Effects of Carnosine Supplementation on Cognitive Outcomes in Prediabetes and Well-Controlled Type 2 Diabetes: A Randomised Placebo-Controlled Clinical Trial
Abstract
:1. Introduction
2. Results
Cognitive Performance Outcomes
3. Discussion
4. Materials and Methods
4.1. Study Design and Participants
4.2. Recruitment
4.3. Ethics
4.4. Intervention and Randomisation
4.5. Outcome Measures
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pr. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Klein, S.; Gastaldelli, A.; Yki-Järvinen, H.; Scherer, P.E. Why does obesity cause diabetes? Cell Metab. 2022, 34, 11–20. [Google Scholar] [CrossRef]
- Drewnowski, A.; Darmon, N. The economics of obesity: Dietary energy density and energy cost. Am. J. Clin. Nutr. 2005, 82, 265S–273S. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity and Overweight; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Athanasaki, A.; Melanis, K.; Tsantzali, I.; Stefanou, M.I.; Ntymenou, S.; Paraskevas, S.G.; Kalamatianos, T.; Boutati, E.; Lambadiari, V.; Voumvourakis, K.I.; et al. Type 2 Diabetes Mellitus as a Risk Factor for Alzheimer’s Disease: Review and Meta-Analysis. Biomedicines 2022, 10, 778. [Google Scholar] [CrossRef]
- Chohan, H.; Senkevich, K.; Patel, R.K.; Bestwick, J.P.; Jacobs, B.M.; Bandres Ciga, S.; Gan-Or, Z.; Noyce, A.J. Type 2 Diabetes as a Determinant of Parkinson’s Disease Risk and Progression. Mov. Disord. 2021, 36, 1420–1429. [Google Scholar] [CrossRef]
- Goldstein, B.J. Insulin resistance as the core defect in type 2 diabetes mellitus. Am. J. Cardiol. 2002, 90, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Geroldi, C.; Frisoni, G.B.; Paolisso, G.; Bandinelli, S.; Lamponi, M.; Abbatecola, A.M.; Zanetti, O.; Guralnik, J.M.; Ferrucci, L. Insulin Resistance in Cognitive Impairment: The InCHIANTI Study. Arch. Neurol. 2005, 62, 1067–1072. [Google Scholar] [CrossRef]
- Kim, B.; Feldman, E.L. Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp. Mol. Med. 2015, 47, e149. [Google Scholar] [CrossRef]
- Park, H.L.; O’Connell, J.E.; Thomson, R.G. A systematic review of cognitive decline in the general elderly population. Int. J. Geriatr. Psychiatry 2003, 18, 1121–1134. [Google Scholar] [CrossRef]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Biessels, G.J.; Staekenborg, S.; Brunner, E.; Brayne, C.; Scheltens, P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol. 2006, 5, 64–74. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and Pathophysiology of Carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Godos, J.; Castellano, S.; Micek, A.; Murabito, P.; Ferri, R.; Grosso, G.; Caraci, F. The Therapeutic Potential of Carnosine/Anserine Supplementation Against Cognitive Decline: A Systematic Review With Meta-Analysis. Biomedicines 2021, 9, 253. [Google Scholar] [CrossRef]
- Mahomoodally, M.F.; Dilmar, A.S.; Khadaroo, S.K. Chapter 4.2—Carnosine. In Antioxidants Effects in Health; Nabavi, S.M., Silva, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 251–268. [Google Scholar]
- Cesak, O.; Vostalova, J.; Vidlar, A.; Bastlova, P.; Student, V., Jr. Carnosine and Beta-Alanine Supplementation in Human Medicine: Narrative Review and Critical Assessment. Nutrients 2023, 15, 1770. [Google Scholar] [CrossRef]
- Sweeney, K.M.; Wright, G.A.; Brice, A.G.; Doberstein, S.T. The effect of β-alanine supplementation on power performance during repeated sprint activity. J. Strength. Cond. Res. 2010, 24, 79–87. [Google Scholar] [CrossRef]
- Baierle, M.; Nascimento, S.N.; Moro, A.M.; Brucker, N.; Freitas, F.; Gauer, B.; Durgante, J.; Bordignon, S.; Zibetti, M.; Trentini, C.M.; et al. Relationship between inflammation and oxidative stress and cognitive decline in the institutionalized elderly. Oxid. Med. Cell Longev. 2015, 2015, 804198. [Google Scholar] [CrossRef]
- Chatterjee, K.; Pal, A.; Padhy, D.S.; Saha, R.; Chatterjee, A.; Bharadwaj, M.; Sarkar, B.; Mazumder, P.M.; Banerjee, S. Vitamin K2 Ameliorates Diabetes-Associated Cognitive Decline by Reducing Oxidative Stress and Neuroinflammation. J. Neuroimmune Pharmacol. 2024, 19, 56. [Google Scholar] [CrossRef]
- Papadopoulou, P.; Polissidis, A.; Kythreoti, G.; Sagnou, M.; Stefanatou, A.; Theoharides, T.C. Anti-Inflammatory and Neuroprotective Polyphenols Derived from the European Olive Tree, Olea europaea L., in Long COVID and Other Conditions Involving Cognitive Impairment. Int. J. Mol. Sci. 2024, 25, 11040. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, L.; Yao, X.; Wang, Y.; Fang, M.; Zhou, D.; Li, N.; Hou, Y. Isoamericanin A ameliorates neuronal damage and alleviates vascular cognitive impairments by inhibiting oxidative stress through activation of the Nrf2 pathway. Int. Immunopharmacol. 2024, 143, 113366. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zhang, Z.; Lei, J.; Zhu, J.; Liu, G. Ellagitannin Component Punicalin Ameliorates Cognitive Dysfunction, Oxidative Stress, and Neuroinflammation via the Inhibition of cGAS-STING Signaling in the Brain of an Aging Mouse Model. Phytother. Res. 2024, 38, 5690–5712. [Google Scholar] [CrossRef] [PubMed]
- Schön, M.; Mousa, A.; Berk, M.; Chia, W.L.; Ukropec, J.; Majid, A.; Ukropcová, B.; de Courten, B. The Potential of Carnosine in Brain-Related Disorders: A Comprehensive Review of Current Evidence. Nutrients 2019, 11, 1196. [Google Scholar] [CrossRef]
- Bell, S.M.; Hariharan, R.; Laud, P.J.; Majid, A.; de Courten, B. Histidine-Containing Dipeptide Supplementation Improves Delayed Recall: A Systematic Review and Meta-Analysis. Nutr. Rev. 2023, 82, 1372–1385. [Google Scholar] [CrossRef] [PubMed]
- Kinattingal, N.; Mehdi, S.; Undela, K.; Wani, S.U.D.; Almuqbil, M.; Alshehri, S.; Shakeel, F.; Imam, M.T.; Manjula, S.N. Prevalence of Cognitive Decline in Type 2 Diabetes Mellitus Patients: A Real-World Cross-Sectional Study in Mysuru, India. J. Pers. Med. 2023, 13, 524. [Google Scholar] [CrossRef]
- Blackwell, A.D.; Sahakian, B.J.; Vesey, R.; Semple, J.M.; Robbins, T.W.; Hodges, J.R. Detecting Dementia: Novel Neuropsychological Markers of Preclinical Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2003, 17, 42–48. [Google Scholar] [CrossRef]
- De Jager, C.; Blackwell, A.D.; Budge, M.M.; Sahakian, B.J. Predicting Cognitive Decline in Healthy Older Adults. Am. J. Geriatr. Psychiatry 2005, 13, 735–740. [Google Scholar] [CrossRef]
- O’Connell, H.; Coen, R.; Kidd, N.; Warsi, M.; Chin, A.-V.; Lawlor, B.A. Early detection of Alzheimer’s disease (AD) using the CANTAB paired Associates Learning Test. Int. J. Geriatr. Psychiatry 2004, 19, 1207–1208. [Google Scholar] [CrossRef]
- Rokicki, J.; Li, L.M.; Imabayashi, E.; Kaneko, J.; Hisatsune, T.; Matsuda, H. Daily Carnosine and Anserine Supplementation Alters Verbal Episodic Memory and Resting State Network Connectivity in Healthy Elderly Adults. Front. Aging Neurosci. 2015, 7. [Google Scholar] [CrossRef]
- Masuoka, N.; Yoshimine, C.; Hori, M.; Tanaka, M.; Asada, T.; Abe, K.; Hisatsune, T. Effects of Anserine/Carnosine Supplementation on Mild Cognitive Impairment With APOE4. Nutrients 2019, 11, 1626. [Google Scholar] [CrossRef]
- Hisatsune, T.; Kaneko, J.; Kurashige, H.; Cao, Y.; Satsu, H.; Totsuka, M.; Katakura, Y.; Imabayashi, E.; Matsuda, H. Effect of anserine/carnosine supplementation on verbal episodic memory in elderly people. J. Alzheimer’s Dis. 2016, 50, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Cornelli, U. Treatment of Alzheimer’s disease with a cholinesterase inhibitor combined with antioxidants. Neurodegener. Dis. 2010, 7, 193–202. [Google Scholar] [CrossRef]
- Szcześniak, D.; Budzeń, S.; Kopeć, W.; Rymaszewska, J. Anserine and carnosine supplementation in the elderly: Effects on cognitive functioning and physical capacity. Arch. Gerontol. Geriatr. 2014, 59, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Baraniuk, J.N.; El-Amin, S.; Corey, R.; Rayhan, R.U.; Timbol, C.R. Carnosine treatment for gulf war illness: A randomized controlled trial. Glob. J. Health Sci. 2013, 5, 69. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, T.E.; Amraotkar, A.R.; Gao, H.; Sears, C.G.; Rai, S.N.; Basner, M.; Bhatnagar, A. Carnosine supplementation improves cognitive outcomes in younger participants of the NEAT trial. Neurotherapeutics 2025, 22, e00541. [Google Scholar] [CrossRef]
- Xue, M.; Xu, W.; Ou, Y.-N.; Cao, X.-P.; Tan, M.-S.; Tan, L.; Yu, J.-T. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev. 2019, 55, 100944. [Google Scholar] [CrossRef]
- Dash, S.K. Cognitive impairment and diabetes. Recent. Pat. Endocr. Metab. Immune Drug Discov. 2013, 7, 155–165. [Google Scholar] [CrossRef]
- De Courten, B.; Jakubova, M.; De Courten, M.P.; Kukurova, I.J.; Vallova, S.; Krumpolec, P.; Valkovic, L.; Kurdiova, T.; Garzon, D.; Barbaresi, S. Effects of carnosine supplementation on glucose metabolism: Pilot clinical trial. Obesity 2016, 24, 1027–1034. [Google Scholar] [CrossRef]
- Hariharan, R.; Cameron, J.; Menon, K.; Mesinovic, J.; Jansons, P.; Scott, D.; Lu, Z.X.; de Courten, M.; Feehan, J.; de Courten, B. Carnosine supplementation improves glucose control in adults with pre-diabetes and type 2 diabetes: A randomised controlled trial. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 485–496. [Google Scholar] [CrossRef]
- Yamashita, S.; Sato, M.; Mutoh, T.; Kadooka, K.; Hasegawa, T.; Fujimura, T.; Katakura, Y. Mechanisms of Carnosine-Induced Activation of Neuronal Cells. Biosci. Biotechnol. Biochem. 2018, 82, 683–688. [Google Scholar] [CrossRef]
- Zhu, H.; Barker, P.B. MR Spectroscopy and Spectroscopic Imaging of the Brain. In Magnetic Resonance Neuroimaging: Methods and Protocols; Modo, M., Bulte, J.W.M., Eds.; Humana Press: Totowa, NJ, USA, 2011; pp. 203–226. [Google Scholar]
- Dobrota, D.; Tkáè, I.; Mlynárik, V.; Liptaj, T.; Boldyrev, A.A.; Stvolinsky, S.L. Carnosine Protective Effect on Ischemic Brain in Vivo Study Using Proton Magnetic Resonance Spectroscopy. In Neurochemistry: Cellular, Molecular, and Clinical Aspects; Teelken, A., Korf, J., Eds.; Springer: Boston, MA, USA, 1997; pp. 177–182. [Google Scholar]
- Dybjer, E.; Nilsson, P.M.; Engström, G.; Helmer, C.; Nägga, K. Pre-diabetes and diabetes are independently associated with adverse cognitive test results: A cross-sectional, population-based study. BMC Endocr. Disord. 2018, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Macready, A.L.; Butler, L.T.; Kennedy, O.B.; Ellis, J.A.; Williams, C.M.; Spencer, J.P.E. Cognitive tests used in chronic adult human randomised controlled trial micronutrient and phytochemical intervention studies. Nutr. Res. Rev. 2010, 23, 200–229. [Google Scholar] [CrossRef]
- Bell, S.M.; Hariharan, R.; Laud, P.; Majid, A.; Courten, B. Carnosine Supplementation Improves Delayed Recall: A Systematic Review and Meta-Analysis. Alzheimer’s Dement. 2023, 19, e071004. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2023, 47, S20–S42. [Google Scholar] [CrossRef]
- Baye, E.; Menon, K.; de Courten, M.P.; Earnest, A.; Cameron, J.; de Courten, B. Does supplementation with carnosine improve cardiometabolic health and cognitive function in patients with pre-diabetes and type 2 diabetes? study protocol for a randomised, double-blind, placebo-controlled trial. BMJ Open 2017, 7, e017691. [Google Scholar] [CrossRef]
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycaemia: Report of a WHO/IDF Consultation; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Alberti, K.G.; Mayer, M.; Zimmet, P.Z. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Provisional Report of a Who Consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Australian Guidelines to Reduce Health Risks from Drinking Alcohol. National Health and Medical Research Council. Available online: https://www.nhmrc.gov.au/about-us/publications/australian-guidelines-reduce-health-risks-drinking-alcohol (accessed on 17 April 2025).
- Chan, A.W.; Tetzlaff, J.M.; Gotzsche, P.C.; Altman, D.G.; Mann, H.; Berlin, J.A.; Dickersin, K.; Hrobjartsson, A.; Schulz, K.F.; Parulekar, W.R.; et al. SPIRIT 2013 explanation and elaboration: Guidance for protocols of clinical trials. BMJ 2013, 346, e7586. [Google Scholar] [CrossRef]
- Schulz, K.F.; Altman, D.G.; Moher, D.; Group, C. CONSORT 2010 statement: Updated guidelines for reporting parallel group randomized trials. Ann. Intern. Med. 2010, 152, 726–732. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [CrossRef]
- Menon, K.; Marquina, C.; Liew, D.; Mousa, A.; de Courten, B. Histidine-containing dipeptides reduce central obesity and improve glycaemic outcomes: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 2020, 21, e12975. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Heuman, D.M.; Sterling, R.K.; Sanyal, A.J.; Siddiqui, M.; Matherly, S.; Luketic, V.; Stravitz, R.T.; Fuchs, M.; Thacker, L.R.; et al. Validation of EncephalApp, Smartphone-Based Stroop Test, for the Diagnosis of Covert Hepatic Encephalopathy. Clin. Gastroenterol. Hepatol. 2015, 13, 1828–1835.e1821. [Google Scholar] [CrossRef] [PubMed]
- Cantab Connect Research: Admin Application User Guide. 2021. Available online: https://gbiomed.kuleuven.be/english/research/50000737/research/pash/pasoca/documenten/CANTAB-Connect-Research-Admin-Application-User-Guide.pdf (accessed on 17 April 2025).
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Yekutieli, D.; Benjamini, Y. Resampling-based false discovery rate controlling multiple test procedures for correlated test statistics. J. Stat. Plan. Inference 1999, 82, 171–196. [Google Scholar] [CrossRef]
Variable | Placebo (21) | Carnosine (21) | |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Demographics | |||
Age | 50.17 ± 10.64 | 51.7 ± 10.19 | |
Sex (males), n (%) | 15 (75%) | 14 (67%) | |
Prediabetes/diabetes proportions, n (%) | 15 (71%)/6 (29%) | 10 (47.6%)/11 (52.4%) | |
Metformin: yes/no, n (%) | 9 (43%)/12 (57%) | 8 (38%)/13 (62%) | |
Digit symbol test | Performance Range | ||
Score: (Number of correct responses) | 70.5 ± 9.987 | 64.89 ± 17.62 | 1–93 |
Stroop tests | |||
Off Time | 66.81 ± 7.9 | 70.14 ± 13.62 | 1–125.84 |
Off Time + On Time | 142.62 ± 15.48 | 153.52 ± 28.9 | 1–274.9 |
On Time | 75.81 ± 8.74 | 83.38 ± 16.19 | 1–148.7 |
On Time–Off Time | 9 ± 6.19 | 13.25 ± 7.73 | 1–29.8 |
Successful times ×attempts (Off) | 380.31 ± 74.61 | 389.67 ± 97.76 | NA |
Successful times × attempts (On) | 440 ± 112.74 | 470.05 ± 98.02 | NA |
Trail making Tests | |||
Trail making Test A (s) | 17.05 ± 5.13 | 16.75 ± 4.90 | 1–300 |
Trail making Test B (s) | 58.38 ± 31.07 | 63.18 ± 39.56 | 1–300 |
TMT ratio (B/A) | 3.59 ± 1.6 | 3.76 ± 1.90 | NA |
Cambridge Neuropsychological Test Automated Battery | |||
Delayed Match to Sample (DMS) | |||
DMS Percent correct (all delays) | 87.00 (13.00) | 87.00 (13.00) | 0–100 |
DMS Probability of error given correct | 0.12 (0.12) | 0.12 (0.13) | −1 to 1 |
DMS Probability of error given error | 0 (0) | 0 (0) | −1 to 1 |
DMS Total correct (simultaneous) | 18.00 (2.00) | 18.00 (2.00) | 0–20 |
Paired Associates Learning (PAL) | |||
PAL First-attempt memory score | 12.20 (3.00) | 12.70 (4.05) | 0–20 |
PAL Mean errors to success | 2.05 (1.43) | 1.50 (1.54) | 0–4 |
PAL Number of patterns reached | 8.00 (0) | 8.00 (0) | 2–8 |
PAL Total attempts | 8.00 (1.50) | 7.50 (3.00) | 0–4 |
PAL Total errors | 12.00 (11.00) | 13.00 (9.00) | 0–80 |
PAL Total errors (adjusted) | 15.00 (13.00) | 14.50 (16.75) | 0–70 |
Pattern Recognition Memory (PRM) | |||
Pattern Recognition Memory Median correct latency–Delayed | 1978.25 (458.13) | 1778.75 (390.25) | 100–∞ |
Pattern Recognition Memory median correct latency–Immediate | 1618.25 (281.75) | 1612.00 (440) | 100–∞ |
PRM Percent Correct Delayed | 100 (8.33) | 91.67 (8.34) | 0–100 |
PRM Percent Correct Immediate | 95.84 (8.33) | 100 (8.33) | 0–100 |
Reaction time index (RTI) | |||
RTI Five-choice error score (all) | 0 (0) | 0 (1.00) | 0–30 |
RTI Simple error score (all) | 2.00 (3.00) | 1.00 (2.00) | 0–30 |
RTI Simple movement time | 203.00 (107.50) | 193.50 (42.50) | 100–5100 |
RTI Simple reaction time | 39.24 (25.45) | 38.20 (23.76) | 100–5100 |
Rapid visual processing (RVP) | |||
RVP A Prime | 0.89 (0.06) | 0.91 (0.06) | 0–1 |
RVP Response latency | 192.66 (81.68) | 149.65 (96.14) | 100–1900 |
RVP Total false alarms | 5.00 (8.00) | 1.00 (3.00) | 0–546 |
RVP Total hits | 31.00 (10.25) | 36.00 (13.00) | 0–54 |
RVP Total misses | 23.00 (10.25) | 18.00 (13.00) | 0–54 |
Spatial working memory (SWM) | |||
SWM Between errors | 10 (21.25) | 12.00 (11.00) | 0–90 |
SWM Strategy | 8.00 (6.00) | 8.00 (4.00) | 2–14 |
Test Variable | Placebo | Carnosine | p * | p(adj) | ||||
---|---|---|---|---|---|---|---|---|
Baseline | Follow-Up | Δ | Baseline | Follow-Up | Δ | |||
Digit Symbol Test | ||||||||
Score | 71.37 ± 10.58 | 75.67 ± 10.71 | 3.67 ± 9.48 | 65.47 ± 17.85 | 76.00 ± 13.95 | 10.53 ± 12.90 | 0.08 | 0.46 |
Trail Making test | ||||||||
Trail Making Test A (s) | 17.05 ± 5.13 | 17.36 ± 5.00 | 0.31 ± 6.2 | 16.75 ± 4.90 | 15.67 ± 4.85 | −1.09 ± 5.72 | 0.46 | 0.76 |
Trail Making Test B (seconds) | 58.38 ± 31.07 | 61.71 ± 36.82 | 2.26 ± 26.0 | 63.18 ± 39.56 | 46.84 ± 10.95 | −16.34 ± 42.35 | 0.1 | 0.42 |
B:A (s) | 3.59 ± 1.6 | 3.66 ± 2.1 | −0.01 ± 1.55 | 3.76 ± 1.90 | 3.13 ± 0.80 | −0.63 ± 1.86 | 0.26 | 0.66 |
Stroop | ||||||||
Off Time (s) | 66.81 ± 7.90 | 64.22 ± 10.44 | −2.45 ± 12.87 | 70.14 ± 13.62 | 72.24 ± 10.01 | 0.56 ± 7.84 | 0.05 | 0.75 |
On Time(s) | 75.81 ± 8.74 | 81.99 ± 19.41 | 6.18 ± 17.81 | 83.38 ± 16.19 | 90.05 ± 22.06 | 6.66 ± 20.28 | 0.29 | 0.67 |
Off Time + On Time(s) | 142.62 ± 15.48 | 166.19 ± 97.22 | 23.57 ± 97.17 | 153.52 ± 28.90 | 184.49 ± 79.96 | 30.97 ± 83.10 | 0.62 | 0.84 |
On time—Off time(s) | 9.00 ± 6.19 | 13.79 ± 14.17 | 4.4 ± 14.34 | 13.25 ± 7.73 | 11.73 ± 4.52 | −1.12 ± 7.53 | 0.28 | 0.68 |
Successful times x attempts (Off) | 380.31 ± 74.61 | 361.14 ± 107.19 | −12.33 ± 116.04 | 389.67 ± 97.76 | 399.54 ± 70.46 | −3.81 ± 74.89 | 0.29 | 0.64 |
Successful times x attempts (On) | 439.99 ± 112.74 | 458.21 ± 100.92 | 12.97 ± 117.89 | 470.05 ± 98.02 | 505.21 ± 128.93 | 28.65 ± 88.31 | 0.57 | 0.85 |
CANTAB | ||||||||
DMS Percent Correct (All Delays) | 84.7 ± 9.00 | 87 ± 10.76 | 2.60 ± 14.32 | 84.10 ± 13.70 | 85 ± 8.86 | 0.90 ± 17.81 | 0.74 | 0.70 |
DMS percent correct (Simultaneous) | 88.25 ± 6.74 | 89.52 ± 8.05 | 1.75 ± 10.29 | 86.91 ± 11.67 | 87.38 ± 7.35 | 0.48 ± 15.08 | 0.70 | 0.85 |
DMS median correct latency | 3569.20 ± 914.96 | 3459.86 ± 1235.52 | −97.75 ± 1109.50 | 3427.29 ± 1747 | 3248.98 ± 1548.87 | −178.31 ± 1467.79 | 0.84 | 0.88 |
DMS Probability of error given error | 0.02 ± 0.90 | 0.09 ± 0.16 | 0.06 ± 0.20 | 0.07 ± 0.19 | 0.10 ± 0.15 | 0.03 ± 0.27 | 0.68 | 0.85 |
PALFAMS (Paired Associates Learning First attempt memory score) | 12.20 ± 3.00 | 14.32 ± 3.92 | 2.11 ± 3.25 | 12.70 ± 4.05 | 12.40 ± 4.02 | −0.37 ± 4.81 | 0.07 | 0.54 |
PALMETS (Paired Associates Learning Mean Errors to Success) | 2.05 ± 1.43 | 1.24 ± 1.00 | −1.00 ± 1.49 | 1.50 ± 1.54 | 2.35 ± 1.35 | 0.84 ± 1.34 | <0.001 | 0.05 |
PALTA (Paired Associates Learning Total Attempts) | 8.32 ± 1.77 | 6.86 ± 1.77 | −1.53 ± 1.47 | 7.65 ± 1.90 | 7.65 ± 1.66 | −0.05 ± 2.09 | 0.02 | 0.46 |
PALTA 4 (Paired Associates Learning Total Attempts 4 Patterns) | 1.58 ± 0.61 | 1.24 ± 0.70 | −0.32 ± 0.89 | 1.25 ± 0.72 | 1.45 ± 0.83 | 0.21 ± 0.71 | 0.05 | 0.59 |
PALTEA (Paired Associates Learning Total errors (adjusted)) | 15.40 ± 10.66 | 12.37 ± 14.40 | −3.00 ± 9.21 | 17.95 ± 14.40 | 13.95 ± 12.60 | −4.26 ± 12.94 | 0.73 | 0.86 |
PRMPCD (Pattern Recognition Memory Percent Correct Delayed) | 94.91 ± 7.08 | 93.33 ± 7.66 | −0.49 ± 9.07 | 87.084 ± 11.93 | 84.53 ± 13.77 | −3.33 ± 17.19 | 0.53 | 0.84 |
PRMMDCLD (Pattern Recognition Memory Median correct latency)–Delayed | 2065.92 ± 626.63 | 1814.38 ± 391.45 | −255.94 ± 633.16 | 1900.22 ± 457.70 | 1968.23 ± 679.11 | 68.00 ± 766.33 | 0.17 | 0.65 |
PRMMDCLI (Pattern Recognition Memory median correct latency)–Immediate | 1633.93 ± 386.86 | 1540.95 ± 280.27 | −94.50 ± 312.68 | 1617.26 ± 326.25 | 1570.38 ± 328.71 | −46.88 ± 211.89 | 0.57 | 0.87 |
PRMPCI (Pattern Recognition Memory Percent Correct Immediate) | 93.34 ± 9.97 | 96.49 ± 6.40 | 3.51 ± 11.22 | 95.24 ± 6.26 | 94.05 ± 11.83 | −1.19 ± 9.96 | 0.17 | 0.6 |
RTIFMMT (Reaction Time Index–mean five choice movement time) | 292.09 ± 82.54 | 267.26 ± 63.07 | −24.83 ± 81.86 | 255.14 ± 86.82 | 271.17 ± 103.42 | 16.03 ± 48.68 | 0.06 | 0.55 |
RTIFMDMT (RTI Median Five-Choice Movement Time) | 290.38 ± 80.76 | 268.81 ± 64.88 | −21.57 ± 82.07 | 253.57 ± 86.25 | 268.95 ± 102.64 | 15.38 ± 50.00 | 0.09 | 0.46 |
RTIFMDRT (RTI Median Five-Choice Reaction Time) | 401.07 ± 46.76 | 407.50 ± 50.94 | 6.43 ± 34.95 | 402.67 ± 41.52 | 399.24 ± 46.23 | −3.43 ± 32.34 | 0.35 | 0.64 |
RTIFMTSD (Reaction Time Index -five choice movement time (SD)) | 40.31 ± 17.22 | 38.19 ± 20.97 | −2.12 ± 24.70 | 37.49 ± 14.09 | 36.86 ± 12.49 | −0.63 ± 13.06 | 0.81 | 0.87 |
RTISES (Reaction time Index–Simple error Score) | 1.91 ± 2.39 | 0.33 ± 0.56 | −0.24 ± 3.21 | 2.48 ± 5.45 | 0.43 ± 1.12 | 0.29 ± 4.3491 | 0.66 | 0.84 |
RTIMSMT (Reaction Time Index–Mean simple movement time) | 232.70 ± 75.09 | 237.12 ± 58.91 | 4.42 ± 56.76 | 207.12 ± 79.63 | 220.89 ± 75.64 | 13.77 ± 64.70 | 0.62 | 0.86 |
RTIMSRT (Reaction Time Index–Mean simple reaction time) | 353.96 ± 38.80 | 373.28 ± 41.00 | 19.32 ± 31.79 | 350.28 ± 42.60 | 357.92 ± 40.72 | 7.64 ± 34.67 | 0.26 | 0.75 |
RTISMDRT (RTI Simple Median Reaction Time) | 345.07 ± 36.25 | 360.90 ± 37.40 | 15.83 ± 26.95 | 342.10 ± 41.28 | 347.67 ± 36.55 | 5.57 ± 31.62 | 0.26 | 0.7 |
RTISMDMT (RTI Simple Median Movement Time) | 228.67 ± 72.67 | 234.45 ± 57.43 | 5.79 ± 55.44 | 205.64 ± 78.83 | 216.71 ± 72.15 | 11.07 ± 61.23 | 0.77 | 0.84 |
RVPA (Rapid Visual Processing A prime) | 0.88 ± 0.06 | 0.90 ± 0.39 | 0.02 ± 0.052 | 0.91 ± 0.04 | 0.92 ± 0.06 | 0.009 ± 0.044 | 0.35 | 0.62 |
RVPMDL (Rapid Visual Processing–median response latency) | 493.88 ± 116.66 | 465.53 ± 88.86 | −28.35 ± 69.75 | 481.91 ± 60.09 | 472.68 ± 61.38 | −11.53 ± 62.04 | 0.43 | 0.73 |
RVPPFA (RVP Probability of False Alarm) | 0.04 ± 0.117 | 0.012 ± 0.008 | −0.03 ± 0.12 | 0.007 ± 0.011 | 0.01 ± 0.037 | 0.007 ± 0.028 | 0.19 | 0.62 |
SWMBE (Spatial Working Memory–between errors) | 11.80 ± 9.80 | 12.35 ± 10.16 | 0.55 ± 9.59 | 12.33 ± 7.84 | 9.43 ± 8.16 | −2.90 ± 8.32 | 0.22 | 0.67 |
SWMS (Spatial Working memory–Strategy 6–8 boxes) | 6.70 ± 3.25 | 6.85 ± 3.31 | 0.15 ± 2.18 | 7.48 ± 2.68 | 6.76 ± 3.40 | −0.71 ± 3.21 | 0.32 | 0.67 |
Cognitive Tests | ||||||||
---|---|---|---|---|---|---|---|---|
Models | Change (Δ) | |||||||
β | 95% CI | SE | R2 | p * | P2 (Pooled) | p(adj) | ||
Digit Symbol Test Variables | ||||||||
Score | Model 1 | 3.99 | −2.51, 10.49 | 3.2 | 0.38 | 0.22 | 0.19 | 0.34 |
Model 2 | 3.93 | −2.82, 10.69 | 3.32 | 0.38 | 0.24 | 0.21 | 0.34 | |
Model 3 | 3.71 | −2.97, 10.40 | 3.28 | 0.42 | 0.27 | 0.25 | 0.34 | |
Model 4 | 4.03 | −2.84, 10.89 | 3.36 | 0.42 | 0.24 | 0.25 | 0.34 | |
Model 5 | −0.22 | −8.2, −7.77 | 3.92 | 0.40 | 0.96 | 0.90 | 0.96 | |
Trail Making Test variables | ||||||||
Trail Making Test A (s) | Model 1 | −2.20 | −4.98, 0.58 | 1.37 | 0.36 | 0.12 | 0.10 | 0.26 |
Model 2 | −1.83 | −4.73, 1.06 | 1.43 | 0.38 | 0.21 | 0.17 | 0.30 | |
Model 3 | −1.83 | −4.78, 1.11 | 1.45 | 0.38 | 0.22 | 0.18 | 0.30 | |
Model 4 | −2.11 | −4.95, 0.73 | 1.40 | 0.45 | 0.14 | 0.12 | 0.26 | |
Model 5 | −2.81 | −5.75, 0.14 | 1.45 | 0.47 | 0.06 | 0.05 | 0.22 | |
Trail Making Test B (s) | Model 1 | −17.56 | −33.58, −1.54 | 7.90 | 0.55 | 0.03 | 0.03 | 0.22 |
Model 2 | −14.53 | −30.71, 1.66 | 7.97 | 0.58 | 0.08 | 0.07 | 0.22 | |
Model 3 | −14.81 | −31.31, 1.69 | 8.12 | 0.58 | 0.08 | 0.07 | 0.22 | |
Model 4 | −15.68 | −32.35, 0.99 | 8.19 | 0.59 | 0.06 | 0.06 | 0.22 | |
Model 5 | −15.37 | −33.10, 2.35 | 8.71 | 0.57 | 0.09 | 0.09 | 0.22 | |
B:A (s) | Model 1 | −0.59 | −1.52, 0.33 | 0.46 | 0.37 | 0.20 | 0.21 | 0.30 |
Model 2 | −0.47 | −1.42, 0.48 | 0.47 | 0.39 | 0.32 | 0.36 | 0.37 | |
Model 3 | −0.48 | −1.45, 0.49 | 0.48 | 0.39 | 0.32 | 0.36 | 0.37 | |
Model 4 | −0.46 | −1.45, 0.53 | 0.49 | 0.39 | 0.35 | 0.38 | 0.37 | |
Model 5 | −0.26 | −1.30, 0.79 | 0.51 | 0.38 | 0.62 | 0.69 | 0.62 | |
Stroop test variables | ||||||||
Off Time | Model 1 | 4.82 | −2.27, 11.92 | 3.45 | 0.30 | 0.17 | 0.09 | 0.84 |
Model 2 | 4.56 | −2.85, 11.98 | 3.6 | 0.30 | 0.22 | 0.08 | 0.84 | |
Model 3 | 4.31 | −3.29, 11.90 | 3.68 | 0.31 | 0.25 | 0.08 | 0.84 | |
Model 4 | 3.83 | −4.11, 11.77 | 3.84 | 0.32 | 0.33 | 0.15 | 0.84 | |
Model 5 | 0.25 | −8.57, 9.07 | 4.26 | 0.29 | 0.95 | 0.93 | 0.95 | |
On Time | Model 1 | 1.77 | −12.29, 15.83 | 6.87 | 0.03 | 0.8 | 0.8 | 0.89 |
Model 2 | 2.95 | −11.27, 17.17 | 6.94 | 0.07 | 0.67 | 0.67 | 0.84 | |
Model 3 | 2.91 | −11.01, 16.83 | 6.78 | 0.15 | 0.67 | 0.67 | 0.84 | |
Model 4 | 0.82 | −12.65, 14.29 | 6.55 | 0.25 | 0.90 | 0.90 | 0.93 | |
Model 5 | −4.74 | −19.65, 10.18 | 7.26 | 0.27 | 0.52 | 0.51 | 0.84 | |
Off Time + On Time | Model 1 | 11.06 | −55.00, 77.12 | 32.3 | 0.03 | 0.38 | 0.73 | 0.84 |
Model 2 | 18.58 | −47.12, 84.29 | 32.08 | 0.10 | 0.57 | 0.56 | 0.84 | |
Model 3 | 19.25 | −43.94, 82.44 | 30.8 | 0.20 | 0.54 | 0.53 | 0.84 | |
Model 4 | 8.13 | −53.51, 69.76 | 29.99 | 0.30 | 0.79 | 0.79 | 0.89 | |
Model 5 | −13.58 | −81.90, 54.74 | 33.24 | 0.30 | 0.69 | 0.68 | 0.84 | |
On Time–Off Time | Model 1 | −2.82 | −11.40, 5.76 | 4.17 | 0.21 | 0.51 | 0.53 | 0.84 |
Model 2 | −2.97 | −11.81, 5.86 | 4.29 | 0.21 | 0.49 | 0.54 | 0.84 | |
Model 3 | −2.83 | −11.94, 6.29 | 4.42 | 0.21 | 0.53 | 0.54 | 0.84 | |
Model 4 | −4.55 | −13.85, 4.75 | 4.50 | 0.28 | 0.32 | 0.33 | 0.84 | |
Model 5 | −2.47 | −12.35, 7.42 | 4.78 | 0.25 | 0.61 | 0.52 | 0.84 | |
Successful times x attempts (Off) | Model 1 | 22.61 | −43.72, 88.95 | 32.27 | 0.25 | 0.49 | 0.27 | 0.84 |
Model 2 | 20.19 | −48.72, 89.11 | 33.46 | 0.26 | 0.55 | 0.25 | 0.84 | |
Model 3 | 16.03 | −54.28, 86.34 | 34.07 | 0.28 | 0.64 | 0.25 | 0.84 | |
Model 4 | 16.49 | −57.67, 90.66 | 35.85 | 0.28 | 0.65 | 0.35 | 0.84 | |
Model 5 | 19.37 | −60.32, 99.05 | 38.52 | 0.28 | 0.62 | 0.63 | 0.84 | |
Successful times x attempts (On) | Model 1 | 27.76 | −47.70, 103.23 | 36.71 | 0.16 | 0.46 | 0.4 | 0.84 |
Model 2 | 21.87 | −55.82, 99.56 | 37.72 | 0.18 | 0.57 | 0.4 | 0.84 | |
Model 3 | 14.23 | −60.01, 88.46 | 35.97 | 0.29 | 0.7 | 0.42 | 0.84 | |
Model 4 | −4.22 | −75.03, 66.59 | 34.23 | 0.42 | 0.9 | 0.66 | 0.93 | |
Model 5 | −19.89 | −96.05, 56.27 | 36.82 | 0.43 | 0.59 | 0.69 | 0.84 | |
CANTAB tests | ||||||||
DMS Percent Correct (All Delays) | Model 1 | −2.37 | −8.55, 3.80 | 3.05 | 0.65 | 0.44 | 0.58 | 0.75 |
Model 2 | −4.59 | −10.76, 1.58 | 3.05 | 0.69 | 0.14 | 0.31 | 0.51 | |
Model 3 | −4.96 | −10.772, 0.856 | 2.87 | 0.74 | 0.09 | 0.22 | 0.50 | |
Model 4 | −5.01 | −10.724, 0.698 | 2.81 | 0.75 | 0.08 | 0.16 | 0.50 | |
Model 5 | −6.86 | −12.60, −1.11 | 2.83 | 0.77 | 0.02 | 0.03 | 0.31 | |
DMS percent correct (Simultaneous) | Model 1 | −2.75 | −7.63, 2.13 | 2.41 | 0.66 | 0.26 | 0.34 | 0.58 |
Model 2 | −4.39 | −9.36, 0.59 | 2.46 | 0.69 | 0.11 | 0.21 | 0.50 | |
Model 3 | −4.63 | −9.40, 0.15 | 2.36 | 0.73 | 0.08 | 0.15 | 0.50 | |
Model 4 | −4.67 | −9.29, −0.052 | 2.28 | 0.75 | 0.06 | 0.10 | 0.50 | |
Model 5 | −0.97 | −6.57, 4.66 | 2.77 | 0.57 | 0.73 | 0.67 | 0.92 | |
DMS Percent Correct (0 Second Delay) | Model 1 | 4.933 | −5.30, 15.17 | 5.05 | 0.66 | 0.34 | 0.30 | 0.68 |
Model 2 | 2.868 | −7.82, 13.56 | 5.28 | 0.67 | 0.59 | 0.48 | 0.83 | |
Model 3 | 2.134 | −8.21, 12.48 | 5.10 | 0.70 | 0.68 | 0.57 | 0.90 | |
Model 4 | 2.097 | −8.25, 12.44 | 5.10 | 0.71 | 0.68 | 0.62 | 0.90 | |
Model 5 | 4.09 | 6.4, 14.57 | 5.16 | 0.72 | 0.43 | 0.40 | 0.74 | |
DMS Percent Correct (4 Second Delay) | Model 1 | −6.04 | −16.41, 4.34 | 5.13 | 0.51 | 0.25 | 0.39 | 0.58 |
Model 2 | −8.81 | −19.65, 2.04 | 5.35 | 0.54 | 0.11 | 0.27 | 0.50 | |
Model 3 | −9.14 | −20.09, 1.80 | 5.40 | 0.55 | 0.1 | 0.24 | 0.50 | |
Model 4 | −9.03 | −20.13, 2.07 | 5.47 | 0.55 | 0.11 | 0.25 | 0.50 | |
Model 5 | −13.03 | −24.37,−2.24 | 5.45 | 0.58 | 0.02 | 0.03 | 0.31 | |
DMS Percent Correct (12 Second Delay) | Model 1 | −5.98 | −16.53, 4.57 | 5.21 | 0.60 | 0.26 | 0.27 | 0.58 |
Model 2 | −6.94 | −17.89, 4.01 | 5.40 | 0.61 | 0.21 | 0.23 | 0.54 | |
Model 3 | −7.74 | −18.51, 3.04 | 5.31 | 0.63 | 0.15 | 0.16 | 0.51 | |
Model 4 | −8.28 | −18.61, 2.06 | 5.09 | 0.67 | 0.11 | 0.09 | 0.50 | |
Model 5 | −9.92 | −20.19, 0.35 | 5.06 | 0.68 | 0.06 | 0.05 | 0.50 | |
DMS median correct latency | Model 1 | −140.46 | −886.88, 605.95 | 368.71 | 0.21 | 0.71 | 0.72 | 0.92 |
Model 2 | −120.18 | −908.07, 667.70 | 388.85 | 0.21 | 0.76 | 0.77 | 0.92 | |
Model 3 | −115.96 | −916.68, 684.76 | 394.81 | 0.21 | 0.77 | 0.78 | 0.92 | |
Model 4 | −126.76 | −904.05, 650.54 | 382.88 | 0.28 | 0.74 | 0.67 | 0.92 | |
Model 5 | −50.32 | −844.91, 744.26 | 391.4 | 0.27 | 0.9 | 0.87 | 0.97 | |
DMS Probability of error given error | Model 1 | 0.02 | −0.09, 0.13 | 0.05 | 0.62 | 0.70 | 0.79 | 0.91 |
Model 2 | 0 | −0.12, 0.12 | 0.06 | 0.62 | 0.99 | 0.60 | 0.99 | |
Model 3 | −0.01 | −0.13, 0.12 | 0.06 | 0.63 | 0.9 | 0.56 | 0.97 | |
Model 4 | 0 | −0.13, 0.12 | 0.06 | 0.65 | 0.94 | 0.58 | 0.97 | |
Model 5 | −0.04 | −0.15, 0.08 | 0.06 | 0.65 | 0.50 | 0.52 | 0.79 | |
PALFAMS (Paired Associates Learning First) | Model 1 | −2.19 | −4.60, 0.23 | 1.19 | 0.3 | 0.07 | 0.06 | 0.50 |
Model 2 | −2.93 | −5.49, −0.37 | 1.26 | 0.34 | 0.03 | 0.03 | 0.36 | |
Model 3 | −2.95 | −5.55, −0.34 | 1.28 | 0.34 | 0.03 | 0.03 | 0.36 | |
Model 4 | −2.83 | −5.46, −0.21 | 1.29 | 0.36 | 0.04 | 0.04 | 0.41 | |
Model 5 | −3.22 | −5.84,−0.61 | 1.28 | 0.36 | 0.02 | 0.006 | 0.31 | |
PALMETS (Paired Associates Learning Mean Errors to Success) | Model 1 | 1.491 | 0.81, 2.17 | 0.34 | 0.65 | 0.001 | 0.001 | 0.15 |
Model 2 | 1.72 | 1.01, 2.43 | 0.35 | 0.68 | 0.001 | 0.001 | 0.41 | |
Model 3 | 1.76 | 1.06, 2.47 | 0.35 | 0.7 | 0.001 | 0.001 | 0.31 | |
Model 4 | 1.70 | 1.00, 2.39 | 0.34 | 0.72 | 0.001 | 0.001 | 0.31 | |
Model 5 | 1.42 | 0.63, 2.22 | 0.39 | 0.65 | 0.001 | 0.001 | 0.50 | |
PALTA (Paired Associates Learning Total Attempts) | Model 1 | 1.10 | 0.08, 2.13 | 0.50 | 0.41 | 0.04 | 0.03 | 0.73 |
Model 2 | 1.47 | 0.42, 2.52 | 0.52 | 0.47 | 0.01 | 0.01 | 0.73 | |
Model 3 | 1.44 | 0.39, 2.48 | 0.51 | 0.49 | 0.01 | 0.01 | 0.74 | |
Model 4 | 1.30 | 0.31, 2.29 | 0.49 | 0.57 | 0.01 | 0.02 | 0.54 | |
Model 5 | 1.40 | 0.38, 2.41 | 0.50 | 0.57 | 0.008 | 0.01 | 0.97 | |
PALTA 4 (Paired Associates Learning Total Attempts 4 patterns) | Model 1 | 0.46 | −0.04, 0.96 | 0.25 | 0.24 | 0.07 | 0.06 | 0.90 |
Model 2 | 0.25 | −0.35, 0.85 | 0.29 | 0.29 | 0.40 | 0.19 | 0.90 | |
Model 3 | 0.25 | −0.35, 0.85 | 0.30 | 0.30 | 0.40 | 0.19 | 0.91 | |
Model 4 | 0.24 | −0.37, 0.85 | 0.30 | 0.31 | 0.42 | 0.21 | 0.58 | |
Model 5 | 0.36 | −0.19, 0.91 | 0.27 | 0.30 | 0.20 | 0.09 | 0.36 | |
PALTEA (Paired Associates Learning Total errors (adjusted)) | Model 1 | −0.33 | −7.32, 6.66 | 3.45 | 0.14 | 0.92 | 0.89 | 0.31 |
Model 2 | 1.517 | −5.94, 8.97 | 3.67 | 0.19 | 0.68 | 0.88 | 0.31 | |
Model 3 | 1.53 | −6.044, 9.10 | 3.72 | 0.19 | 0.68 | 0.87 | 0.31 | |
Model 4 | 1.459 | −6.252, 9.17 | 3.79 | 0.19 | 0.70 | 0.86 | 0.31 | |
Model 5 | 4.42 | −3.28, 12.12 | 3.78 | 0.22 | 0.25 | 0.23 | 0.67 | |
PRMPCD (Pattern Recognition Memory Percent Correct Delayed) | Model 1 | −9.21 | −17.38, −1.05 | 4.02 | 0.37 | 0.03 | 0.05 | 0.54 |
Model 2 | −10.9 | −19.47, −2.32 | 4.22 | 0.4 | 0.01 | 0.04 | 0.54 | |
Model 3 | −10.72 | −19.36, −2.08 | 4.24 | 0.41 | 0.02 | 0.05 | 0.54 | |
Model 4 | −10.73 | −19.52, −1.93 | 4.31 | 0.41 | 0.02 | 0.05 | 0.50 | |
Model 5 | −11.27 | −20.23,−2.31 | 4.39 | 0.42 | 0.02 | 0.04 | 0.82 | |
PRMMDCLD (Pattern Recognition Memory Median correct latency)–Delayed | Model 1 | 188.12 | −194.09, 570.33 | 188.07 | 0.42 | 0.32 | 0.26 | 0.92 |
Model 2 | 263.75 | −144.49, 671.99 | 200.66 | 0.44 | 0.20 | 0.15 | 0.92 | |
Model 3 | 261.01 | −143.24, 665.25 | 198.46 | 0.47 | 0.20 | 0.17 | 0.94 | |
Model 4 | 257.24 | −156.45, 670.93 | 202.84 | 0.47 | 0.21 | 0.20 | 0.92 | |
Model 5 | 358.25 | −39.9, −756.41 | 195.22 | 0.49 | 0.08 | 0.09 | 0.62 | |
PRMMDCLI (Pattern Recognition Memory median correct latency)–Immediate | Model 1 | 40.2 | −102.57, 182.97 | 70.46 | 0.32 | 0.57 | 0.43 | 0.58 |
Model 2 | 20.18 | −131.65, 172.02 | 74.87 | 0.33 | 0.79 | 0.53 | 0.58 | |
Model 3 | 22.45 | −131.53, 176.43 | 75.85 | 0.33 | 0.77 | 0.51 | 0.58 | |
Model 4 | 15.91 | −139.09, 170.92 | 76.27 | 0.35 | 0.84 | 0.61 | 0.53 | |
Model 5 | 24.53 | −129.81, 178.87 | 75.95 | 0.35 | 0.75 | 0.64 | 0.51 | |
PRMPCI (Pattern Recognition Memory Percent Correct)–Immediate | Model 1 | −3.26 | −9.28, 2.75 | 2.97 | 0.29 | 0.28 | 0.31 | 0.50 |
Model 2 | −3.62 | −10.01, 2.76 | 3.15 | 0.29 | 0.26 | 0.32 | 0.50 | |
Model 3 | −3.68 | −10.17, 2.81 | 3.20 | 0.29 | 0.26 | 0.31 | 0.51 | |
Model 4 | −3.77 | −10.36, 2.81 | 3.24 | 0.29 | 0.25 | 0.29 | 0.56 | |
Model 5 | −4.45 | −10.98, 2.09 | 3.21 | 0.31 | 0.18 | 0.18 | 0.54 | |
RTIFMMT (Reaction Time Index–mean five choice movement time) | Model 1 | 29.6 | −10.70, 69.89 | 19.92 | 0.22 | 0.15 | 0.14 | 0.53 |
Model 2 | 33.62 | −8.32, 75.56 | 20.72 | 0.23 | 0.11 | 0.100 | 0.51 | |
Model 3 | 35.96 | −4.07, 75.98 | 19.75 | 0.32 | 0.08 | 0.07 | 0.54 | |
Model 4 | 31.13 | −8.99, 71.24 | 19.78 | 0.36 | 0.12 | 0.12 | 0.62 | |
Model 5 | 25.16 | −15.72, 66.04 | 20.16 | 0.34 | 0.22 | 0.21 | 0.97 | |
RTIFMDMT (RTI Median Five-Choice Movement Time) | Model 1 | 25.81 | −15.07, 66.69 | 20.21 | 0.20 | 0.21 | 0.20 | 0.97 |
Model 2 | 29.31 | −13.24, 71.87 | 21.02 | 0.21 | 0.17 | 0.16 | 0.93 | |
Model 3 | 31.55 | −9.22, 72.32 | 20.12 | 0.30 | 0.13 | 0.12 | 0.92 | |
Model 4 | 26.72 | −14.20, 67.64 | 20.18 | 0.33 | 0.19 | 0.19 | 0.93 | |
Model 5 | 21.88 | −19.71, 93.3 | 20.51 | 0.32 | 0.29 | 0.29 | 0.80 | |
RTIFMTSD (Reaction Time Index -five choice movement time (SD)) | Model 1 | −0.45 | −10.95, 10.06 | 5.19 | 0.3 | 0.93 | 0.93 | 0.83 |
Model 2 | 0.50 | −10.44, 11.43 | 5.40 | 0.31 | 0.93 | 0.93 | 0.80 | |
Model 3 | 1.29 | −9.04, 11.63 | 5.10 | 0.40 | 0.80 | 0.80 | 0.81 | |
Model 4 | 1.43 | −9.06, 11.92 | 5.17 | 0.40 | 0.78 | 0.78 | 0.92 | |
Model 5 | 1.27 | −9.55, 12.1 | 5.34 | 0.40 | 0.81 | 0.81 | 0.97 | |
RTISES (Reaction time Index–Simple error Score) | Model 1 | 0.29 | −0.64, 1.22 | 0.46 | 0.09 | 0.53 | 0.52 | 0.92 |
Model 2 | 0.26 | −0.71, 1.23 | 0.48 | 0.09 | 0.59 | 0.58 | 0.92 | |
Model 3 | 0.30 | −0.67, 1.27 | 0.48 | 0.12 | 0.54 | 0.53 | 0.97 | |
Model 4 | 0.29 | −0.70, 1.28 | 0.49 | 0.12 | 0.55 | 0.55 | 0.79 | |
Model 5 | −0.35 | −2.88, 2.18 | 1.25 | 0.14 | 0.78 | 0.78 | 0.53 | |
RTIMSMT (Reaction Time Index–Mean simple movement time) | Model 1 | −1.54 | −34.35, 31.28 | 16.22 | 0.30 | 0.92 | 0.92 | 0.53 |
Model 2 | 4.38 | −29.24, 38.01 | 16.61 | 0.33 | 0.79 | 0.79 | 0.51 | |
Model 3 | 5.39 | −27.92, 38.69 | 16.44 | 0.36 | 0.74 | 0.74 | 0.53 | |
Model 4 | 2.12 | −31.15, 35.39 | 16.4 | 0.40 | 0.90 | 0.90 | 0.85 | |
Model 5 | −10.97 | −44.42, 22.49 | 16.5 | 0.40 | 0.50 | 0.51 | 0.53 | |
RTIMSRT (Reaction Time Index–Mean simple reaction time) | Model 1 | −12.89 | −32.14, 6.36 | 9.52 | 0.19 | 0.18 | 0.18 | 0.51 |
Model 2 | −13.81 | −33.88, 6.26 | 9.91 | 0.19 | 0.17 | 0.16 | 0.51 | |
Model 3 | −14.44 | −34.56, 5.67 | 9.93 | 0.22 | 0.15 | 0.15 | 0.51 | |
Model 4 | −13.66 | −33.88, 6.55 | 9.97 | 0.24 | 0.18 | 0.17 | 0.50 | |
Model 5 | −19.53 | −39.99, 0.93 | 10.09 | 0.27 | 0.61 | 0.05 | 0.92 | |
RTISMDRT (RTI Simple Median Reaction Time) | Model 1 | −11.25 | −27.94, 5.44 | 8.25 | 0.22 | 0.18 | 0.17 | 0.98 |
Model 2 | −12.52 | −29.87, 4.83 | 8.57 | 0.23 | 0.15 | 0.14 | 0.97 | |
Model 3 | −13.23 | −30.47, 4.01 | 8.51 | 0.26 | 0.13 | 0.12 | 0.97 | |
Model 4 | −12.34 | −29.49, 4.82 | 8.46 | 0.29 | 0.15 | 0.14 | 0.74 | |
Model 5 | −15.31 | −32.87, 2.25 | 8.66 | 0.31 | 0.09 | 0.08 | 0.94 | |
RTISMDMT (RTI Simple Median Movement Time) | Model 1 | −4.54 | −35.65, 26.57 | 15.38 | 0.31 | 0.77 | 0.77 | 0.94 |
Model 2 | 0.62 | −31.41, 32.65 | 15.82 | 0.34 | 0.97 | 0.97 | 0.94 | |
Model 3 | 1.55 | −30.21, 33.32 | 15.68 | 0.37 | 0.92 | 0.92 | 0.94 | |
Model 4 | −1.15 | −33.04, 30.75 | 15.73 | 0.39 | 0.94 | 0.94 | 0.87 | |
Model 5 | −12.68 | −44.72, 19.37 | 15.8 | 0.40 | 0.43 | 0.42 | 0.75 | |
RVPA (Rapid Visual Processing A prime) | Model 1 | 0 | −0.03, 0.03 | 0.01 | 0.20 | 0.84 | 0.75 | 0.77 |
Model 2 | 0 | −0.03, 0.03 | 0.02 | 0.20 | 0.84 | 0.69 | 0.73 | |
Model 3 | 0 | −0.04, 0.03 | 0.02 | 0.20 | 0.85 | 0.7 | 0.73 | |
Model 4 | 0 | −0.04, 0.03 | 0.02 | 0.21 | 0.85 | 0.69 | 0.74 | |
Model 5 | 0.01 | −0.02, 0.04 | 0.02 | 0.22 | 0.63 | 0.89 | 0.92 | |
RVPMDL (Rapid Visual Processing–median response latency) | Model 1 | 12.81 | −22.02, 47.65 | 17.19 | 0.35 | 0.46 | 0.30 | 0.97 |
Model 2 | 12.92 | −24.16, 50.01 | 18.29 | 0.35 | 0.48 | 0.28 | 0.97 | |
Model 3 | 15.91 | −20.31, 52.13 | 17.84 | 0.41 | 0.38 | 0.20 | 0.98 | |
Model 4 | 15.58 | −0.59, −0.15 | 17.95 | 0.42 | 0.39 | 0.25 | 0.68 | |
Model 5 | 15.03 | −22.29, 52.36 | 18.36 | 0.42 | 0.42 | 0.33 | 0.75 | |
RVPPFA (RVP Probability of False Alarm) | Model 1 | 0.002 | −0.02, 0.02 | 0.01 | 0.90 | 0.79 | 0.78 | 0.80 |
Model 2 | 0.001 | −0.02, 0.02 | 0.01 | 0.90 | 0.95 | 0.92 | 0.80 | |
Model 3 | 0.001 | −0.02, 0.02 | 0.01 | 0.90 | 0.95 | 0.92 | 0.77 | |
Model 4 | 0 | −0.02, 0.02 | 0.01 | 0.91 | 0.97 | 0.90 | 0.80 | |
Model 5 | −0.001 | −0.03, 0.01 | 0.01 | 0.91 | 0.34 | 0.35 | 0.54 | |
SWMS (Spatial Working memory–Strategy 6–8 boxes) | Model 1 | −0.64 | −2.33, 1.06 | 0.84 | 0.12 | 0.45 | 0.43 | 0.58 |
Model 2 | −0.54 | −2.31, 1.24 | 0.88 | 0.13 | 0.54 | 0.51 | 0.53 | |
Model 3 | −0.56 | −2.36, 1.24 | 0.89 | 0.13 | 0.53 | 0.50 | 0.51 | |
Model 4 | −0.61 | −2.34, 1.11 | 0.85 | 0.22 | 0.48 | 0.39 | 0.62 | |
Model 5 | 0.57 | −1.19, 2.33 | 0.87 | 0.22 | 0.52 | 0.55 | 0.67 | |
SWMBE (Spatial Working Memory–between errors) | Model 1 | −3.2 | −8.28, 1.88 | 2.51 | 0.25 | 0.21 | 0.20 | 0.75 |
Model 2 | −3.2 | −8.56, 2.17 | 2.65 | 0.25 | 0.24 | 0.22 | 0.73 | |
Model 3 | −3.56 | −8.62, 1.50 | 2.50 | 0.35 | 0.16 | 0.14 | 0.74 | |
Model 4 | −3.68 | −8.67, 1.32 | 2.46 | 0.39 | 0.14 | 0.11 | 0.84 | |
Model 5 | −2.73 | −7.9, 2.44 | 2.55 | 0.37 | 0.29 | 0.26 | 0.50 | |
SWMBE4 (SWM Between Errors 4 Boxes) | Model 1 | −0.34 | −1.01, 0.34 | 0.33 | 0.33 | 0.32 | 0.37 | 0.51 |
Model 2 | −0.27 | −0.96, −0.34 | 0.35 | 0.34 | 0.45 | 0.51 | 0.50 | |
Model 3 | −0.30 | −0.99, 0.40 | 0.34 | 0.37 | 0.40 | 0.45 | 0.50 | |
Model 4 | −0.29 | −1.00, 0.42 | 0.35 | 0.38 | 0.41 | 0.47 | 0.79 | |
Model 5 | −0.19 | −0.91, 0.53 | 0.36 | 0.37 | 0.60 | 0.63 | 0.82 | |
SWMBE6 (Spatial Working Memory–between errors 6 boxes) | Model 1 | −1.68 | −3.40, 0.05 | 0.85 | 0.47 | 0.06 | 0.04 | 0.75 |
Model 2 | −1.38 | −3.17, 0.40 | 0.88 | 0.49 | 0.12 | 0.08 | 0.70 | |
Model 3 | −1.46 | −3.21, 0.28 | 0.86 | 0.53 | 0.10 | 0.06 | 0.68 | |
Model 4 | −1.49 | −3.24, 0.26 | 0.86 | 0.54 | 0.09 | 0.06 | 0.70 | |
Model 5 | −0.60 | −2.46, 1.25 | 0.91 | 0.50 | 0.51 | 0.46 | 0.75 | |
SWMBE8 (Spatial Working Memory–between errors 8 boxes) | Model 1 | −1.1 | −5.03, 2.83 | 1.94 | 0.27 | 0.57 | 0.56 | 0.51 |
Model 2 | −1.57 | −5.69, 2.55 | 2.03 | 0.28 | 0.45 | 0.45 | 0.50 | |
Model 3 | −1.81 | −5.77, 2.15 | 1.95 | 0.36 | 0.36 | 0.35 | 0.50 | |
Model 4 | −1.90 | −5.81, 2.01 | 1.92 | 0.39 | 0.33 | 0.29 | 0.31 | |
Model 5 | −1.83 | −5.82, 2.17 | 1.97 | 0.39 | 0.36 | 0.33 | 0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hariharan, R.; Mousa, A.; Menon, K.; Feehan, J.; Ukropcová, B.; Ukropec, J.; Schön, M.; Majid, A.; Aldini, G.; de Courten, M.; et al. Effects of Carnosine Supplementation on Cognitive Outcomes in Prediabetes and Well-Controlled Type 2 Diabetes: A Randomised Placebo-Controlled Clinical Trial. Pharmaceuticals 2025, 18, 630. https://doi.org/10.3390/ph18050630
Hariharan R, Mousa A, Menon K, Feehan J, Ukropcová B, Ukropec J, Schön M, Majid A, Aldini G, de Courten M, et al. Effects of Carnosine Supplementation on Cognitive Outcomes in Prediabetes and Well-Controlled Type 2 Diabetes: A Randomised Placebo-Controlled Clinical Trial. Pharmaceuticals. 2025; 18(5):630. https://doi.org/10.3390/ph18050630
Chicago/Turabian StyleHariharan, Rohit, Aya Mousa, Kirthi Menon, Jack Feehan, Barbara Ukropcová, Jozef Ukropec, Martin Schön, Arshad Majid, Giancarlo Aldini, Maximilian de Courten, and et al. 2025. "Effects of Carnosine Supplementation on Cognitive Outcomes in Prediabetes and Well-Controlled Type 2 Diabetes: A Randomised Placebo-Controlled Clinical Trial" Pharmaceuticals 18, no. 5: 630. https://doi.org/10.3390/ph18050630
APA StyleHariharan, R., Mousa, A., Menon, K., Feehan, J., Ukropcová, B., Ukropec, J., Schön, M., Majid, A., Aldini, G., de Courten, M., Cameron, J., Bell, S. M., & de Courten, B. (2025). Effects of Carnosine Supplementation on Cognitive Outcomes in Prediabetes and Well-Controlled Type 2 Diabetes: A Randomised Placebo-Controlled Clinical Trial. Pharmaceuticals, 18(5), 630. https://doi.org/10.3390/ph18050630