K.; Gees, M.; Karashima, Y.; Meseguer, V.M.; Vanoirbeek, J.A.; Damann, N.; Everaerts, W.; Benoit, M.; Janssens, A.; Vennekens, R.; et al. Nicotine activates the chemosensory cation channel TRPA1. Nat. Neurosci. 2009, 12, 1293–1299. [Google Scholar] [CrossRef]
- Tian, Y.; Marshall, M.; French, B.A.; Linden, J.; Yang, Z. The infarct-sparing effect of IB-MECA against myocardial ischemia/reperfusion injury in mice is mediated by sequential activation of adenosine A3 and A 2A receptors. Basic Res. Cardiol. 2015, 110, 16. [Google Scholar] [CrossRef]
- Visser, S.S.; Theron, A.J.; Ramafi, G.; Ker, J.A.; Anderson, R. Apparent involvement of the A(2A) subtype adenosine receptor in the anti-inflammatory interactions of CGS 21680, cyclopentyladenosine, and IB-MECA with human neutrophils. Biochem. Pharmacol. 2000, 60, 993–999. [Google Scholar] [CrossRef]
- Blouet, C.; Schwartz, G.J. Brainstem nutrient sensing in the nucleus of the solitary tract inhibits feeding. Cell Metab. 2012, 16, 579–587. [Google Scholar] [CrossRef]
- Bate, S.T.; Clark, R.A. The Design and Statistical Analysis of Animal Experiments; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Toscano, M.G.; Ganea, D.; Gamero, A.M. Cecal ligation puncture procedure. J Vis. Exp. 2011, 51, 2860. [Google Scholar] [CrossRef]
- El-Mas, M.M.; Abdel-Rahman, A.A. Ethanol counteraction of I1-imidazoline but not alpha-2 adrenergic receptor-mediated reduction in vascular resistance in conscious spontaneously hypertensive rats. J. Pharmacol. Exp. Ther. 1999, 288, 455–462. [Google Scholar] [CrossRef]
- Smyth, H.S.; Sleight, P.; Pickering, G.W. Reflex regulation of arterial pressure during sleep in man. A quantitative method of assessing baroreflex sensitivity. Circ. Res. 1969, 24, 109–121. [Google Scholar] [CrossRef]
- Chen, G.F.; Sun, Z. Effects of chronic cold exposure on the endothelin system. J. Appl. Physiol. 2006, 100, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates, 3rd ed.; Academic Press: New York, NY, USA, 1996. [Google Scholar]
- Chen, G.J.; Harvey, B.K.; Shen, H.; Chou, J.; Victor, A.; Wang, Y. Activation of adenosine A3 receptors reduces ischemic brain injury in rodents. J. Neurosci. Res. 2006, 84, 1848–1855. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.E.; Askar, M.E.; Shaheen, M.A.; Salama, A.E.; Idris, R.A.; Younis, N.N. Infliximab substantially re-silenced Wnt/β-catenin signaling and ameliorated doxorubicin-induced cardiomyopathy in rats. J. Biochem. Mol. Toxicol. 2023, 37, e23312. [Google Scholar] [CrossRef] [PubMed]
- Dadsetan, S.; Balzano, T.; Forteza, J.; Agusti, A.; Cabrera-Pastor, A.; Taoro-Gonzalez, L.; Hernandez-Rabaza, V.; Gomez-Gimenez, B.; ElMlili, N.; Llansola, M.; et al. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J. Neuroinflamm. 2016, 13, 245. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Naggar, A.E.; Helmy, M.M.; El-Gowilly, S.M.; El-Mas, M.M. The Cholinergic Amelioration of Sepsis-Induced Baroreflex Dysfunction and Brainstem Inflammation Is Negated by Central Adenosine A3 Receptors. Pharmaceuticals 2025, 18, 388. https://doi.org/10.3390/ph18030388
El-Naggar AE, Helmy MM, El-Gowilly SM, El-Mas MM. The Cholinergic Amelioration of Sepsis-Induced Baroreflex Dysfunction and Brainstem Inflammation Is Negated by Central Adenosine A3 Receptors. Pharmaceuticals. 2025; 18(3):388. https://doi.org/10.3390/ph18030388
Chicago/Turabian StyleEl-Naggar, Amany E., Mai M. Helmy, Sahar M. El-Gowilly, and Mahmoud M. El-Mas. 2025. "The Cholinergic Amelioration of Sepsis-Induced Baroreflex Dysfunction and Brainstem Inflammation Is Negated by Central Adenosine A3 Receptors" Pharmaceuticals 18, no. 3: 388. https://doi.org/10.3390/ph18030388
APA StyleEl-Naggar, A. E., Helmy, M. M., El-Gowilly, S. M., & El-Mas, M. M. (2025). The Cholinergic Amelioration of Sepsis-Induced Baroreflex Dysfunction and Brainstem Inflammation Is Negated by Central Adenosine A3 Receptors. Pharmaceuticals, 18(3), 388. https://doi.org/10.3390/ph18030388