Expanding the Role of Heparin Derivatives in Oncology: From Anticoagulation to Antitumor Activity
Abstract
:1. Introduction
2. Structural and Functional Properties of Heparin and Its Derivatives
2.1. Molecular Structure and Anticoagulant Function
3. Heparin Derivatives: Types and Production
3.1. LMWH Production Methods and Characteristics
- Deaminative Cleavage with Nitrous Acid (HONO):
- 2.
- Alkaline β-Elimination:
- 3.
- Enzymatic Depolymerization:
- 4.
- Oxidative Depolymerization:
3.2. Manufacturing Processes and Scale-Up
3.3. Desulfation Patterns in LMWHs: Anti-Inflammatory and Anticancer Properties
3.4. Advanced Applications and Future Directions
4. Cancer and Heparin: Clinical Strategies for Thrombosis Prevention and Potential Therapeutic Benefits
4.1. Cancer-Associated Thrombosis Management
4.2. DOACs in Cancer-Associated Thrombosis
4.3. Safety Considerations and Long-Term Effects
4.4. Clinical Trials and Therapeutic Applications of Heparin Derivatives in Cancer Treatment
4.4.1. Pivotal Clinical Trials by Cancer Type
4.4.2. Methodological Limitations Across Clinical Trials
4.4.3. Clinical Considerations for Different Cancer Types
4.5. Direct Antineoplastic Applications
4.6. Implementation Considerations
5. Molecular Mechanisms of Heparin’s Antitumor Effects
5.1. Heparan Sulfate Structure and Function in Normal and Malignant States
5.2. Therapeutic Targeting of HS–Protein Interactions
5.3. Heparanase Inhibition and Sulfation Patterns in Anticancer Activity
5.4. Interference with Tumor Cell Adhesion and Metastasis
5.5. Angiogenesis Modulation and CXCR4/CXCR7 Signaling
5.6. Immunomodulatory Effects
6. Non-Anticoagulant (NAC) Heparin Derivatives: Development and Applications in Cancer Therapy
6.1. Determinants of Heparin’s Anticoagulant Activity
6.2. Producing NAC Heparin Derivatives: Chemical Modification Methods
6.2.1. Periodate Oxidation and Glycol Splitting in Heparin Derivatives
6.2.2. Alkaline Treatment and Chemical Modifications in Heparin Derivatives
6.2.3. N-Acetylation and N-Deacetylation: Modulating Heparin’s Anticoagulant Properties
6.2.4. Optimizing NAC Heparins: Selective O-Desulfation
6.2.5. Complete Desulfation Methods for Heparin
6.3. NAC Heparins: Anticancer Mechanisms
7. Innovations in Heparin-Based Therapeutic Development
8. Conclusions and Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barrowcliffe, T.W. History of heparin. In Heparin—A Century of Progress; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2012; Volume 207, pp. 3–22. [Google Scholar]
- Marcum, J.A. William Henry Howell and Jay McLean: The Experimental Context for the Discovery of Heparin. Perspect. Biol. Med. 2015, 33, 214–230. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Zhu, H.; Wang, K.; Liu, Y.; Yu, F.; Zhao, W. Not Just Anticoagulation—New and Old Applications of Heparin. Molecules 2022, 27, 6968. [Google Scholar] [CrossRef]
- Boeckel, C.A.A.v.; Petitou, M. Die charakteristische AT-III-Bindungsregion in Heparin: Eine Leitstruktur für neue synthetische Antithrombotica. Angew. Chem. 1993, 105, 1741–1761. [Google Scholar] [CrossRef]
- Casu, B.; Guerrini, M.; Torri, G. Structural and conformational aspects of the anticoagulant and anti-thrombotic activity of heparin and dermatan sulfate. Curr. Pharm. Des. 2004, 10, 939–949. [Google Scholar] [CrossRef]
- Petitou, M.; Lormeau, J.C.; Choay, J. Interaction of heparin and antithrombin III. The role of O-sulfate groups. Eur. J. Biochem. 1988, 176, 637–640. [Google Scholar] [CrossRef]
- Petitou, M.; Duchaussoy, P.; Lederman, I.; Choay, J.; Jacquinet, J.C.; Sinay, P.; Torri, G. Synthesis of heparin fragments: A methyl α-pentaoside with high affinity for antithrombin III. Carbohydr. Res. 1987, 167, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Ragazzi, M.; Ferro, D.R.; Perly, B.; Torri, G.; Casu, B.; Sinaÿ, P.; Petitou, M.; Choay, J. Molecular Conformation of the Pentasaccharide Corresponding to the Binding Site of Heparin to Antithrombin III. Thromb. Haemost. 1987, 58, 008. [Google Scholar]
- Zhang, W.; Swanson, R.; Izaguirre, G.; Xiong, Y.; Lau, L.F.; Olson, S.T. The heparin-binding site of antithrombin is crucial for antiangiogenic activity. Blood 2005, 106, 1621–1628. [Google Scholar] [CrossRef]
- Shriver, Z.; Sundaram, M.; Venkataraman, G.; Fareed, J.; Linhardt, R.; Biemann, K.; Sasisekharan, R. Cleavage of the antithrombin III binding site in heparin by heparinases and its implication in the generation of low molecular weight heparin. Proc. Natl. Acad. Sci. USA 2000, 97, 10365–10370. [Google Scholar] [CrossRef]
- Rezaie, A.R.; Giri, H. Anticoagulant and signaling functions of antithrombin. J. Thromb. Haemost. 2020, 18, 3142–3153. [Google Scholar] [CrossRef]
- Pomin, V.H.; Mulloy, B. Current structural biology of the heparin interactome. Curr. Opin. Struct. Biol. 2015, 34, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-T.; Zulueta, M.M.L.; Hung, S.-C. Synthetic heparin and heparan sulfate: Probes in defining biological functions. Curr. Opin. Chem. Biol. 2017, 40, 152–159. [Google Scholar] [CrossRef]
- Casu, B.; Naggi, A.; Torri, G. Re-visiting the structure of heparin. Carbohydr. Res. 2015, 403, 60–68. [Google Scholar] [CrossRef]
- Petitou, M.; van Boeckel, C.A.A. A synthetic antithrombin III binding pentasaccharide is now a drug! What comes next? Angew. Chem. 2004, 43, 3118–3133. [Google Scholar] [CrossRef]
- Wang, T.; Liu, L.; Voglmeir, J. Chemoenzymatic synthesis of ultralow and low-molecular weight heparins. Biochim. Biophys. Acta. Proteins Proteom. 2020, 1868, 140301. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, M.; Guglieri, S.; Naggi, A.; Sasisekharan, R.; Torri, G. Low Molecular Weight Heparins: Structural Differentiation by Bidimensional Nuclear Magnetic Resonance Spectroscopy. Semin. Thromb. Hemost. 2007, 33, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, J.; Bauer, K.A.; Donati, M.B.; Gould, M.; Samama, M.M.; Weitz, J.I. Parenteral anticoagulants: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008, 133, 141S–159S. [Google Scholar] [CrossRef]
- Bisio, A.; Vecchietti, D.; Citterio, L.; Guerrini, M.; Raman, R.; Bertini, S.; Eisele, G.; Naggi, A.; Sasisekharan, R.; Torri, G. Structural features of low-molecular-weight heparins affecting their affinity to antithrombin. Thromb. Haemost. 2009, 102, 865–873. [Google Scholar] [CrossRef]
- Maddineni, J.; Walenga, J.M.; Jeske, W.; Hoppensteadt, D.; Fareed, J.; Wahi, R.; Bick, R.L. Product Individuality of Commercially Available Low-Molecular-Weight Heparins and Their Generic Versions: Therapeutic Implications. Clin. Appl. Thromb./Hemost. 2006, 12, 267–276. [Google Scholar] [CrossRef]
- Telen, M.J.; Batchvarova, M.; Shan, S.; Bovee-Geurts, P.H.; Zennadi, R.; Leitgeb, A.; Brock, R.; Lindgren, M. Sevuparin binds to multiple adhesive ligands and reduces sickle red blood cell-induced vaso-occlusion. Br. J. Haematol. 2016, 175, 935–948. [Google Scholar] [CrossRef]
- Sun, X.; Guo, Z.; Yu, M.; Lin, C.-R.; Sheng, A.; Wang, Z.; Linhardt, R.J.; Chi, L. Hydrophilic interaction chromatography-multiple reaction monitoring mass spectrometry method for basic building block analysis of low molecular weight heparins prepared through nitrous acid depolymerization. J. Chromatogr. A 2017, 1479, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Shively, J.E.; Conrad, H.E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry 1976, 15, 3932–3942. [Google Scholar] [CrossRef] [PubMed]
- Atha, D.H.; Coxon, B.; Reipa, V.; Gaigalas, A.K. Physiochemical characterization of low molecular weight heparin. J. Pharm. Sci. 1995, 84, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.-J.; Sang, Q.; Cui, H. Preparation and evaluation a new generation of low molecular weight heparin. Biomed. Pharmacother. = Biomed. Pharmacother. 2016, 79, 194–200. [Google Scholar] [CrossRef]
- Planès, A. Review of bemiparin sodium—A new second-generation low molecular weight heparinand its applications in venous thromboembolism. Expert Opin. Pharmacother. 2003, 4, 1551–1561. [Google Scholar] [CrossRef]
- Amerali, M.; Politou, M. Tinzaparin—A review of its molecular profile, pharmacology, special properties, and clinical uses. Eur. J. Clin. Pharmacol. 2022, 78, 1555–1565. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, C.; Mei, X.; Li, Y.; Xing, X.-H. Controllable production of low molecular weight heparins by combinations of heparinase I/II/III. Carbohydr. Polym. 2014, 101, 484–492. [Google Scholar] [CrossRef]
- Vismara, E.; Pierini, M.; Mascellani, G.; Liverani, L.; Lima, M.; Guerrini, M.; Torri, G. Low-molecular-weight heparin from Cu2+ and Fe2+ Fenton type depolymerisation processes. Thromb. Haemost. 2010, 103, 613–622. [Google Scholar]
- Vismara, E.; Pierini, M.; Guglieri, S.; Liverani, L.; Mascellani, G.; Torri, G. Structural modification induced in heparin by a Fenton-type depolymerization process. Semin. Thromb. Hemost. 2007, 33, 466–477. [Google Scholar] [CrossRef]
- Samama, M.; Gerotziafas, G.T. Comparative Pharmacokinetics of LMWHs. Semin. Thromb. Hemost. 2000, 26 (Suppl. S1), 031–038. [Google Scholar] [CrossRef]
- Beretta, G.; Gelmini, F.; Merlino, M.; Furlanetto, S.; Facino, R.M. A simplified screening procedure for determination of total N-NO groups (TNG) and nitrite (NO2-) in commercial low-molecular-weight heparins (LMWH) by selective chemical denitrosation followed by high-sensitivity chemiluminescence detection (NO-analyzer, NOA). J. Pharm. Biomed. Anal. 2009, 49, 1179–1184. [Google Scholar] [PubMed]
- Fu, L.; Zhang, F.; Li, G.; Onishi, A.; Bhaskar, U.K.; Sun, P.-l.; Linhardt, R.J. Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration. J. Pharm. Sci. 2014, 103, 1375–1383. [Google Scholar] [CrossRef] [PubMed]
- Achour, O.; Bridiau, N.; Godhbani, A.; Le Joubioux, F.; Bordenave Juchereau, S.; Sannier, F.; Piot, J.M.; Fruitier Arnaudin, I.; Maugard, T. Ultrasonic-assisted preparation of a low molecular weight heparin (LMWH) with anticoagulant activity. Carbohydr. Polym. 2013, 97, 684–689. [Google Scholar] [CrossRef]
- Guerrini, M.; Beccati, D.; Shriver, Z.; Naggi, A.; Viswanathan, K.; Bisio, A.; Capila, I.; Lansing, J.C.; Guglieri, S.; Fraser, B.; et al. Oversulfated chondroitin sulfate is a contaminant in heparin associated with adverse clinical events. Nat. Biotechnol. 2008, 26, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Al-Hakim, A. General Considerations for Diversifying Heparin Drug Products by Improving the Current Heparin Manufacturing Process and Reintroducing Bovine Sourced Heparin to the US Market. Clin. Appl. Thromb./Hemost. 2021, 27, 10760296211052293. [Google Scholar] [CrossRef]
- Roy, S.; Lai, H.-Y.; Zouaoui, R.; Duffner, J.L.; Zhou, H.; Jayaraman, L.P.; Zhao, G.; Ganguly, T.; Kishimoto, T.K.; Venkataraman, G. Bioactivity screening of partially desulfated low-molecular-weight heparins: A structure/activity relationship study. Glycobiology 2011, 21, 1194–1205. [Google Scholar] [CrossRef]
- Franchini, M.; Mannucci, P.M. Low-molecular-weight heparins and cancer: Focus on antitumoral effect. Ann. Med. 2015, 47, 116–121. [Google Scholar] [CrossRef]
- Zhang, N.; Lou, W.; Ji, F.; Qiu, L.; Tsang, B.K.; Di, W. Low molecular weight heparin and cancer survival: Clinical trials and experimental mechanisms. J. Cancer Res. Clin. Oncol. 2016, 142, 1807–1816. [Google Scholar] [CrossRef]
- Du, S.; Yu, Y.; Xu, C.; Xiong, H.; Yang, S.; Yao, J. LMWH and its derivatives represent new rational for cancer therapy: Construction strategies and combination therapy. Drug Discov. Today 2019, 24, 2096–2104. [Google Scholar] [CrossRef]
- Walenga, J.M.; Lyman, G.H. Evolution of heparin anticoagulants to ultra-low-molecular-weight heparins: A review of pharmacologic and clinical differences and applications in patients with cancer. Crit. Rev. Oncol./Hematol. 2013, 88, 1–18. [Google Scholar] [CrossRef]
- Hirsh, J. Low-molecular-weight heparin: A review of the results of recent studies of the treatment of venous thromboembolism and unstable angina. Circulation 1998, 98, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Ansari, A. Therapeutic roles of heparin anticoagulants in cancer and related disorders. Med. Chem. 2011, 7, 504–517. [Google Scholar] [CrossRef]
- Greinacher, A.; Eichler, P.; Lietz, T.; Warkentin, T.E. Replacement of unfractionated heparin by low-molecular-weight heparin for postorthopedic surgery antithrombotic prophylaxis lowers the overall risk of symptomatic thrombosis because of a lower frequency of heparin-induced thrombocytopenia. Blood 2005, 106, 2921–2922. [Google Scholar] [CrossRef]
- Junqueira, D.R.; Zorzela, L.M.; Perini, E. Unfractionated heparin versus low molecular weight heparins for avoiding heparin-induced thrombocytopenia in postoperative patients. Cochrane Database Syst. Rev. 2017, 2017, CD007557. [Google Scholar] [CrossRef] [PubMed]
- Walenga, J.M.; Jeske, W.; Prechel, M.M.; Bacher, P.; Bakhos, M. Decreased prevalence of heparin-induced thrombocytopenia with low-molecular-weight heparin and related drugs. Semin. Thromb. Hemost. 2004, 30 (Suppl. S1), 69–80. [Google Scholar] [PubMed]
- Junqueira, D.R.G.; Perini, E.; Penholati, R.R.M.; Carvalho, M.G. Unfractionated heparin versus low molecular weight heparin for avoiding heparin-induced thrombocytopenia in postoperative patients. Cochrane Database Syst. Rev. 2012, 2012, CD007557. [Google Scholar] [CrossRef]
- Beurskens, D.M.; Huckriede, J.P.; Schrijver, R.; Hemker, H.C.; Reutelingsperger, C.; Nicolaes, G.A.F. The Anticoagulant and Nonanticoagulant Properties of Heparin. Thromb. Haemost. 2020, 120, 1371–1383. [Google Scholar] [CrossRef]
- Freedman, M.D. Pharmacodynamics, Clinical Indications, and Adverse Effects of Heparin. J. Clin. Pharmacol. 1992, 32, 584–596. [Google Scholar] [CrossRef]
- Hirsh, J. Overview of low molecular weight heparins and heparinoids: Basic and clinical aspects. Aust. N. Z. J. Med. 1992, 22, 487–495. [Google Scholar]
- van Doormaal, F.F.; Di Nisio, M.; Otten, H.M.; Richel, D.J.; Prins, M.H.; Buller, H.R. Randomized trial of the effect of the low molecular weight heparin nadroparin on survival in patients with cancer. J. Clin. Oncol. 2011, 29, 2071–2076. [Google Scholar] [CrossRef]
- Montroy, J.; Lalu, M.M.; Auer, R.C.; Grigor, E.J.M.; Mazzarello, S.; Carrier, M.; Kimmelman, J.; Fergusson, D.A. The Efficacy and Safety of Low Molecular Weight Heparin Administration to Improve Survival of Cancer Patients: A Systematic Review and Meta-Analysis. Thromb. Haemost. 2020, 120, 832–846. [Google Scholar] [CrossRef]
- Sanford, D.S.; Naidu, A.G.; Alizadeh, N.; Lazo-Langner, A. The effect of low molecular weight heparin on survival in cancer patients: An updated systematic review and meta-analysis of randomized trials. J. Thromb. Haemost. 2014, 12, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Lazo-Langner, A.; Goss, G.D.; Spaans, J.N.; Rodger, M.A. The effect of low-molecular-weight heparin on cancer survival. A systematic review and meta-analysis of randomized trials. J. Thromb. Haemost. 2007, 5, 729–737. [Google Scholar] [CrossRef]
- Riess, H.B.; Pelzer, U.; Deutschinoff, G.; Opitz, B.; Stauch, M.; Reitzig, P.; Hahnfeld, S.; Hilbig, A.; Stieler, J.M.; Oettle, H. A prospective, randomized trial of chemotherapy with or without the low molecular weight heparin (LMWH) enoxaparin in patients (pts) with advanced pancreatic cancer (APC): Results of the CONKO 004 trial. J. Clin. Oncol. 2009, 27 (Suppl. S18), LBA4506. [Google Scholar] [CrossRef]
- Choi, S.H.; Shim, J.H.; Park, C.H.; Song, K.Y. Low molecular-weight heparin for thromboprophylaxis in patients undergoing gastric cancer surgery: An experience from one Korean institute. Ann. Surg. Treat. Res. 2014, 86, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Che, D.H.; Cao, J.Y.; Shang, L.H.; Man, Y.C.; Yu, Y. The efficacy and safety of low-molecular-weight heparin use for cancer treatment: A meta-analysis. Eur. J. Intern. Med. 2013, 24, 433–439. [Google Scholar] [CrossRef]
- Akl, E.A.; Barba, M.; Rohilla, S.; Terrenato, I.; Sperati, F.; Muti, P.; Schünemann, H.J. Anticoagulation for the long term treatment of venous thromboembolism in patients with cancer. Cochrane Database Syst. Rev. 2008, 2, CD006650. [Google Scholar]
- Green, D. Bleeding, Heparin-induced thrombocytopenia, and Other adverse reactions. In The Heparins; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Martel, N.; Lee, J.; Wells, P.S. Risk for heparin-induced thrombocytopenia with unfractionated and low-molecular-weight heparin thromboprophylaxis: A meta-analysis. Blood 2005, 106, 2710–2715. [Google Scholar] [CrossRef]
- Najidh, S.; Versteeg, H.H.; Buijs, J.T. A systematic review on the effects of direct oral anticoagulants on cancer growth and metastasis in animal models. Thromb. Res. 2020, 187, 18–27. [Google Scholar] [CrossRef]
- Giustozzi, M.; Agnelli, G.; del Toro-Cervera, J.; Klok, F.A.; Rosovsky, R.P.; Martin, A.-C.; Herold, J.; Tzoran, I.; Szmit, S.; Bertoletti, L.; et al. Direct Oral Anticoagulants for the Treatment of Acute Venous Thromboembolism Associated with Cancer: A Systematic Review and Meta-Analysis. Thromb. Haemost. 2020, 120, 1128–1136. [Google Scholar] [CrossRef]
- Xie, Z.; Tian, Y.; Lv, X.; Xiao, X.; Zhan, M.; Cheng, K.H.; Li, S.; Liao, C. The selectivity and bioavailability improvement of novel oral anticoagulants: An overview. Eur. J. Med. Chem. 2018, 146, 299–317. [Google Scholar] [CrossRef]
- Almarshad, F.M.; Alaklabi, A.; Bakhsh, E.; Pathan, A.; Almegren, M.O. Use of direct oral anticoagulants in daily practice. Am. J. Blood Res. 2018, 8, 57–72. [Google Scholar] [PubMed]
- Masotti, L.; Campanini, M. Pharmacology of new oral anticoagulants: Mechanism of action, pharmacokinetics, pharmacodynamics. Ital. J. Med. 2013, 7, 1–7. [Google Scholar] [CrossRef]
- Brea, E.J.; Tiu, B.C.; Connors, J.M. A comprehensive review of DOACs for cancer associated VTE prophylaxis or treatment. Postgrad. Med. 2021, 133, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Alquwaizani, M.; Buckley, L.; Adams, C.; Fanikos, J. Anticoagulants: A Review of the Pharmacology, Dosing, and Complications. Curr. Emerg. Hosp. Med. Rep. 2013, 1, 83–97. [Google Scholar] [CrossRef]
- Alexander, K.P.; Chen, A.Y.; Roe, M.T.; Newby, L.K.; Gibson, C.M.; Allen-LaPointe, N.M.; Pollack, C.V.; Gibler, W.B.; Ohman, E.M.; Peterson, E.D. Excess dosing of antiplatelet and antithrombin agents in the treatment of non-ST-segment elevation acute coronary syndromes. JAMA 2005, 294, 3108–3116. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.R.C.; Hull, R.D.; Brant, R.F.; Hogan, D.B.; Pineo, G.F.; Raskob, G.E. Aging and heparin-related bleeding. Arch. Intern. Med. 1996, 156, 857–860. [Google Scholar] [CrossRef]
- Yannoutsos, A.; Cacciatore, C.; Jaouen, S.; Farge, D.; Frere, C. Treatment of cancer-associated venous thromboembolism: A focus on special populations. J. Med. Vasc. 2023, 48, 124–135. [Google Scholar] [CrossRef]
- Murray, W.J.G.; Lindo, V.; Kakkar, V.V.; Melissari, E.N. Long-term administration of heparin and heparin fractions and osteoporosis in experimental animals. Blood Coagul. Fibrinolysis 1995, 6, 113–118. [Google Scholar] [CrossRef]
- Clark, N.P. Low-molecular-weight heparin use in the obese, elderly, and in renal insufficiency. Thromb. Res. 2008, 123 (Suppl. S1), S58–S61. [Google Scholar] [CrossRef]
- Egholm, G.; Olesen, J.S.; Leinoe, E.B.; Grove, E.L.; Nielsen, J.D.; Poulsen, M.H. Antikoagulationsbehandling til Særlige Patientpopulationer. Ugeskr. Læger 2024, 186, V05240367. [Google Scholar] [CrossRef] [PubMed]
- Mahé, I.; Bosquet, A.; Medjkane, A.; Sollier, C.B.d.; Drouet, L. Monitoring of anticoagulant treatment in patients with cancer. Pathol.-Biol. 2008, 56, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Elalamy, I.; Mahe, I.; Ageno, W.; Meyer, G. Long-term treatment of cancer-associated thrombosis: The choice of the optimal anticoagulant. J. Thromb. Haemost. JTH 2017, 15, 848–857. [Google Scholar] [CrossRef]
- Ludwig, R.J. Therapeutic use of heparin beyond anticoagulation. Curr. Drug Discov. Technol. 2009, 6, 281–289. [Google Scholar] [CrossRef]
- Macbeth, F.; Noble, S.; Evans, J.L.; Ahmed, S.; Cohen, D.; Hood, K.; Knoyle, D.M.; Linnane, S.J.; Longo, M.; Moore, B.; et al. Randomized Phase III Trial of Standard Therapy Plus Low Molecular Weight Heparin in Patients with Lung Cancer: FRAGMATIC Trial. J. Clin. Oncol. 2016, 34, 488–494. [Google Scholar] [CrossRef]
- Griffiths, G.O.; Burns, S.; Noble, S.I.; Macbeth, F.R.; Cohen, D.; Maughan, T.S. FRAGMATIC: A randomised phase III clinical trial investigating the effect of fragmin® added to standard therapy in patients with lung cancer. BMC Cancer 2009, 9, 355. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Ma, K.-X.; Qu, J.-M. Efficacy and safety of adjunctive anticoagulation in patients with lung cancer without indication for anticoagulants: A systematic review and meta-analysis. Thorax 2013, 68, 442–450. [Google Scholar] [CrossRef]
- Lee, A.Y.Y.; Rickles, F.R.; Julian, J.A.; Gent, M.; Baker, R.I.; Bowden, C.; Kakkar, A.K.; Prins, M.H.; Levine, M.N. Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J. Clin. Oncol. 2005, 23, 2123–2129. [Google Scholar] [CrossRef] [PubMed]
- Robins, H.I.; O’neill, A.; Gilbert, M.R.; Olsen, M.R.; Sapiente, R.A.; Berkey, B.A.; Mehta, M.P. Effect of dalteparin and radiation on survival and thromboembolic events in glioblastoma multiforme: A phase II ECOG trial. Cancer Chemother. Pharmacol. 2008, 62, 227–233. [Google Scholar] [CrossRef]
- Simanek, R.; Vormittag, R.; Hassler, M.R.; Roessler, K.; Schwarz, M.; Zielinski, C.; Pabinger, I.; Marosi, C. Venous thromboembolism and survival in patients with high-grade glioma. Neuro-Oncology 2007, 9, 89–95. [Google Scholar] [CrossRef]
- Jo, J.; Donahue, J.H.; Sarai, G.; Petroni, G.R.; Schiff, D. Management of Venous Thromboembolism in High-Grade Glioma: Does Low Molecular Weight Heparin Increase Intracranial Bleeding Risk? Neuro-Oncology 2022, 24, 455–464. [Google Scholar] [CrossRef]
- Perry, J.R.; Julian, J.A.; Laperriere, N.J.; Geerts, W.H.; Agnelli, G.; Rogers, L.; Malkin, M.; Sawaya, R.E.; Baker, R.I.; Falanga, A.; et al. PRODIGE: A randomized placebo-controlled trial of dalteparin low-molecular-weight heparin thromboprophylaxis in patients with newly diagnosed malignant glioma. J. Thromb. Haemost. 2010, 8, 1959–1965. [Google Scholar] [CrossRef]
- Zincircioglu, S.B.; Kaplan, M.A.; Işıkdoğan, A.; Çil, T.; Karadayı, B.; Dirier, A.; Kucukoner, M.; Inal, A.; Yıldız, I.; Aggil, F.; et al. Contribution of low-molecular weight heparin addition to concomitant chemoradiotherapy in the treatment of glioblastoma multiforme. J. BUON 2012, 17, 124–127. [Google Scholar] [PubMed]
- Kakkar, A.K.; Levine, M.N.; Kadziola, Z.; Lemoine, N.R.; Low, V.; Patel, H.K.; Rustin, G.J.S.; Thomas, M.; Quigley, M.; Williamson, R.C.N. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: The fragmin advanced malignancy outcome study (FAMOUS). J. Clin. Oncol. 2004, 22, 1944–1948. [Google Scholar] [CrossRef] [PubMed]
- Schnoor, R.; Maas, S.L.N.; Broekman, M.L.D. Heparin in malignant glioma: Review of preclinical studies and clinical results. J. Neuro-Oncology 2015, 124, 151–156. [Google Scholar] [CrossRef]
- Maraveyas, A.; Maraveyas, A.; Waters, J.S.; Roy, R.; Fyfe, D.; Propper, D.J.; Lofts, F.J.; Sgouros, J.; Gardiner, E.; Wedgwood, K.R.; et al. Gemcitabine versus gemcitabine plus dalteparin thromboprophylaxis in pancreatic cancer. Eur. J. Cancer 2012, 48, 1283–1292. [Google Scholar] [CrossRef] [PubMed]
- Karamouzis, M.V.; Athanasiadis, I.; Samelis, G.F.; Vallilas, C.; Bokas, A.; Nikolaidi, A.; Dimitriadou, A.; Sarantis, P.; Pistamaltzian, N.; Schizas, D.; et al. The Impact of Thromboprophylaxis on the Survival of Patients with Advanced Pancreatic Cancer. The Pancreatic Cancer and Tinzaparin (PaCT) Study. Cancers 2021, 13, 2884. [Google Scholar] [CrossRef]
- Tun, N.M.; Guevara, E.; Oo, T.H. Benefit and risk of primary thromboprophylaxis in ambulatory patients with advanced pancreatic cancer receiving chemotherapy: A systematic review and meta-analysis of randomized controlled trials. Blood Coagul. Fibrinolysis 2014, 27, 270–274. [Google Scholar] [CrossRef]
- Pelzer, U.; Hilbig, A.; Stieler, J.M.; Bahra, M.; Sinn, M.; Gebauer, B.; Dörken, B.; Riess, H.B. Intensified chemotherapy and simultaneous treatment with heparin in outpatients with pancreatic cancer—The CONKO 004 pilot trial. BMC Cancer 2014, 14, 204. [Google Scholar] [CrossRef]
- Lababidi, G.; Wahoud, N.; Ghandour, L.; Moukalled, N.M.; Mahfouz, R. The molecular evidence behind the adjunct use of anticoagulants and chemotherapy in pancreatic cancer treatment: A new role for anticoagulants? Hum. Gene 2024, 41, 201307. [Google Scholar] [CrossRef]
- Ay, C.; Pabinger, I.; Cohen, A.T. Cancer-associated venous thromboembolism: Burden, mechanisms, and management. Thromb. Haemost. 2016, 117, 219–230. [Google Scholar] [CrossRef]
- den Exter, P.L.; Kooiman, J.; van der Hulle, T.; Huisman, M.V. New anticoagulants in the treatment of patients with cancer-associated venous thromboembolism. Best Pract. Res. Clin. Haematol. 2013, 26, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Agnelli, G.; Muñoz, A.J.; Franco, L.; Mahé, I.; Brenner, B.; Connors, J.M.; Gussoni, G.; Hamulyák, E.N.; Lambert, C.; Suero, M.R.; et al. Apixaban and Dalteparin for the Treatment of Venous Thromboembolism in Patients with Different Sites of Cancer. Thromb. Haemost. 2022, 122, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Fioretti, A.M.; Leopizzi, T.; La Forgia, D.; De Luca, R.; Oreste, D.; Inchingolo, R.; Scicchitano, P.; Oliva, S. Abelacimab in Cancer-Associated Thrombosis: The Right Drug at the Right Time for the Right Purpose. A Comprehensive Review. Rev. Cardiovasc. Med. 2023, 24, 295. [Google Scholar] [CrossRef]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef] [PubMed]
- Francis, C.W.; Kessler, C.M.; Goldhaber, S.Z.; Kovacs, M.J.; Monreal, M.; Huisman, M.V.; Bergqvist, D.; Turpie, A.G.G.; Ortel, T.L.; Spyropoulos, A.C.; et al. Treatment of venous thromboembolism in cancer patients with dalteparin for up to 12 months: The DALTECAN Study. J. Thromb. Haemost. 2015, 13, 1028–1035. [Google Scholar] [CrossRef]
- Abraham, R.S.; Millard, T.; Palkimas, S.; Wages, N.A.; Maitland, H.S. Bleeding Risk of Low-Molecular Weight Heparin Vs Direct Oral Anticoagulant in Patients with Intracranial Tumors. Blood 2018, 132, 2524. [Google Scholar] [CrossRef]
- Al-Samkari, H.; Connors, J.M. Managing the competing risks of thrombosis, bleeding, and anticoagulation in patients with malignancy. Blood Adv. 2019, 3, 3770–3779. [Google Scholar] [CrossRef]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008, 111, 4902–4907. [Google Scholar] [CrossRef]
- Key, N.S.; Khorana, A.A.; Kuderer, N.M.; Bohlke, K.; Lee, A.Y.Y.; Arcelus, J.I.; Wong, S.L.; Balaban, E.P.; Flowers, C.R.; Francis, C.W.; et al. Venous Thromboembolism Prophylaxis and Treatment in Patients With Cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 2020, 38, 496–520. [Google Scholar] [CrossRef]
- Streiff, M.B.; Holmstrom, B.; Ashrani, A.; Bockenstedt, P.L.; Chesney, C.; Eby, C.; Fanikos, J.; Fenninger, R.B.; Fogerty, A.E.; Gao, S.; et al. Cancer-Associated Venous Thromboembolic Disease, Version 1.2015. J. Natl. Compr. Cancer Netw. 2015, 13, 1079–1095. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Garcia, D.A.; Lyman, G.H.; Carrier, M. Direct oral anticoagulant (DOAC) versus low-molecular-weight heparin (LMWH) for treatment of cancer associated thrombosis (CAT): A systematic review and meta-analysis. Thromb. Res. 2019, 173, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, J.S.; Talmage, K.E.; Massari, J.V.; Jeunesse, C.M.L.; Flick, M.J.; Kombrinck, K.W.; Jiroušková, M.; Degen, J.L. Platelets and Fibrin(ogen) Increase Metastatic Potential by Impeding Natural Killer Cell–mediated Elimination of Tumor Cells. Blood 2005, 105, 178–185. [Google Scholar] [CrossRef]
- Kasthuri, R.S.; Taubman, M.B.; Mackman, N. Role of Tissue Factor in Cancer. J. Clin. Oncol. 2009, 27, 4834–4838. [Google Scholar] [CrossRef]
- Dvorak, H.F. Tumors: Wounds That Do Not Heal—A Historical Perspective With a Focus on the Fundamental Roles of Increased Vascular Permeability and Clotting. Semin. Thromb. Hemost. 2019, 45, 576–592. [Google Scholar] [CrossRef]
- Phillips, P.G.; Yalcin, M.; Cui, H.; Abdel-Nabi, H.; Sajjad, M.; Bernacki, R.; Veith, J.; Mousa, S.A. Increased tumor uptake of chemotherapeutics and improved chemoresponse by novel non-anticoagulant low molecular weight heparin. Anticancer Res. 2011, 31, 411–419. [Google Scholar]
- Jain, R.K. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nat. Med. 2001, 7, 987–989. [Google Scholar] [CrossRef] [PubMed]
- Peysselon, F.; Ricard-Blum, S. Heparin-protein interactions: From affinity and kinetics to biological roles. Application to an interaction network regulating angiogenesis. Matrix Biol. 2014, 35, 73–81. [Google Scholar] [CrossRef]
- Xu, D.; Esko, J.D. Demystifying heparan sulfate-protein interactions. Annu. Rev. Biochem. 2014, 83, 129–157. [Google Scholar] [CrossRef]
- Bartolini, B.; Caravà, E.; Caon, I.; Parnigoni, A.; Moretto, P.; Passi, A.; Vigetti, D.; Viola, M.; Karousou, E. Heparan Sulfate in the Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1245, 147–161. [Google Scholar]
- Weiss, R.J.; Esko, J.D.; Tor, Y. Targeting heparin and heparan sulfate protein interactions. Org. Biomol. Chem. 2017, 15, 5656–5668. [Google Scholar] [CrossRef]
- Mulloy, B.; Khan, S.; Perkins, S.J. Molecular architecture of heparin and heparan sulfate: Recent developments in solution structural studies. Pure Appl. Chem. 2011, 84, 65–76. [Google Scholar] [CrossRef]
- Sheng, J.; Liu, R.; Xu, Y.; Liu, J. The Dominating Role of N-Deacetylase/N-Sulfotransferase 1 in Forming Domain Structures in Heparan Sulfate. J. Biol. Chem. 2011, 286, 19768–19776. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.T. Multiprotein signalling complexes: Regional assembly on heparan sulphate. Biochem. Soc. Trans. 2006, 34 Pt 3, 438–441. [Google Scholar] [CrossRef]
- Sun, L.; Chopra, P.; Boons, G.J. Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides having a Domain Structure. Angew. Chem. Int. Ed. Engl. 2022, 61, e202211112. [Google Scholar] [CrossRef]
- Li, J.-P.; Kusche-Gullberg, M. Heparan Sulfate: Biosynthesis, Structure, and Function. Int. Rev. Cell Mol. Biol. 2016, 325, 215–273. [Google Scholar] [PubMed]
- Nagarajan, A.; Malvi, P.; Wajapeyee, N. Heparan Sulfate and Heparan Sulfate Proteoglycans in Cancer Initiation and Progression. Front. Endocrinol. 2018, 9, 483. [Google Scholar] [CrossRef]
- Li, M.; Pedersen, L.C.; Xu, D. Targeting heparan sulfate-protein interactions with oligosaccharides and monoclonal antibodies. Front. Mol. Biosci. 2023, 10, 1194293. [Google Scholar] [CrossRef]
- Lanzi, C.; Cassinelli, G. Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules 2018, 23, 2915. [Google Scholar] [CrossRef]
- Lanzi, C.; Zaffaroni, N.; Cassinelli, G. Targeting Heparan Sulfate Proteoglycans and their Modifying Enzymes to Enhance Anticancer Chemotherapy Efficacy and Overcome Drug Resistance. Curr. Med. Chem. 2017, 24, 2860–2886. [Google Scholar] [CrossRef]
- Zhou, H.; Roy, S.; Cochran, E.; Zouaoui, R.; Chu, C.L.; Duffner, J.; Zhao, G.; Smith, S.; Galcheva-Gargova, Z.; Karlgren, J.; et al. M402, a novel heparan sulfate mimetic, targets multiple pathways implicated in tumor progression and metastasis. PLoS ONE 2011, 6, e21106. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, M.; Doherty, G.G.; See, N.W.; Gandhi, N.S.; Ferro, V. From Cancer to COVID-19: A Perspective on Targeting Heparan Sulfate-Protein Interactions. Chem. Rec. 2021, 21, 3087–3101. [Google Scholar] [CrossRef]
- Onyeisi, J.O.S.; Ferreira, B.Z.F.; Nader, H.B.; Lopes, C.C. Heparan sulfate proteoglycans as targets for cancer therapy: A review. Cancer Biol. Ther. 2020, 21, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Faria-Ramos, I.; Pocas, J.; Marques, C.; Santos-Antunes, J.; Macedo, G.; Reis, C.A.; Magalhaes, A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021, 11, 136. [Google Scholar] [CrossRef] [PubMed]
- Barlow, G.H.; Petracek, F.J. A physical comparison of low molecular weight heparins prepared by different methods. Res. Commun. Chem. Pathol. Pharmacol. 1986, 53, 241–244. [Google Scholar]
- Vlodavsky, I.; Abboud-Jarrous, G.; Elkin, M.; Naggi, A.; Casu, B.; Sasisekharan, R.; Ilan, N. The Impact of Heparanese and Heparin on Cancer Metastasis and Angiogenesis. Pathophysiol. Haemost. Thromb. 2006, 35, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Vlodavsky, I.; Goldshmidt, O.; Zcharia, E.; Atzmon, R.; Rangini-Guatta, Z.; Elkin, M.; Peretz, T.; Friedmann, Y. Mammalian heparanase: Involvement in cancer metastasis, angiogenesis and normal development. Semin. Cancer Biol. 2002, 12, 121–129. [Google Scholar] [CrossRef]
- Jayatilleke, K.M.; Hulett, M.D. Heparanase and the hallmarks of cancer. J. Transl. Med. 2020, 18, 453. [Google Scholar] [CrossRef]
- Vlodavsky, I.; Singh, P.; Boyango, I.; Gutter-Kapon, L.; Elkin, M.; Sanderson, R.D.; Ilan, N. Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer. Chemother. 2016, 29, 54–75. [Google Scholar] [CrossRef]
- Vlodavsky, I.; Beckhove, P.; Lerner, I.; Pisano, C.; Meirovitz, A.; Ilan, N.; Elkin, M. Significance of Heparanase in Cancer and Inflammation. Cancer Microenviron. 2012, 5, 115–132. [Google Scholar] [CrossRef]
- Mosarla, R.C.; Vaduganathan, M.; Qamar, A.; Moslehi, J.; Piazza, G.; Giugliano, R.P. Anticoagulation Strategies in Patients With Cancer: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 1336–1349. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.N.; Mao, Z.X.; Wu, Y.; Liang, M.X.; Wang, D.D.; Chen, X.; Chang, P.A.; Zhang, W.; Tang, J.H. The anti-cancer properties of heparin and its derivatives: A review and prospect. Cell Adhes. Migr. 2020, 14, 118–128. [Google Scholar] [CrossRef]
- Naggi, A.; Casu, B.; Pérez, M.; Torri, G.; Cassinelli, G.; Penco, S.; Pisano, C.; Giannini, G.; Ishai-Michaeli, R.; Vlodavsky, I. Modulation of the Heparanase-inhibiting Activity of Heparin through Selective Desulfation, Graded N-Acetylation, and Glycol Splitting. J. Biol. Chem. 2005, 280, 12103–12113. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Sandhu, D.S.; Shire, A.M.; Roberts, L.R. The Tumor Suppressor Function of Human Sulfatase 1 (SULF1) in Carcinogenesis. J. Gastrointest. Cancer 2008, 39, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Vlodavsky, I.; Mohsen, M.; Lider, O.; Cm, S.; Hp, E.; Vigoda, M.; Ishai-Michaeli, R.; Peretz, T. Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis 1994, 14, 290–302. [Google Scholar]
- Achour, O.; Poupard, N.; Bridiau, N.; Bordenave Juchereau, S.; Sannier, F.; Piot, J.M.; Fruitier Arnaudin, I.; Maugard, T. Anti-heparanase activity of ultra-low-molecular-weight heparin produced by physicochemical depolymerization. Carbohydr. Polym. 2016, 135, 316–323. [Google Scholar] [CrossRef]
- Wei, M.; Tai, G.; Gao, Y.; Li, N.; Huang, B.; Zhou, Y.; Hao, S.; Zeng, X. Modified heparin inhibits P-selectin-mediated cell adhesion of human colon carcinoma cells to immobilized platelets under dynamic flow conditions. J. Biol. Chem. 2004, 279, 29202–29210. [Google Scholar] [CrossRef]
- Borsig, L. Antimetastatic activities of modified heparins: Selectin inhibition by heparin attenuates metastasis. Semin. Thromb. Hemost. 2007, 33, 540–546. [Google Scholar] [CrossRef]
- Bendas, G.; Borsig, L. Cancer Cell Adhesion and Metastasis: Selectins, Integrins, and the Inhibitory Potential of Heparins. Int. J. Cell Biol. 2012, 2012, 676731. [Google Scholar] [CrossRef]
- Abu Arab, W.; Kotb, R.; Sirois, M.; Rousseau, E. Concentration- and time-dependent effects of enoxaparin on human adenocarcinomic epithelial cell line A549 proliferation in vitro. Can. J. Physiol. Pharmacol. 2011, 89, 705–711. [Google Scholar] [CrossRef]
- Sumanasekera, W.; Nethery, W.; Tran, L.; Pillai, G. Low Molecular Weight Heparin as a Therapeutic Tool for Cancer; Special Emphasis on Breast Cancer. Biomed. J. Sci. Tech. Res. 2018, 11, 8351–8358. [Google Scholar] [CrossRef]
- Borsig, L.; Wong, R.; Feramisco, J.R.; Nadeau, D.R.; Varki, N.; Varki, A. Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl. Acad. Sci. USA 2001, 98, 3352–3357. [Google Scholar] [CrossRef]
- Läubli, H.; Borsig, L. Heparins Attenuate Cancer Metastasis: Are Selectins the Link? Cancer Investig. 2009, 27, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, R.J.; Boehme, B.; Podda, M.; Henschler, R.; Jager, E.; Tandi, C.; Boehncke, W.-H.; Zollner, T.M.; Kaufmann, R.P.D.; Gille, J. Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis. Cancer Res. 2004, 64, 2743–2750. [Google Scholar] [CrossRef] [PubMed]
- Varki, N.; Varki, A. Heparin Inhibition of Selectin-Mediated Interactions during the Hematogenous Phase of Carcinoma Metastasis: Rationale for Clinical Studies in Humans. Semin. Thromb. Hemost. 2002, 28, 53–66. [Google Scholar] [CrossRef]
- Pukac, L.; Castellot, J.J.; Wright, T.C.; Caleb, B.L.; Karnovsky, M.J. Heparin inhibits c-fos and c-myc mRNA expression in vascular smooth muscle cells. Cell Regul. 1990, 1, 435–443. [Google Scholar] [CrossRef]
- Reilly, C.F.; Kindy, M.S.; Brown, K.E.; Rosenberg, R.D.; Sonenshein, G.E. Heparin prevents vascular smooth muscle cell progression through the G1 phase of the cell cycle. J. Biol. Chem. 1989, 264, 6990–6995. [Google Scholar] [CrossRef]
- Atallah, J.; Khachfe, H.H.; Berro, J.; Assi, H.I. The use of heparin and heparin-like molecules in cancer treatment: A review. Cancer Treat. Res. Commun. 2020, 24, 100192. [Google Scholar] [CrossRef]
- Desoize, B. Antibodies in cancer treatment. Crit. Rev. Oncol./Hematol. 2007, 62, 23–25. [Google Scholar] [CrossRef]
- Smorenburg, S.M.; Noorden, C.J.F.V. The complex effects of heparins on cancer progression and metastasis in experimental studies. Pharmacol. Rev. 2001, 53, 93–105. [Google Scholar] [CrossRef]
- Kuderer, N.M.; Ortel, T.L.; Francis, C.W. Impact of venous thromboembolism and anticoagulation on cancer and cancer survival. J. Clin. Oncol. 2009, 27, 4902–4911. [Google Scholar] [CrossRef] [PubMed]
- Mousa, S.A.; Petersen, L.J. Anti-cancer properties of low-molecular-weight heparin: Preclinical evidence. Thromb. Haemost. 2009, 102, 258–267. [Google Scholar]
- Heinrich, E.L.; Lee, W.; Lu, J.; Lowy, A.M.; Kim, J. Chemokine CXCL12 activates dual CXCR4 and CXCR7-mediated signaling pathways in pancreatic cancer cells. J. Transl. Med. 2012, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Coggins, N.L.; Trakimas, D.; Chang, S.L.; Ehrlich, A.; Ray, P.; Luker, K.E.; Linderman, J.J.; Luker, G.D. CXCR7 controls competition for recruitment of β-arrestin 2 in cells expressing both CXCR4 and CXCR7. PLoS ONE 2014, 9, e98328. [Google Scholar] [CrossRef] [PubMed]
- Leelawat, K.; Leelawat, S.; Narong, S.; Hongeng, S. Roles of the MEK1/2 and AKT pathways in CXCL12/CXCR4 induced cholangiocarcinoma cell invasion. World J. Gastroenterol. 2007, 13, 1561–1568. [Google Scholar] [CrossRef]
- Alekhina, O.; Marchese, A. β-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J. Biol. Chem. 2016, 291, 26083–26097. [Google Scholar] [CrossRef]
- Shen, X.-l.; Artinyan, A.; Jackson, D.; Thomas, R.M.; Lowy, A.M.; Kim, J. Chemokine Receptor CXCR4 Enhances Proliferation in Pancreatic Cancer Cells Through AKT and ERK Dependent Pathways. Pancreas 2010, 39, 81–87. [Google Scholar] [CrossRef]
- Davis, J.E.; Wu, W.H.; Surrao, K.; Teng, Y.; Wu, G. A novel CXCR4-ARF1-MAPK signaling pathway controls prostate tumorigenesis. FASEB J. 2016, 30, 714.3. [Google Scholar] [CrossRef]
- Bokas, A.; Papakotoulas, P.I.; Sarantis, P.; Papadimitropoulou, A.; Papavassiliou, A.G.; Karamouzis, M.V. Mechanisms of the Antitumor Activity of Low Molecular Weight Heparins in Pancreatic Adenocarcinomas. Cancers 2020, 12, 432. [Google Scholar] [CrossRef]
- Ramjiawan, R.R.; Griffioen, A.W.; Duda, D.G. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis 2017, 20, 185–204. [Google Scholar] [CrossRef]
- Feng, K.; Wang, K.; Zhou, Y.; Xue, H.; Wang, F.; Jin, H.; Zhao, W. Non-Anticoagulant Activities of Low Molecular Weight Heparins—A Review. Pharmaceuticals 2023, 16, 1254. [Google Scholar] [CrossRef]
- Kragh, M.; Loechel, F. Non-anti-coagulant heparins: A promising approach for prevention of tumor metastasis (review). Int. J. Oncol. 2005, 27, 1159–1167. [Google Scholar] [CrossRef]
- Ouyang, Y.; Yu, Y.; Zhang, F.; Chen, J.; Han, X.; Xia, K.; Yao, Y.; Zhang, Z.; Linhardt, R.J. Non-Anticoagulant Low Molecular Weight Heparins for Pharmaceutical Applications. J. Med. Chem. 2019, 62, 1067–1073. [Google Scholar] [CrossRef]
- Guimond, S.E.; Turnbull, J.E.; Yates, E.A. Engineered bio-active polysaccharides from heparin. Macromol. Biosci. 2006, 6, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Vaidyanathan, D.; Williams, A.; Dordick, J.S.; Koffas, M.A.G.; Linhardt, R.J. Engineered heparins as new anticoagulant drugs. Bioeng. Transl. Med. 2016, 2, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Du, H.; Liu, J.; Zhai, G. Advanced nanocarriers based on heparin and its derivatives for cancer management. Biomacromolecules 2015, 16, 423–436. [Google Scholar] [CrossRef]
- Crowther, M.A.; Warkentin, T.E. Bleeding risk and the management of bleeding complications in patients undergoing anticoagulant therapy: Focus on new anticoagulant agents. Blood 2008, 111, 4871–4879. [Google Scholar] [CrossRef]
- Lee, J.-H.; Yang, S.-B.; Lee, J.-H.; Lim, H.; Lee, S.; Kang, T.-B.; Lim, J.H.; Kim, Y.J.; Park, J. Doxorubicin covalently conjugated heparin displays anti-cancer activity as a self-assembled nanoparticle with a low-anticoagulant effect. Carbohydr. Polym. 2023, 314, 120930. [Google Scholar] [CrossRef]
- MacDonald, A.; Priess, M.; Curran, J.; Guess, J.; Farutin, V.; Oosterom, I.; Chu, C.L.; Cochran, E.D.; Zhang, L.-Y.; Getchell, K.; et al. Necuparanib, A Multitargeting Heparan Sulfate Mimetic, Targets Tumor and Stromal Compartments in Pancreatic Cancer. Mol. Cancer Ther. 2018, 18, 245–256. [Google Scholar] [CrossRef]
- Zacharski, L.R.; Ornstein, D.L.; Mamourian, A.C. Low-molecular-weight heparin and cancer. Semin. Thromb. Hemost. 2000, 26 (Suppl. S1), 69–77. [Google Scholar] [CrossRef]
- Castelli, R.; Porro, F.; Tarsia, P. The heparins and cancer: Review of clinical trials and biological properties. Vasc. Med. 2004, 9, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Wang, Y.; Wang, G.; Wang, A.; Wang, K.; Duan, G. Acetylation may strengthen the antitumor activity of low molecular heparin. Transl. Cancer Res. 2021, 10, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V.H.; Mourão, P.A.S. Specific sulfation and glycosylation—A structural combination for the anticoagulation of marine carbohydrates. Front. Cell. Infect. Microbiol. 2014, 4, 33. [Google Scholar] [CrossRef]
- Wang, Z.; Hsieh, P.-H.; Xu, Y.; Thieker, D.F.; Chai, E.J.E.; Xie, S.; Cooley, B.C.; Woods, R.J.; Chi, L.; Liu, J. Synthesis of 3-O-Sulfated Oligosaccharides to Understand the Relationship between Structures and Functions of Heparan Sulfate. J. Am. Chem. Soc. 2017, 139, 5249–5256. [Google Scholar] [CrossRef]
- Farias, W.R.L.; Valente, A.P.; Pereira, M.S.; Mourão, P.A.S. Structure and Anticoagulant Activity of Sulfated Galactans. J. Biol. Chem. 2000, 275, 29299–29307. [Google Scholar] [CrossRef]
- Pereira, M.S.; Mulloy, B.; Mourão, P.A.S. Structure and Anticoagulant Activity of Sulfated Fucans. J. Biol. Chem. 1999, 274, 7656–7667. [Google Scholar] [CrossRef] [PubMed]
- Fryer, A.; Huang, Y.C.; Rao, G.; Jacoby, D.B.; Mancilla, E.; Whorton, R.; Piantadosi, C.A.; Kennedy, T.; Hoidal, J.R. Selective O-desulfation produces nonanticoagulant heparin that retains pharmacological activity in the lung. J. Pharmacol. Exp. Ther. 1997, 282, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Raman, K.; Kuberan, B.; Arungundram, S. Chemical modification of heparin and heparosan. Methods Mol. Biol. 2015, 1229, 31–36. [Google Scholar]
- Ji, Y.; Wang, Y.; Zeng, W.; Mei, X.; Du, S.; Yan, Y.; Hao, J.; Zhang, Z.; Lu, Y.; Zhang, C.; et al. A heparin derivatives library constructed by chemical modification and enzymatic depolymerization for exploitation of non-anticoagulant functions. Carbohydr. Polym. 2020, 249, 116824. [Google Scholar] [CrossRef]
- Conrad, H.E.; Guo, Y. Structural analysis of periodate-oxidized heparin. Adv. Exp. Med. Biol. 1992, 313, 31–36. [Google Scholar]
- Lapierre, F.; Holme, K.R.; Lam, L.H.; Tressler, R.J.; Storm, N.; Wee, J.; Stack, R.J.; Castellot, J.J.; Tyrrell, D.J. Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti-metastatic properties. Glycobiology 1996, 6, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Alekseeva, A.; Casu, B.; Cassinelli, G.; Guerrini, M.; Torri, G.; Naggi, A. Structural features of glycol-split low-molecular-weight heparins and their heparin lyase generated fragments. Anal. Bioanal. Chem. 2013, 406, 249–265. [Google Scholar] [CrossRef]
- Casu, B.; Diamantini, G.; Fedeli, G.; Mantovani, M.; Oreste, P.; Pescador, R.; Porta, R.; Prino, G.; Torri, G.; Zoppetti, G. Retention of antilipemic activity by periodate-oxidized non-anticoagulant heparins. Arzneimittelforschung 1986, 36, 637–642. [Google Scholar] [PubMed]
- Fransson, L.-Å.; Sjöberg, I.; Havsmark, B. Structural studies on heparan sulphates. Characterization of oligosaccharides; obtained by periodate oxidation and alkaline elimination. Eur. J. Biochem. 2005, 106, 59–69. [Google Scholar] [CrossRef]
- Alekseeva, A.; Elli, S.; Cosentino, C.; Torri, G.; Naggi, A. Susceptibility of enoxaparin reducing end amino sugars to periodate oxidation. Carbohydr. Res. 2014, 400, 33–43. [Google Scholar] [CrossRef]
- Islam, T.; Butler, M.; Sikkander, S.A.; Toida, T.; Linhardt, R.J. Further evidence that periodate cleavage of heparin occurs primarily through the antithrombin binding site. Carbohydr. Res. 2002, 337, 2239–2243. [Google Scholar] [CrossRef]
- Bjornsson, T.D.; Schneider, D.E.; Hecht, A. Effects of N-deacetylation and N-desulfation of heparin on its anticoagulant activity and in vivo disposition. J. Pharmacol. Exp. Ther. 1988, 245, 804–808. [Google Scholar] [CrossRef]
- Danishefsky, I.; Eiber, H.B.; Carr, J.J. Investigations on the chemistry of heparin. I. Desulfation and acetylation. Arch. Biochem. Biophys. 1960, 90, 114–121. [Google Scholar] [CrossRef]
- Riesenfeld, J.; Hook, M.; Lindahl, U. Biosynthesis of heparin. Assay and properties of the microsomal N-acetyl-D-glucosaminyl N-deacetylase. J. Biol. Chem. 1980, 255, 922–928. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, B.; Zhang, Z.; Ly, M.; Takieddin, M.; Mousa, S.A.; Liu, J.; Dordick, J.S.; Linhardt, R.J. Control of the heparosan N-deacetylation leads to an improved bioengineered heparin. Appl. Microbiol. Biotechnol. 2011, 91, 91–99. [Google Scholar] [CrossRef]
- Seto, S.P.; Miller, T.; Temenoff, J.S. Effect of selective heparin desulfation on preservation of bone morphogenetic protein-2 bioactivity after thermal stress. Bioconjugate Chem. 2015, 26, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Casu, B.; Vlodavsky, I.; Sanderson, R.D. Non-Anticoagulant Heparins and Inhibition of Cancer. Pathophysiol. Haemost. Thromb. 2007, 36, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Baumann, H.; Scheen, H.; Huppertz, B.; Keller, R. Novel regio- and stereoselective O-6-desulfation of the glucosamine moiety of heparin with N-methylpyrrolidinone-water or N,N-dimethylformamide-water mixtures. Carbohydr. Res. 1998, 308, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.V.; Argyle, B.; Xu, X.; Reynolds, P.R.; Walenga, J.M.; Prechel, M.M.; Prestwich, G.D.; MacArthur, R.B.; Walters, B.B.; Hoidal, J.R.; et al. Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. Am. J. Physiol. Cell Physiol. 2010, 299, C97–C110. [Google Scholar] [CrossRef]
- Kariya, Y.; Kyogashima, M.; Suzuki, K.; Isomura, T.; Sakamoto, T.; Horie, K.; Ishihara, M.; Takano, R.; Kamei, K.; Hara, S. Preparation of Completely 6-O-Desulfated Heparin and Its Ability to Enhance Activity of Basic Fibroblast Growth Factor. J. Biol. Chem. 2000, 275, 25949–25958. [Google Scholar] [CrossRef]
- Ishihara, M.; Kariya, Y.; Kikuchi, H.; Minamisawa, T.; Yoshida, K. Importance of 2-O-sulfate groups of uronate residues in heparin for activation of FGF-1 and FGF-2. J. Biochem. 1995, 121, 345–349. [Google Scholar] [CrossRef]
- Kragh, M.; Binderup, L.; Vig Hjarnaa, P.J.; Bramm, E.; Johansen, K.B.; Frimundt Petersen, C. Non-anti-coagulant heparin inhibits metastasis but not primary tumor growth. Oncol. Rep. 2005, 14, 99–104. [Google Scholar]
- Alyahya, R.; Sudha, T.; Racz, M.J.; Stain, S.C.; Mousa, S.A. Anti-metastasis efficacy and safety of non-anticoagulant heparin derivative versus low molecular weight heparin in surgical pancreatic cancer models. Int. J. Oncol. 2015, 46, 1225–1231. [Google Scholar] [CrossRef]
- Simka, M.; Urbanek, T. Anti-Metastatic Activities of Heparins. J. Cancer Mol. 2009, 5, 3–8. [Google Scholar]
- Ripsman, D.; Fergusson, D.A.; Montroy, J.; Auer, R.C.; Huang, J.W.; Dobriyal, A.; Wesch, N.L.; Carrier, M.; Lalu, M.M. A systematic review on the efficacy and safety of low molecular weight heparin as an anticancer therapeutic in preclinical animal models. Thromb. Res. 2020, 195, 103–113. [Google Scholar] [CrossRef]
- Duckworth, C.A.; Guimond, S.E.; Sindrewicz, P.; Hughes, A.J.; French, N.S.; Lian, L.Y.; Yates, E.A.; Pritchard, D.M.; Rhodes, J.M.; Turnbull, J.E.; et al. Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis. Oncotarget 2015, 6, 23671–23687. [Google Scholar] [CrossRef] [PubMed]
- Lasky, J.A.; Fuloria, J.; Morrison, M.E.; Lanier, R.E.; Naderer, O.J.; Brundage, T.M.; Melemed, A. Design and rationale of a randomized, double-blind, placebo-controlled, Phase 2/3 study to evaluate the safety and efficacy of dociparstat sodium (DSTAT) in adults with acute lung injury associated with severe COVID-19. Adv. Ther. 2021, 38, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Brown, J.R.-M.; Varki, A.; Esko, J.D. Heparin’s anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L- and P-selectins. J. Clin. Investig. 2002, 110, 127–136. [Google Scholar] [CrossRef]
- Voynow, J.A.; Zheng, S.; Kummarapurugu, A.B. Glycosaminoglycans as Multifunctional Anti-Elastase and Anti-Inflammatory Drugs in Cystic Fibrosis Lung Disease. Front. Pharmacol. 2020, 11, 1011. [Google Scholar] [CrossRef]
- Pisano, C.; Vlodavsky, I.; Ilan, N.; Zunino, F. The potential of heparanase as a therapeutic target in cancer. Biochem. Pharmacol. 2014, 89, 12–19. [Google Scholar] [CrossRef]
- Kozlowski, A.M.; Yates, E.A.; Roubroeks, J.P.; Tømmeraas, K.; Smith, A.M.; Morris, G.A. Hydrolytic Degradation of Heparin in Acidic Environments: Nuclear Magnetic Resonance Reveals Details of Selective Desulfation. ACS Appl. Mater. Interfaces 2021, 13, 5551–5563. [Google Scholar] [CrossRef] [PubMed]
- Greinacher, A. Taking advantage of the non-anticoagulant effects of heparin. Thromb. Haemost. 2012, 107, 602. [Google Scholar] [CrossRef]
- Huselton, E.J.; Rettig, M.P.; Campbell, K.; Cashen, A.F.; Dipersio, J.F.; Gao, F.; Jacoby, M.A.; Pusic, I.; Romee, R.; Schroeder, M.A.; et al. Combination of dociparstat sodium (DSTAT), a CXCL12/CXCR4 inhibitor, with azacitidine for the treatment of hypomethylating agent refractory AML and MDS. Leuk. Res. 2021, 110, 106713. [Google Scholar] [CrossRef]
- Kovacsovics, T.J.; Mims, A.S.; Salama, M.E.; Rao, N.V.; Pantin, J.M.; Deininger, M.W.N.; Kennedy, T.P.; Bavisotto, L.; Boucher, K.M.; Marcus, S.G.; et al. O-desulfated heparin and chemotherapy for the treatment of AML. J. Clin. Oncol. 2015, 33, 7053. [Google Scholar] [CrossRef]
- Kovacsovics, T.J.; Mims, A.S.; Salama, M.E.; Pantin, J.M.; Rao, N.V.; Kosak, K.M.; Ahorukomeye, P.; Glenn, M.J.; Deininger, M.W.N.; Boucher, K.M.; et al. Combination of the low anticoagulant heparin CX-01 with chemotherapy for the treatment of acute myeloid leukemia. Blood Adv. 2018, 2, 381–389. [Google Scholar] [CrossRef]
- Floren, M.; Gillette, J.M. Acute Myeloid Leukemia: Therapy Resistance and a Potential Role for Tetraspanin Membrane Scaffolds. Int. J. Biochem. Cell Biol. 2021, 137, 106029. [Google Scholar] [CrossRef] [PubMed]
- Estruch, M.; Vittori, C.; Montesinos, T.M.; Reckzeh, K.; Theilgaard-Mönch, K. Targeting of PI3K/AKT signaling and DNA damage response in acute myeloid leukemia: A novel therapeutic strategy to boost chemotherapy response and overcome resistance. Cancer Drug Resist. 2021, 4, 984–995. [Google Scholar] [CrossRef] [PubMed]
LMWH/ULMWH (INN) | Brand Name(s) | Manufacturer | Original Patent | Preparation Method (Claim Type/Claim 1) | MW (Da) | NRE | RE | Anti-Xa:Anti-IIa Ratio | Anti-Xa Activity (IU/mg) | Anti-IIa Activity (IU/mg) | Degree of Sulfation |
---|---|---|---|---|---|---|---|---|---|---|---|
Dalteparin sodium | Fragmin, Boxol, FR 860 | Pfizer/Kabi/Pharmacia-Upjohn | EP0014184A2 | Compound/Heparin fragments, 14–18 sugar units with L-iduronosyl-2-O-sulfate-N-sulpho-D-glucosamine-6-O-sulfate | 5600–6400 | 2-O-sulfo-α-L-idopyranosuronic acid | 6-O-sulfo-2,5-anhydro-D-mannitol | 1.9–3.2:1 | 110–210 | 35–100 | 2.0–2.5 |
Enoxaparin sodium | Lovenox, Clexane | Sanofi-Aventis/Rhone-Poulenc | US4990502 | Product/Composition of low-molecular-weight heparins and pharmaceutically acceptable salts | 3500–5500 | 2-O-sulfo-4-enepyranosuronic acid | 2-N-sulfated-D-glucosamine, 1,6-anhydro ring | 3.3–5.3:1 | 100–210 | 20–35 | ~2.0 |
Tinzaparin sodium | Innohep, Logiparin | LEO Pharma/Novo Nordisk | EP0244235 | Process/Production of LMW-heparin by enzymatic depolymerization | 5500–7500 | 2-O-sulfo-4-enepyranosuronic acid | 2-N,6-O-disulfo-D-glucosamine | 1.5–2.5:1 | 70–120 | 45–50 | 2.66 |
Nadroparin calcium | Fraxodi, CY-216 | Sanofi-Winthrop | DE2944792 | Compound/Mucopolysaccharide fraction from heparin-based material | 4200–5500 | 2-O-sulfo-α-L-idopyranosuronic acid | 6-O-sulfo-2,5-anhydro-D-mannitol | 2.5–4.0:1 | 95–130 | 27–37 | 2.0–2.5 |
Bemiparin sodium | Zibor, Hibor, Badyket | Rovi | EP0293539 | Process/Depolymerization of heparin with MW 10,000–20,000 Da | 3000–4200 | 2-O-sulfo-4-enepyranosuronic acid | 2-N,6-O-disulfo-D-glucosamine | 8.0:1 | 80–100 | 10–12.5 | ~2 |
Sevuparin | N/A | Modus Therapeutics AB/Dilafor AB | WO2002072799A1 | Compound/Heparin derivative with specified structural formula | 6500–9500 | 2-N,6-O-disulfo-D-glucosamine | Glucosamine bound to a remnant | 1.5:1 | <10 | <10 | 2.4 |
Parnaparin sodium | Fluxum, Minidalton | Alfa Wassermann SpA | EP0294099B1 | Process/Oxidative depolymerization with Cu2⁺ and H2O2 | 4500–5000 | 2-O-sulfo-α-L-idopyranosuronic acid | 2-N,6-O-disulfo-D-glucosamine | 1.5–3.0:1 | 75–110 | 25–30 | 2.15 |
Reviparin sodium | Clivarin | Knoll AG/Abbott | EP0467206B1 | Compound/Formulation based on heparin, glycosaminoglycan, or heparinoids | 3400–4650 | 2-O-sulfo-α-L-idopyranosuronic acid | 6-O-sulfo-2,5-anhydro-D-mannitol | 4.2:1 | 124 | 29 | 2.0–2.6 |
Ardeparin sodium | Normiflo | Wyeth-Ayerst | US5374715A | Process/Production of low molecular weight heparins with high pharmacological properties | 2000–15,000 | 2-O-sulfo-α-L-idopyranosuronic acid | 2-N-acetyl-6-O-sulfo-D-glucosamine | 1.8:1 | 95–145 | 45–75 | 2.0–2.7 |
Certoparin sodium | Sandoparin, Alphaparin | Novartis/Sandoz | US4351938 | Process/Reacting heparin salt with nitrous acid solution | 4200–6200 | 2-O-sulfo-α-L-idopyranosuronic acid | 6-O-sulfo-2,5-anhydro-D-mannitol | 1.5–2.5:1 | 80–120 | 30–35 | 2.0–2.5 |
Preparation Method | LMWH Examples | Mechanism | Typical Anti-Xa to Anti-IIa Ratio | Applications | Desulfation Status and Location | Anti-Inflammatory and Anticancer Effects |
---|---|---|---|---|---|---|
Deaminative Cleavage with Nitrous Acid | Dalteparin (Fragmin), Nadroparin (Fraxodi), Reviparin (Clivarin) | Selective cleavage at glucosamine residues by deaminative reaction | 2–4:1 | Balanced anticoagulant activity suitable for general anticoagulation | Partial desulfation, mainly at N-sulfated glucosamine residues | Dalteparin: Strong evidence for anticancer effects, approved for cancer-associated thrombosis. Moderate anti-inflammatory properties through P-selectin inhibition. Moderate heparanase inhibition (IC50 ~2–5 µg/mL). Nadroparin shows lower heparanase inhibition (IC50 ~5–10 µg/mL) |
Alkaline β-Elimination | Enoxaparin (Lovenox), Bemiparin (Zibor, Hibor) | Alkaline treatment targeting glycosidic bonds | 3.8–8.0:1 | High anti-Xa activity with low bleeding risk, ideal for thrombosis prevention | Cleavage occurs via β-elimination at glycosidic bonds. Under alkaline conditions, selective 2-O-desulfation may occur at iduronic acid residues, while N-sulfated glucosamine residues remain largely intact | Enoxaparin: Significant anti-inflammatory effects through NF-κB pathway inhibition. Demonstrated anticancer properties in both clinical and experimental studies. Strong heparanase inhibition (IC50 ~1–3 µg/mL). Bemiparin shows particularly strong heparanase inhibition (IC50 ~0.5–2 µg/mL) |
Enzymatic Depolymerization | Tinzaparin (Innohep) | Specific enzymatic cleavage using heparinase | 1.5–2.5:1 | Balanced anticoagulant activity suitable for general anticoagulation | Minimal desulfation, primarily at non-reducing ends. Sulfation pattern largely preserved | Tinzaparin: Notable anti-inflammatory effects and strong antimetastatic properties. Strongest heparanase inhibition among LMWHs (IC50 ~0.5–1 µg/mL). Most consistent antiheparanase activity across batches. Particularly effective in inhibiting heparanase activity in cancer |
Oxidative Depolymerization | Ardeparin (Normiflo), Parnaparin (Fluxum) | Oxidative cleavage with hydrogen peroxide or copper ions | 1.5–3.0:1 | Balanced anticoagulant activity suitable for general anticoagulation | Random desulfation possible depending on oxidative conditions, often at uronic acid residues | Limited evidence for significant anti-inflammatory or anticancer effects compared to other LMWHs. Weak to moderate heparanase inhibition (Ardeparin IC50 ~8–15 µg/mL, Parnaparin IC50 ~5–10 µg/mL). More variable heparanase inhibition between batches |
Method | Sulfation/Desulfation Status | Biological Implications |
---|---|---|
Periodate Oxidation | Targets vicinal diols in unsulfated glucuronic acid residues under mildly acidic conditions (pH 4–5), producing ring-opened structures. Reduces anticoagulant activity by approximately 85–95% but retains growth factor binding and anti-inflammatory properties.
| Maintains some growth factor activity while significantly reducing anticoagulant properties, suitable for therapeutic applications requiring lower anticoagulation. |
Glycol Splitting | Maintains complete original sulfation pattern while significantly reducing anticoagulant activity by more than 95%.
| More comprehensive structural modification leads to NAC heparin derivatives, making it suitable for developing anti-inflammatory agents and targeted therapeutic compounds with reduced anticoagulation effects. |
Selective O-Desulfation | Uses solvolytic conditions (DMSO/methanol) to remove 2-O and 3-O sulfate groups selectively. Preserves N-sulfation and core structure, reducing anticoagulant activity by 80–85% but enhancing anti-inflammatory and anticancer potential.
| Reduces anticoagulant activity while enhancing anti-inflammatory and anticancer properties, making it useful for therapeutic applications where both effects are desired. |
N-Acetylation | Adds acetyl groups to amine sites, modifying biological properties but not sulfate groups.
| Alters biological interactions, potentially affecting downstream signaling and cellular responses. |
N-Deacetylation | Removes acetyl groups from N-acetylglucosamine, facilitating future N-sulfation.
| Enhances the potential for structural modifications that can influence biological function and interactions. |
Complete Desulfation | Removes all sulfate groups, commonly achieved via solvolytic desulfation or methanolic HCl treatment, resulting in non-anticoagulant derivatives.
| Completely alters biological properties, rendering compounds suitable for applications requiring non-anticoagulant characteristics. |
Application Category | Heparin Type | Clinical Uses and Mechanisms | Key Benefits | Special Considerations |
---|---|---|---|---|
Anticoagulant Therapy | UFH, LMWH |
|
|
|
Cancer Therapy | LMWH, NAC heparins |
|
|
|
Anti-Inflammatory Applications | UFH, LMWH |
|
|
|
Antiangiogenic and Antimetastatic | LMWH, NAC heparins |
|
|
|
Wound Healing | Topical heparin |
|
|
|
Research and Development | Modified heparins, NAC heparins |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holail, J.; Sukkarieh, H.H.; Aljada, A. Expanding the Role of Heparin Derivatives in Oncology: From Anticoagulation to Antitumor Activity. Pharmaceuticals 2025, 18, 396. https://doi.org/10.3390/ph18030396
Holail J, Sukkarieh HH, Aljada A. Expanding the Role of Heparin Derivatives in Oncology: From Anticoagulation to Antitumor Activity. Pharmaceuticals. 2025; 18(3):396. https://doi.org/10.3390/ph18030396
Chicago/Turabian StyleHolail, Jasmine, Hatouf Husni Sukkarieh, and Ahmad Aljada. 2025. "Expanding the Role of Heparin Derivatives in Oncology: From Anticoagulation to Antitumor Activity" Pharmaceuticals 18, no. 3: 396. https://doi.org/10.3390/ph18030396
APA StyleHolail, J., Sukkarieh, H. H., & Aljada, A. (2025). Expanding the Role of Heparin Derivatives in Oncology: From Anticoagulation to Antitumor Activity. Pharmaceuticals, 18(3), 396. https://doi.org/10.3390/ph18030396