IDHP Mitigates LPS-Induced Cardiomyocyte Injury via the GAS6/Axl-AMPK Axis: A Multi-Target Strategy Counteracting Inflammation, Oxidative Stress, and Apoptosis
Abstract
1. Introduction
2. Results
2.1. Toxicity Assessment of IDHP
2.2. IDHP Reverses LPS-Induced Upregulation of Pro-Inflammatory Cytokines and Chemokines
2.3. IDHP Exerts Cardioprotective Effects by Alleviating Oxidative Stress and Inhibiting Apoptosis in Cardiomyocytes
2.4. IDHP Ameliorates LPS-Induced Cardiomyocyte Injury via Activation of the GAS6/Axl-AMPK Signaling Axis
2.5. GAS6 KO Reverses the Protective Effect of IDHP Against LPS-Induced Cardiomyocyte Injury
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Treatment
4.2. Experimental Design
4.3. The GAS6-KO Mouse Cardiomyocyte Line
4.4. Cell Viability and ROS Detection
4.5. Immunofluorescence Staining
4.6. Western Blot
4.7. RNA Extraction, RT, and qPCR
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef]
- Weng, L.; Xu, Y.; Yin, P.; Wang, Y.; Chen, Y.; Liu, W.; Li, S.; Peng, J.M.; Dong, R.; Hu, X.Y.; et al. National incidence and mortality of hospitalized sepsis in China. Crit. Care 2023, 27, 84. [Google Scholar] [CrossRef]
- Yang, W.; Cao, Y.; Li, J.; Zhang, X.; Liu, X.; Tian, Y.; Shan, L.; Yang, Y. Pathogenesis and treatment strategies of sepsis-induced myocardial injury: Modern and traditional medical perspectives. Int. J. Biol. Sci. 2025, 21, 3478–3504. [Google Scholar] [CrossRef]
- Liu, A.B.; Li, S.J.; Yu, Y.Y.; Zhang, J.F.; Ma, L. Current insight on the mechanisms of programmed cell death in sepsis-induced myocardial dysfunction. Front. Cell Dev. Biol. 2023, 11, 1309719. [Google Scholar] [CrossRef]
- Bi, C.F.; Liu, J.; Yang, L.S.; Zhang, J.F. Research Progress on the Mechanism of Sepsis Induced Myocardial Injury. J. Inflamm. Res. 2022, 15, 4275–4290. [Google Scholar] [CrossRef]
- Ning, L.; Rong, J.; Zhang, Z.; Xu, Y. Therapeutic approaches targeting renin-angiotensin system in sepsis and its complications. Pharmacol. Res. 2021, 167, 105409. [Google Scholar] [CrossRef]
- Wei, B.; Sun, C.; Wan, H.; Shou, Q.; Han, B.; Sheng, M.; Li, L.; Kai, G. Bioactive components and molecular mechanisms of Salvia miltiorrhiza Bunge in promoting blood circulation to remove blood stasis. J. Ethnopharmacol. 2023, 317, 116697. [Google Scholar] [CrossRef]
- Fang, J.; Little, P.J.; Xu, S. Atheroprotective Effects and Molecular Targets of Tanshinones Derived from Herbal Medicine Danshen. Med. Res. Rev. 2018, 38, 201–228. [Google Scholar] [CrossRef]
- Su, C.Y.; Ming, Q.L.; Rahman, K.; Han, T.; Qin, L.P. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology. Chin. J. Nat. Med. 2015, 13, 163–182. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Jing, H.; Wang, S.; Kang, L.; Gao, X.; Hu, L.; Zheng, X. Anti-inflammatory effects of isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate, a novel metabolite from Danshen, on activated microglia. Chin. J. Physiol. 2012, 55, 428–434. [Google Scholar] [CrossRef]
- Bai, Y.; Jia, P.; Zhao, Y.; Yang, L.; Wang, X.; Wang, X.; Wang, J.; Zhong, N.; Deng, H.; Du, L.; et al. Discovery and therapeutic implications of bioactive dihydroxylated phenolic acids in patients with severe heart disease and conditions associated with inflammation and hypoxia. Pharmacol. Res. 2022, 185, 106458. [Google Scholar] [CrossRef]
- Yin, Q.; Lu, H.; Bai, Y.; Tian, A.; Yang, Q.; Wu, J.; Yang, C.; Fan, T.P.; Zhang, Y.; Zheng, X.; et al. A metabolite of Danshen formulae attenuates cardiac fibrosis induced by isoprenaline, via a NOX2/ROS/p38 pathway. Br. J. Pharmacol. 2015, 172, 5573–5585. [Google Scholar] [CrossRef]
- He, X.; Zheng, X.; Xie, W. Isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate alleviates palmitic acid-induced vascular aging in HUVEC cells through ROS/ferroptosis pathway. Int. J. Mol. Sci. 2024, 25, 9278. [Google Scholar] [CrossRef] [PubMed]
- Lei, W.; Xu, X.; Li, N.; Zhang, Y.; Tang, R.; Li, X.; Tang, J.; Wu, X.; Lu, C.; Bai, Y.; et al. Isopropyl 3-(3,4-dihydroxyphenyl) 2-hydroxypropanoate protects septic myocardial injury via regulating GAS6/Axl-AMPK signaling pathway. Biochem. Pharmacol. 2024, 221, 116035. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wei, Y.; Wei, X. AXL receptor tyrosine kinase as a promising anti-cancer approach: Functions, molecular mechanisms and clinical applications. Mol. Cancer 2019, 18, 153. [Google Scholar] [CrossRef]
- Melaragno, M.G.; Fridell, Y.W.; Berk, B.C. The Gas6/Axl system: A novel regulator of vascular cell function. Trends Cardiovasc. Med. 1999, 9, 250–253. [Google Scholar] [CrossRef]
- Di Stasi, R.; De Rosa, L.; D’Andrea, L.D. Therapeutic aspects of the Axl/Gas6 molecular system. Drug Discov. Today 2020, 25, 2130–2148. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, S.N.; Yuan, S.T.; Lei, X.; Sun, X.; Xing, L.; Li, H.J.; He, C.X.; Qin, W.; Zhao, D.; et al. Multiple functions of autophagy in vascular calcification. Cell Biosci. 2021, 11, 159. [Google Scholar] [CrossRef]
- Liang, Z.; Yang, Y.; Wu, X.; Lu, C.; Zhao, H.; Chen, K.; Zhao, A.; Li, X.; Xu, J. GAS6/Axl is associated with AMPK activation and attenuates H2O2-induced oxidative stress. Apoptosis 2023, 28, 485–497. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, H.; Xie, Q.; Shen, J. GAS6/AXL signaling promotes M2 microglia efferocytosis to alleviate neuroinflammation in sepsis-associated encephalopathy. Cell Death Discov. 2025, 11, 268. [Google Scholar] [CrossRef]
- Liu, H.; Lei, W.; Ren, Y.; Tian, J.; Wang, D.; Tang, Y.; Zhou, S.; Huang, C.; Huang, G.; Yang, Y.; et al. Protective effects of Ginkgolide B on myocardial ischemia reperfusion injury: Role of the GAS6/Axl signaling pathway. Chem. Biol. Interact. 2025, 418, 111607. [Google Scholar] [CrossRef]
- Niu, X.; Cheng, Y.; Zhang, M.; Du, L.; Wu, X.; Lu, C.; Li, X.; Liu, S.; Zhao, A.; Zhang, S.; et al. Neuroprotective Effects of Omentin-1 Against Cerebral Hypoxia/Reoxygenation Injury via Activating GAS6/Axl Signaling Pathway in Neuroblastoma Cells. Front. Cell Dev. Biol. 2021, 9, 784035. [Google Scholar] [CrossRef] [PubMed]
- Son, B.K.; Kozaki, K.; Iijima, K.; Eto, M.; Kojima, T.; Ota, H.; Senda, Y.; Maemura, K.; Nakano, T.; Akishita, M.; et al. Statins protect human aortic smooth muscle cells from inorganic phosphate-induced calcification by restoring Gas6-Axl survival pathway. Circ. Res. 2006, 98, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Song, Y.; Wu, X.; Lei, W.; Chen, J.; Zhang, X.; Liu, Q.; Deng, C.; Liang, Z.; Chen, Y.; et al. Pleiotropic role of GAS6 in cardioprotection against ischemia-reperfusion injury. J. Adv. Res. 2025, 70, 481–497. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, Z.; Li, J.; Mu, J.; Sun, M.; Wu, X.; Niu, X.; Yang, Y.; Yan, H.; Xu, X.; et al. Silibinin exerts neuroprotective effects against cerebral hypoxia/reoxygenation injury by activating the GAS6/Axl pathway. Toxicology 2023, 495, 153598. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, Y.; Qian, L.; Du, L.; Wu, X.; Tian, Y.; Deng, C.; Liu, S.; Yang, W.; Lu, C.; et al. Lycorine protects against septic myocardial injury by activating AMPK-related pathways. Free Radic. Biol. Med. 2023, 197, 1–14. [Google Scholar] [CrossRef]
- Ren, J.; Xu, X.; Wang, Q.; Ren, S.Y.; Dong, M.; Zhang, Y. Permissive role of AMPK and autophagy in adiponectin deficiency-accentuated myocardial injury and inflammation in endotoxemia. J. Mol. Cell Cardiol. 2016, 93, 18–31. [Google Scholar] [CrossRef]
- Gotts, J.E.; Matthay, M.A. Sepsis: Pathophysiology and clinical management. BMJ 2016, 353, i1585. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Wu, S.H.; Shi, W.Q.; Li, Y.H.; Liu, R.H.; Hu, D.Y.; Zheng, L.Q.; Ma, W.L. Effect of Guanxin Danshen Dripping Pills on Coronary Heart Disease Comorbid with Depression or Anxiety: The ADECODE-Real World Study. Chin. J. Integr. Med. 2024, 30, 443–448. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Yang, H.; You, Y.; Xu, H.; Gong, L.; Yin, X.; Wang, W.; Gao, S.; Cheng, L.; et al. Prevention of atherosclerosis by Yindan Xinnaotong capsule combined with swimming in rats. BMC Complement. Altern. Med. 2015, 15, 109. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; Yang, Q.; Xia, Q.; Zhao, Y.; Zheng, X.; Zhang, Y.; Liu, K. Isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate plays an anti-hypoxic role through regulating neuroactive ligand-receptor interaction signaling pathway in larval zebrafish. Biomed. Pharmacother. 2023, 161, 114570. [Google Scholar] [CrossRef]
- Wang, S.P.; Zang, W.J.; Kong, S.S.; Yu, X.J.; Sun, L.; Zhao, X.F.; Wang, S.X.; Zheng, X.H. Vasorelaxant effect of isopropyl 3-(3,4-dihydroxyphenyl)-2-hydroxypropanoate, a novel metabolite from Salvia miltiorrhiza, on isolated rat mesenteric artery. Eur. J. Pharmacol. 2008, 579, 283–288. [Google Scholar] [CrossRef]
- Goode, H.F.; Cowley, H.C.; Walker, B.E.; Howdle, P.D.; Webster, N.R. Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction. Crit. Care Med. 1995, 23, 646–651. [Google Scholar] [CrossRef]
- Cowley, H.C.; Bacon, P.J.; Goode, H.F.; Webster, N.R.; Jones, J.G.; Menon, D.K. Plasma antioxidant potential in severe sepsis: A comparison of survivors and nonsurvivors. Crit. Care Med. 1996, 24, 1179–1183. [Google Scholar] [CrossRef] [PubMed]
- Andrades, M.; Ritter, C.; de Oliveira, M.R.; Streck, E.L.; Fonseca Moreira, J.C.; Dal-Pizzol, F. Antioxidant treatment reverses organ failure in rat model of sepsis: Role of antioxidant enzymes imbalance, neutrophil infiltration, and oxidative stress. J. Surg. Res. 2011, 167, e307–e313. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Duan, W.; Li, Y.; Jin, Z.; Yan, J.; Yu, S.; Yi, D. Novel role of silent information regulator 1 in myocardial ischemia. Circulation 2013, 128, 2232–2240. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Ma, Z.; Cheng, Y.; Hu, W.; Deng, C.; Jiang, S.; Li, T.; Chen, F.; Yang, Y. Targeting Gas6/TAM in cancer cells and tumor microenvironment. Mol. Cancer 2018, 17, 20. [Google Scholar] [CrossRef]
- Prouse, T.; Majumder, S.; Majumder, R. Functions of TAM Receptors and Ligands Protein S and Gas6 in Atherosclerosis and Cardiovascular Disease. Int. J. Mol. Sci. 2024, 25, 12736. [Google Scholar] [CrossRef]
- Antipatis, C.; Ashworth, C.J.; Grant, G.; Lea, R.G.; Hay, S.M.; Rees, W.D. Effects of maternal vitamin A status on fetal heart and lung: Changes in expression of key developmental genes. Am. J. Physiol. 1998, 275, L1184–L1191. [Google Scholar] [CrossRef]
- Gibot, S.; Massin, F.; Cravoisy, A.; Dupays, R.; Barraud, D.; Nace, L.; Bollaert, P.E. Growth arrest-specific protein 6 plasma concentrations during septic shock. Crit. Care 2007, 11, R8. [Google Scholar] [CrossRef]
- Herzig, S.; Shaw, R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018, 19, 121–135. [Google Scholar] [CrossRef]
- Chen, R.; Cao, C.; Liu, H.; Jiang, W.; Pan, R.; He, H.; Ding, K.; Meng, Q. Macrophage Sprouty4 deficiency diminishes sepsis-induced acute lung injury in mice. Redox Biol. 2022, 58, 102513. [Google Scholar] [CrossRef]
- Li, X.; Jamal, M.; Guo, P.; Jin, Z.; Zheng, F.; Song, X.; Zhan, J.; Wu, H. Irisin alleviates pulmonary epithelial barrier dysfunction in sepsis-induced acute lung injury via activation of AMPK/SIRT1 pathways. Biomed. Pharmacother. 2019, 118, 109363. [Google Scholar] [CrossRef]
- Son, B.K.; Akishita, M.; Iijima, K.; Kozaki, K.; Maemura, K.; Eto, M.; Ouchi, Y. Adiponectin antagonizes stimulatory effect of tumor necrosis factor-alpha on vascular smooth muscle cell calcification: Regulation of growth arrest-specific gene 6-mediated survival pathway by adenosine 5′-monophosphate-activated protein kinase. Endocrinology 2008, 149, 1646–1653. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, Q.; Jia, P.; Yang, L.; Sun, Y.; Nan, Y.; Wang, S.; Meng, X.; Wu, Y.; Qin, F.; et al. Improved process for pilot-scale synthesis of Danshensu ((±)-DSS) and its enantiomer derivatives. Org. Process Res. Dev. 2014, 18, 1667–1673. [Google Scholar] [CrossRef]
Experimental Antibodies | Manufacturers | Product Numbers |
---|---|---|
GAS6 | Servicebio, Wuhan, China | GB11636 |
Axl | Bioss, Woburn, MA, USA | bs-5180R |
Bax | Bioss, Woburn, MA, USA | bs-0127R |
Nrf2 | Boster Biological Technology, Pleasanton, CA, USA | A00078-1 |
AMPK | Abcam, Cambridge, UK | ab110036 |
p-AMPK | Bimake, Houston, TX, USA | A5740 |
Primer Names | Primer Sequence |
---|---|
mouse-TNF-α | F: 5′-GGTGCCTATGTCTCAGCCTCTT-3′ R: 5′-GCCATAGAACTGATGAGAGGGAG-3′ |
mouse-IL-6 | F: 5′-TACCACTTCACAAGTCGGAGGC-3′ R: 5′-CTGCAAGTGCATCATCGTTGTT-3′ |
mouse-IL-1β | F: 5′-TGGACCTTCCAGGATGAGGACA-3′ R: 5′-GTTCATCTCGGAGCCTGTAGTG-3′ |
mouse-IL-18 | F: 5′-TCAAAGTGCCAGTGAACCC-3′ R: 5′-TGTCTGATTCCAGGTCTCCA-3′ |
mouse-CCL25 | F: 5′-TGGAGGATGGGAGGAGTC-3′ R: 5′-TGGTGGGTCTGGTCTTGT-3′ |
mouse-CCR9 | F: 5′-TCTGCATTACCATCTGGGTGA-3′ R: 5′-ATTCCCCACTGACTTGACTGT-3′ |
mouse-CCL2 | F: 5′-CCTGCTGCTACTCATTCACCA-3′ R: 5′-ATTCCTTCTTGGGGTCAGCA-3′ |
mouse-CCR2 | F: 5′-AAACGTCTCTGCAAACAGTGC-3′ R: 5′-CAACCGAGACCTCTTGCTCC-3′ |
mouse-β-actin | F: 5′-GGCTGTATTCCCCTCCAATCG-3′ R: 5′-CCAGTTGGTAACAATGCCATGT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, Y.; Li, X.; Guo, X.; Tian, J.; Zheng, X.; Yang, Y.; Cao, Y. IDHP Mitigates LPS-Induced Cardiomyocyte Injury via the GAS6/Axl-AMPK Axis: A Multi-Target Strategy Counteracting Inflammation, Oxidative Stress, and Apoptosis. Pharmaceuticals 2025, 18, 1188. https://doi.org/10.3390/ph18081188
Chen J, Wang Y, Li X, Guo X, Tian J, Zheng X, Yang Y, Cao Y. IDHP Mitigates LPS-Induced Cardiomyocyte Injury via the GAS6/Axl-AMPK Axis: A Multi-Target Strategy Counteracting Inflammation, Oxidative Stress, and Apoptosis. Pharmaceuticals. 2025; 18(8):1188. https://doi.org/10.3390/ph18081188
Chicago/Turabian StyleChen, Junmin, Yijie Wang, Xingge Li, Xiaoqing Guo, Jiayin Tian, Xiaohui Zheng, Yang Yang, and Yanting Cao. 2025. "IDHP Mitigates LPS-Induced Cardiomyocyte Injury via the GAS6/Axl-AMPK Axis: A Multi-Target Strategy Counteracting Inflammation, Oxidative Stress, and Apoptosis" Pharmaceuticals 18, no. 8: 1188. https://doi.org/10.3390/ph18081188
APA StyleChen, J., Wang, Y., Li, X., Guo, X., Tian, J., Zheng, X., Yang, Y., & Cao, Y. (2025). IDHP Mitigates LPS-Induced Cardiomyocyte Injury via the GAS6/Axl-AMPK Axis: A Multi-Target Strategy Counteracting Inflammation, Oxidative Stress, and Apoptosis. Pharmaceuticals, 18(8), 1188. https://doi.org/10.3390/ph18081188