Hyperbranched Polyethyleneimine–Coordinated Copper(II) Metallopolymers with Preferential Targeting to Prostate Cancer Cells
Abstract
1. Introduction
2. Results
2.1. PEI–Cu(II) Complexes Formation
2.2. In Vitro Cell Studies of PEI:Cu Metallopolymers Against Cancerous and Non-Cancerous Mammalian Cell Lines
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. PEI–Copper(II) Ions (PEI:Cu) Complex Formation and Characterization
4.3. Cell Culture
4.4. Cell Viability Assay
4.5. Cytofluorometric Measurements of Mitochondrial Reactive Oxygen Species (ROS) Formation and of Mitochondrial Membrane Potential
4.6. Apoptosis/Necrosis Assay
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
7-AAD | 7-aminoactinomycin |
ATR | Attenuated total reflection |
DMSO | Dimethyl sulfoxide |
DLS | Dynamic light scattering |
FITC | Fluorescein isothiocyanate |
FTIR | Fourier transform infrared spectroscopy |
MTT | Thiazolyl blue tetrazolium bromide |
NMR | Nuclear magnetic resonance |
ROS | Reactive oxygen species |
PEI | Hyperbranched polyethyleneimine |
TMRM | Tetramethyl rhodamine methyl ester |
UV-vis | Ultraviolet–visible spectroscopy |
References
- Daniel, K.G.; Harbach, R.H.; Guida, W.C.; Dou, Q.P. Copper Storage Diseases: Menkes, Wilsons, and Cancer. Front. Biosci. 2004, 9, 2652–2662. [Google Scholar] [CrossRef]
- Festa, R.A.; Thiele, D.J. Copper: An Essential Metal in Biology. Curr. Biol. 2011, 21, R877–R883. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, C.; Arnesen, E.K. Copper—A Scoping Review for Nordic Nutrition Recommendations. Food Nutr. Res. 2023, 67, 10–29219. [Google Scholar] [CrossRef] [PubMed]
- Howlett, N.G.; Avery, S.V. Induction of Lipid Peroxidation During Heavy Metal Stress in Saccharomyces Cerevisiae and Influence of Plasma Membrane Fatty Acid Unsaturation. Appl. Environ. Microbiol. 1997, 63, 2971–2976. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of Antibacterial Activity of copper Nanoparticles. Nanotechnology 2014, 25, 135101. [Google Scholar] [CrossRef]
- Yang, Y.W.; Dai, C.M.; Chen, X.H.; Feng, J.F. The Relationship Between Serum Trace Elements and Oxidative Stress of Patients with Different Types of Cancer. Oxid. Med. Cell. Longev. 2021, 2021, 4846951. [Google Scholar] [CrossRef]
- Mao, S.; Huang, S. Zinc and Copper Levels in Bladder Cancer: A Systematic Review and Meta-analysis. Biol. Trace Elem. Res. 2013, 153, 5–10. [Google Scholar] [CrossRef]
- Saleh, S.A.; Adly, H.M.; Abdelkhaliq, A.A.; Nassir, A.M. Serum Levels of Selenium, Zinc, Copper, Manganese, and Iron in Prostate Cancer Patients. Curr. Urol. 2020, 14, 44–49. [Google Scholar] [CrossRef]
- Gough, M.; Blanthorn-Hazell, S.; Delury, C.; Parkin, E. The E1 Copper Binding Domain of Full-Length Amyloid Precursor Protein Mitigates Copper-Induced Growth Inhibition in Brain Metastatic Prostate Cancer DU145 cells. Biochem. Biophys. Res. Commun. 2014, 453, 741–747. [Google Scholar] [CrossRef]
- Safi, R.; Nelson, E.R.; Chitneni, S.K.; Franz, K.J.; George, D.J.; Zalutsky, M.R.; McDonnell, D.P. Copper Signaling Axis as a Target for Prostate Cancer Therapeutics. Cancer Res. 2014, 74, 5819–5831. [Google Scholar] [CrossRef]
- Habib, F.K.; Dembinski, T.C.; Stitch, S.R. The Zinc and Copper content of Blood Leucocytes and Plasma from Patients with Benign and Malignant Prostates. Clin. Chim. Acta. 1980, 104, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.B.; Bhat, V.R.; Upadhyay, D.; Udupa, S.L. Copper and Ceruloplasmin Status in Serum of Prostate and Colon Cancer Patients. Indian J. Physiol. Pharmacol. 2003, 47, 108–110. [Google Scholar] [PubMed]
- Gupte, A.; Mumper, R.J. Elevated Copper and Oxidative Stress in Cancer Cells as a Target for Cancer Treatment. Cancer Treat. Rev. 2009, 35, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Cater, M.A.; Pearson, H.B.; Wolyniec, K.; Klaver, P.; Bilandzic, M.; Paterson, B.M.; Bush, A.I.; Humbert, P.O.; La Fontaine, S.; Donnelly, P.S.; et al. Increasing Intracellular Bioavailable Copper Selectively Targets Prostate Cancer Cells. ACS Chem. Biol. 2013, 8, 1621–1631. [Google Scholar] [CrossRef]
- Daniel, K.G.; Gupta, P.; Harbach, R.H.; Guida, W.C.; Dou, Q.P. Organic Copper Complexes as a New Class of Proteasome Inhibitors and Apoptosis Inducers in Human Cancer Cells. Biochem. Pharmacol. 2004, 67, 1139–1151. [Google Scholar] [CrossRef]
- Britton, W.J.; Kachhap, S.K.; Shim, J.S.; Liu, J.O.; Nelson, W.; Yegnasubramanian, S.; Carducci, M.A. Disulfiram is a DNA Demethylating Agent and Inhibits Prostate Cancer Cell Growth. Prostate 2011, 71, 333–343. [Google Scholar] [CrossRef]
- Schimmer, A.D.; Jitkova, Y.; Gronda, M.; Wang, Z.; Brandwein, J.; Chen, C.; Gupta, V.; Schuh, A.; Yee, K.; Chen, J.; et al. A Phase I Study of the Metal Ionophore Clioquinol in Patients with Advanced Hematologic Malignancies. Clin. Lymphoma Myeloma Leuk. 2012, 12, 330–336. [Google Scholar] [CrossRef]
- Mao, X.; Li, X.; Sprangers, R.; Wang, X.; Venugopal, A.; Wood, T.; Zhang, Y.; Kuntz, D.A.; Coe, E.; Trudel, S.; et al. Clioquinol Inhibits the Proteasome and Displays Preclinical Activity in Leukemia and Myeloma. Leukemia 2009, 23, 585–590. [Google Scholar] [CrossRef]
- Ding, W.Q.; Liu, B.; Vaught, J.L.; Yamauchi, H.; Lind, S.E. Anticancer Activity of the Antibiotic Clioquinol. Cancer Res. 2005, 65, 3389–3395. [Google Scholar] [CrossRef]
- Chen, D.; Cui, Q.C.; Yang, H.; Dou, Q.P. Disulfiram, a Clinically used Anti-alcoholism Drug and Copper-binding Agent, Induces Apoptotic Cell Death in Breast Cancer Cultures and Xenografts via Inhibition of the Proteasome Activity. Cancer Res. 2006, 66, 10425–10433. [Google Scholar] [CrossRef]
- Navratilova, J.; Jungova, P.; Vanhara, P.; Preisler, J.; Kanicky, V.; Smarda, J. Copper Ions Regulate Cytotoxicity of Disulfiram to Myeloid Leukemia Cells. Int. J. Mol. Med. 2009, 24, 661–670. [Google Scholar] [CrossRef]
- Schweizer, M.T.; Lin, J.; Blackford, A.; Bardia, A.; King, S.; Armstrong, A.J.; Rudek, M.A.; Yegnasubramanian, S.; Carducci, M.A. Pharmacodynamic Study of Disulfiram in Men with Non-Metastatic Recurrent Prostate Cancer. Prostate Cancer Prostatic Dis. 2013, 16, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, T.; Yuan, Y.; Li, N.; Wang, X.; Guan, J. Copper and Copper Complexes in Tumor Therapy. ChemMedChem 2024, 19, e202400060. [Google Scholar] [CrossRef] [PubMed]
- Noh, D.; Lee, H.; Lee, S.; Sun, I.C.; Yoon, H.Y. Copper-based Nanomedicines for Cu-Proptosis-Mediated Effective Cancer Treatment. Biomater. Res. 2024, 28, 0094. [Google Scholar] [CrossRef] [PubMed]
- He, J.W.; Li, P.Z.; Huang, Z.X. Copper death combination therapy: The innovative frontier and challenges in prostate cancer treatment. Cancer Biol. Ther. 2025, 26, 2532224. [Google Scholar] [CrossRef]
- Guerreiro, J.F.; Alves, V.; Abrunhosa, A.J.; Paulo, A.; Gil, O.M.; Mendes, F. Radiobiological Characterization of 64CuCl2 as a Simple Tool for Prostate Cancer Theranostics. Molecules 2018, 23, 2944. [Google Scholar] [CrossRef]
- Pinto, C.I.; Bucar, S.; Alves, V.; Fonseca, A.; Abrunhosa, A.J.; Da Silva, C.L.; Guerreiro, J.F.; Mendes, F. Copper-64 Chloride Exhibits Therapeutic Potential in Three-Dimensional Cellular Models of Prostate Cancer. Front. Mol. Biosci. 2020, 7, 609172. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, J.; Ren, L.; Tang, C. Metal-Containing and Related Polymers for Biomedical Applications. Chem. Soc. Rev. 2016, 45, 5232–5263. [Google Scholar] [CrossRef]
- Wang, Y.; Astruc, D.; Abd-El-Aziz, A.S. Metallopolymers for Advanced Sustainable Applications. Chem. Soc. Rev. 2019, 48, 558–636. [Google Scholar] [CrossRef]
- Dzhardimalieva, G.I.; Rabinskiy, L.N.; Kydralieva, K.A.; Uflyand, I.E. Recent Advances in Metallopolymer-Based Drug Delivery Systems. RSC Adv. 2019, 9, 37009–37051. [Google Scholar] [CrossRef]
- Dzhardimalieva, G.I.; Uflyand, I.E. Synthetic Methodologies and Spatial Organization of Metal Chelate Dendrimers and Star and Hyperbranched Polymers. Dalton Trans. 2017, 46, 10139–10176. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched Polymers: Advances from Synthesis to Applications. Chem. Soc. Rev. 2015, 44, 4091–4130. [Google Scholar] [CrossRef]
- Gao, C.; Yan, D. Hyperbranched Polymers: From Synthesis to Applications. Prog. Polym. Sci. 2004, 29, 183–275. [Google Scholar] [CrossRef]
- Paleos, C.M.; Tsiourvas, D.; Sideratou, Z.; Tziveleka, L.A. Multifunctional Dendritic Drug Delivery Systems: Design, Synthesis, Controlled and Triggered Release. Curr. Top. Med. Chem. 2008, 8, 1204–1224. [Google Scholar] [CrossRef] [PubMed]
- Krämer, M.; Stumbé, J.F.; Grimm, G.; Kaufmann, B.; Krüger, U.; Weber, M.; Haag, R. Dendritic Polyamines: Simple Access to New Materials with Defined Treelike Structures for Application in Nonviral Gene Delivery. ChemBioChem 2004, 5, 1081–1087. [Google Scholar] [CrossRef]
- Demeneix, B.; Behr, J. Polyethylenimine (PEI). Adv. Genet. 2005, 53, 215–230. [Google Scholar] [CrossRef]
- Gibney, K.A.; Sovadinova, I.; Lopez, A.I.; Urban, M.; Ridgway, Z.; Caputo, G.A.; Kuroda, K. Poly(ethylene imine)s as Anti-microbial Agents with Selective Activity. Macromol. Biosci. 2012, 12, 1279–1289. [Google Scholar] [CrossRef]
- Helander, I.M.; Alakomi, H.-L.; Latva-Kala, K.; Koski, P. Polyethyleneimine is an Effective Permeabilizer of Gram-Negative Bacteria. Microbiology 1997, 143, 3193–3199. [Google Scholar] [CrossRef]
- Azevedo, M.M.; Ramalho, P.; Silva, A.P.; Teixeira-Santos, R.; Pina-Vaz, C.; Rodrigues, A.G. Polyethyleneimine and Polyeth-yleneimine-based Nanoparticles: Novel Bacterial and Yeast Biofilm Inhibitors. J. Med. Microbiol. 2014, 63, 1167–1173. [Google Scholar] [CrossRef]
- Thiele, V.H.; Gronau, K.H. Kupfer-und Nickelkomplexe von Polyäthylenimin. Die Makromol. Chem. Makromol. Chem. Phys. 1963, 59, 207–221. [Google Scholar] [CrossRef]
- Rivas, B.L.; Geckeler, K.E. Synthesis and Metal Complexation of Poly(ethyleneimine) and Derivatives. In Polymer Synthesis Oxidation Processes; Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 1992; Volume 102, pp. 171–188. [Google Scholar] [CrossRef]
- Von Zelewsky, A.; Barbosa, L.; Schläpfer, C.W. Poly(ethylenimines) as Brønsted Bases and as Ligands for Metal Ions. Coord. Chem. Rev. 1993, 123, 229–246. [Google Scholar] [CrossRef]
- Suh, J.; Cho, Y.; Lee, K.J. Macrocyclic Metal Complexes Built on Polyethylenimine. J. Am. Chem. Soc. 1991, 113, 4198–4202. [Google Scholar] [CrossRef]
- Geckeler, K.E.G.L.; Lange, G.; Eberhardt, H.; Bayer, E. Preparation and Application of Water-Soluble Polymer-Metal Com-plexes. Pure Appl. Chem. 1980, 52, 1883–1905. [Google Scholar] [CrossRef]
- Takagishi, T.; Okuda, S.; Kuroki, N.; Kozuka, H. Binding of Metal Ions by Polyethylenimine and its Derivatives. J. Polym. Sci. Polym. Chem. Ed. 1985, 23, 2109–2116. [Google Scholar] [CrossRef]
- Kobayashi, S.; Hiroishi, K.; Tokunoh, M.; Saegusa, T. Chelating Properties of Linear and Branched Poly(ethylenimines). Macromolecules 1987, 20, 1496–1500. [Google Scholar] [CrossRef]
- Schlaepfer, C.W.; Zelewsky, A.V. Polymeric Amines as Ligands. Polyethyleneimines as Ligands in First and Second Coordination Sphere. Comments Inorg. Chem. 1990, 9, 181–199. [Google Scholar] [CrossRef]
- Fujimori, K. Complexation of Poly(ethyleneimine) with Copper(II) and Nickel(II) Ions in 0.5 M KNO3 Solution. J. Polym. Sci. Part A Polym. Chem. 1985, 23, 169–174. [Google Scholar] [CrossRef]
- Fehse, S.; Nowag, S.; Quadir, M.; Kim, K.S.; Haag, R.; Multhaup, G. Copper Transport Mediated by Nanocarrier Systems in a Blood–Brain Barrier In Vitro Model. Biomacromolecules 2014, 15, 1910–1919. [Google Scholar] [CrossRef]
- Treiber, C.; Quadir, M.A.; Voigt, P.; Radowski, M.; Xu, S.; Munter, L.M.; Bayer, T.A.; Schaefer, M.; Haag, R.; Multhaup, G. Cellular Copper Import by Nanocarrier Systems, Intracellular Availability, and Effects on Amyloid β-peptide Secretion. Biochemistry 2009, 48, 4273–4284. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, X.; Zhuo, R. Polymeric Micelles Stabilized by Polyethylenimine–Copper (C2H5N–Cu) Coordination for Sustained Drug Release. RSC Adv. 2016, 6, 22964–22968. [Google Scholar] [CrossRef]
- Li, Z.B.; Chen, K.; Wu, Z.; Wang, H.; Niu, G.; Chen, X. 64Cu-Labeled PEGylated Polyethylenimine for Cell Trafficking and Tumor Imaging. Mol. Imaging Biol. 2009, 11, 415–423. [Google Scholar] [CrossRef]
- Tweedy, B.G. Plant Extracts with Metal Ions as Potential Antimicrobial Agents. Phytopathology 1964, 55, 910–914. [Google Scholar]
- Wang, Z.; Urban, M.W. Facile UV-Healable Polyethylenimine–Copper (C2H5N–Cu) Supramolecular Polymer Networks. Polym. Chem. 2013, 4, 4897–4901. [Google Scholar] [CrossRef]
- Perrine, T.D.; Landis, W.R. Analysis of Polyethyleneimine by Spectrophotometry of its Copper Chelate. J. Polym. Sci. Part A Polym. Chem. 1967, 5, 1993–2003. [Google Scholar] [CrossRef] [PubMed]
- Papavasiliou, A.; Tsiourvas, D.; Deze, E.G.; Papageorgiou, S.K.; Katsaros, F.K.; Poulakis, E.; Philippopoulos, C.J.; Boukos, N.; Xin, Q.; Cool, P. Hyperbranched Polyethyleneimine Towards the Development of Homogeneous and Highly Porous CuO–CeO2–SiO2 Catalytic Materials. Chem. Eng. J. 2016, 300, 343–357. [Google Scholar] [CrossRef]
- Bew, M.J.; Hathaway, B.J.; Fereday, R.J. Electronic Properties and Stereochemistry of the Copper(II) Ion. Part VII. Mono(diethylenetriamine)copper(II) Complexes. J. Chem. Soc. Dalton Trans. 1972, 12, 1229–1237. [Google Scholar] [CrossRef]
- Stebani, U.; Lattermann, G.; Wittenberg, M.; Wendorff, J.H. Metallomesogens with Branched, Dendrimeric Amino Ligands. Angew. Chem. Int. Ed. 1996, 35, 1858–1861. [Google Scholar] [CrossRef]
- Svatos, G.F.; Curran, C.; Quagliano, J.V. Infrared Absorption Spectra of Inorganic Coördination Complexes. V. The N-H Stretching Vibration in Coördination Compounds. J. Am. Chem. Soc. 1955, 77, 6159–6163. [Google Scholar] [CrossRef]
- Hathaway, B.J.; Tomlinson, A.A.G. Copper (II) ammonia complexes. Coordin. Chem. Rev. 1970, 5, 1–43. [Google Scholar] [CrossRef]
- Powell, D.B.; Sheppard, N. The assignment of infra-red absorption bands to fundamental vibrations in some metal-ethylenediamine complexes. Spectrochim. Acta 1961, 17, 68–76. [Google Scholar] [CrossRef]
- Fischer, H.; Plesnivy, T.; Ringsdorf, H.; Seitz, M. Induction of liquid crystalline phases in linear polyamines by complexation of transition metal ions. J. Mater. Chem. 1998, 8, 343–351. [Google Scholar] [CrossRef]
- Fischer, H.; Plesnivy, T.; Ringsdorf, H.; Seitz, M. Induction of liquid crystalline phases in N-alkylated poly(ethyleneimine)s by transition metal complexation. J. Chem. Soc. Chem. Commun. 1995, 1615–1616. [Google Scholar] [CrossRef]
- Pietkiewicz, S.; Schmidt, J.H.; Lavrik, I.N. Quantification of Apoptosis and Necroptosis at the Single Cell Level by a Combination of Imaging Flow Cytometry with Classical Annexin V/Propidium Iodide Staining. J. Immunol. Methods 2015, 423, 99–103. [Google Scholar] [CrossRef]
- Miller, E. Apoptosis Measurement by Annexin V Staining. In Cancer Cell Culture. Methods in Molecular Medicine, 1st ed.; Langdon, S.P., Ed.; Humana Press: New York, NY, USA, 2004; Volume 88, pp. 191–202. [Google Scholar] [CrossRef]
- Katz, S.; Shinaberry, R.G.; Heck, E.L.; Squire, W. Structure-Volume Relationships: Singular Volume Effects Produced by Cupric ion-Globular Protein Interaction. Biochemistry 1980, 19, 3805–3813. [Google Scholar] [CrossRef] [PubMed]
- Khansarizadeh, M.; Mokhtarzadeh, A.; Rashedinia, M.; Taghdisi, S.M.; Lari, P.; Abnous, K.H.; Ramezani, M. Identification of Possible Cytotoxicity Mechanism of Polyethylenimine by Proteomics Analysis. Hum. Exp. Toxicol. 2016, 35, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Shaligram, S.; Campbell, A. Toxicity of Copper Salts is Dependent on Solubility Profile and Cell Type Tested. Toxicol. In Vitro 2013, 27, 844–851. [Google Scholar] [CrossRef]
- Bartnicka, J.J.; Al-Salemee, F.; Firth, G.; Blower, P.J. L-Cysteine-Mediated Modulation of Copper Trafficking in Prostate Cancer Cells: An In Vitro and In Vivo Investigation with 64Cu and 64Cu-PET. Metallomics 2020, 12, 1508–1520. [Google Scholar] [CrossRef]
- Donnelly, P.S.; Liddell, J.R.; Lim, S.; Paterson, B.M.; Cater, M.A.; Savva, M.S.; Mot, A.I.; James, J.L.; Trounce, I.A.; White, A.R.; et al. An Impaired Mitochondrial Electron Transport Chain Increases Retention of the Hypoxia Imaging Agent Diac-etylbis(4-methylthiosemicarbazonato)copperII. Proc. Natl. Acad. Sci. USA 2012, 109, 47–52. [Google Scholar] [CrossRef]
- Pricl, S. The Spicy Science of Dendrimers in the Realm of Cancer Nanomedicine: A Report from the COST Action CA17140 Nano2Clinic. Pharmaceutics 2023, 15, 2013. [Google Scholar] [CrossRef]
- Canonico, B.; Cangiotti, M.; Montanari, M.; Papa, S.; Fusi, V.; Giorgi, L.; Ciacci, C.; Ottaviani, M.F.; Staneva, D.; Grabchev, I. Characterization of a Fluorescent 1,8-Naphthalimide-Functionalized PAMAM Dendrimer and its Cu(II) Complexes as Cytotoxic Drugs: EPR and Biological Studies in Myeloid Tumor Cells. Biol. Chem. 2022, 403, 345–360. [Google Scholar] [CrossRef]
- Sanz del Olmo, N.; Carloni, R.; Bajo, A.M.; Ortega, P.; Fattori, A.; Gómez, R.; Ottaviani, M.F.; García-Gallego, S.; Cangiotti, M.; de la Mata, F.J. Insight into the Antitumor Activity of Carbosilane Cu(II)–Metallodendrimers through their Interaction with Biological Membrane Models. Nanoscale 2019, 11, 13330–13342. [Google Scholar] [CrossRef]
- Canonico, B.; Carloni, R.; Sanz del Olmo, N.; Papa, S.; Nasoni, M.G.; Fattori, A.; Cangiotti, M.; de la Mata, F.J.; Ottaviani, M.F.; García-Gallego, S. Fine-Tuning the Interaction and Therapeutic Effect of Cu(II) Carbosilane Metallodendrimers in Cancer Cells: An In Vitro Electron Paramagnetic Resonance Study. Mol. Pharm. 2020, 17, 2691–2702. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, J.; Shi, M.; Li, D.; Lu, C.; Cao, X.; Peng, C.; Mignani, S.; Majoral, J.-P.; Shi, X. Poly(amidoamine) Den-drimer-Coordinated Copper(II) Complexes as a Theranostic Nanoplatform for the Radiotherapy-Enhanced Magnetic Resonance Imaging and Chemotherapy of Tumors and Tumor Metastasis. Nano Lett. 2019, 19, 1216–1226. [Google Scholar] [CrossRef] [PubMed]
- Mignani, S.M.; El Brahmi, N.; El Kazzouli, S.; Laurent, R.; Ladeira, S.; Caminade, A.M.; Pedziwiatr-Werbicka, E.; Szewczyk, E.M.; Bryszewska, M.; Bousmina, M.M.; et al. Original Multivalent Gold(III) and Dual Gold(III)–Copper(II) Conjugated Phosphorus Dendrimers as Potent Antitumoral and Antimicrobial Agents. Mol. Pharm. 2017, 14, 4087–4097. [Google Scholar] [CrossRef]
- Mignani, S.; El Brahmi, N.; Cresteil, T.; Majoral, J.-P. First-in-Class Combination Therapy of a Copper(II) Metallo-Phosphorus Dendrimer with Cytotoxic Agents. Oncology 2018, 94, 324–328. [Google Scholar] [CrossRef]
- Kauffman, M.E.; Kauffman, M.K.; Traore, K.; Zhu, H.; Trush, M.A.; Jia, Z.; Li, Y.R. MitoSOX-based Flow Cytometry for De-tecting Mitochondrial ROS. React. Oxyg. Species 2016, 2, 361–370. [Google Scholar] [CrossRef]
- Lee, J.H.; Amarsanaa, K.; Wu, J.; Jeon, S.C.; Cui, Y.; Jung, S.C.; Park, D.B.; Kim, S.J.; Han, S.H.; Kim, H.W.; et al. Nobiletin Attenuates Neurotoxic Mitochondrial Calcium Overload Through K+ Influx and ΔΨm Across Mitochondrial Inner Membrane. Korean J. Physiol. Pharmacol. 2018, 22, 311–319. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavroidi, B.; Lyra, K.M.; Pispas, S.; Sideratou, Z.; Tsiourvas, D. Hyperbranched Polyethyleneimine–Coordinated Copper(II) Metallopolymers with Preferential Targeting to Prostate Cancer Cells. Pharmaceuticals 2025, 18, 1189. https://doi.org/10.3390/ph18081189
Mavroidi B, Lyra KM, Pispas S, Sideratou Z, Tsiourvas D. Hyperbranched Polyethyleneimine–Coordinated Copper(II) Metallopolymers with Preferential Targeting to Prostate Cancer Cells. Pharmaceuticals. 2025; 18(8):1189. https://doi.org/10.3390/ph18081189
Chicago/Turabian StyleMavroidi, Barbara, Kyriaki Marina Lyra, Stergios Pispas, Zili Sideratou, and Dimitris Tsiourvas. 2025. "Hyperbranched Polyethyleneimine–Coordinated Copper(II) Metallopolymers with Preferential Targeting to Prostate Cancer Cells" Pharmaceuticals 18, no. 8: 1189. https://doi.org/10.3390/ph18081189
APA StyleMavroidi, B., Lyra, K. M., Pispas, S., Sideratou, Z., & Tsiourvas, D. (2025). Hyperbranched Polyethyleneimine–Coordinated Copper(II) Metallopolymers with Preferential Targeting to Prostate Cancer Cells. Pharmaceuticals, 18(8), 1189. https://doi.org/10.3390/ph18081189