Discovery of Small-Molecule PD-L1 Inhibitors via Virtual Screening and Their Immune-Mediated Anti-Tumor Effects
Abstract
1. Introduction
2. Results and Discussion
2.1. PD-L1 Ligand-Based Pharmacophore Model Generation and Validation
2.2. Virtual Screening with Pharmacophore Model
2.3. Binding Site Analysis and Hotspot Identification
2.3.1. PD-1/PD-L1 Interface
2.3.2. Binding Interface Between PD-L1 and Durvalumab
2.3.3. The Binding Patterns Between PD-L1 and Small-Molecule Inhibitors
2.3.4. Molecular Docking-Based Virtual Screening Targeting PD-L1: Blind Docking and Hotspots Docking
2.4. Interaction Analysis of Lead Compounds
2.5. Disruption of PD-1/PD-L1 Interaction by Lead Compounds
2.6. In Vitro Tumor Cytotoxicity Analysis of Candidate Compounds
2.7. In Vitro Interaction Assay of Anidulafungin with PD-L1
2.8. In Vivo Antitumor Activity of Anidulafungin
2.9. Immune Response Analysis
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation and Preprocessing of Training and Test Sets, and Screening Dataset
3.3. Generation of Pharmacophore Models
3.4. Docking Procedure
3.5. Cytotoxicity Assay
3.6. Binding Affinity Assay
3.7. In Vivo Anti-Tumor Activity
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PD-L1 | Programmed death ligand 1 |
PD-1 | Programmed cell death protein 1 |
LLC | Lewis lung carcinoma |
BLI | Biolayer interferometry |
KD | Dissociation constant |
GZMB | Granzyme B |
CADD | Computer-Assisted Drug Design |
FBS | Fetal bovine serum |
DMSO | Dimethyl sulfoxide |
PDB | Protein Data Bank |
TCMs | Traditional Chinese medicines |
TCMSP | Traditional Chinese Medicine Systems Pharmacology |
DMEM | Dulbecco’s Modified Eagle Medium |
CCK-8 | Cell counting kit-8 |
CNIPA | China National Intellectual Property Administration |
MOE | Molecular operating environment |
References
- Dai, X.; Wang, K.; Chen, H.; Huang, X.; Feng, Z. Design, synthesis, and biological evaluation of 1-methyl-1H-pyrazolo[4,3-b]pyridine derivatives as novel small-molecule inhibitors targeting the PD-1/PD-L1 interaction. Bioorg. Chem. 2021, 114, 105034. [Google Scholar] [CrossRef]
- Hargadon, K.M.; Johnson, C.E.; Williams, C.J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol. 2018, 62, 29–39. [Google Scholar] [CrossRef]
- Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 2016, 8, 328rv324. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Salinas, V.H.; Brown, K.E.; Vanguri, V.K.; Freeman, G.J.; Kuchroo, V.K.; Sharpe, A.H. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 2009, 206, 3015–3029. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Luo, L.; Wang, Z.; Hu, N.; Wang, W.; Xie, F.; Liang, E.; Yan, X.; Xiao, J.; Li, S. Design, Synthesis, and Biological Evaluation of Linear Aliphatic Amine-Linked Triaryl Derivatives as Potent Small-Molecule Inhibitors of the Programmed Cell Death-1/Programmed Cell Death-Ligand 1 Interaction with Promising Antitumor Effects In Vivo. J. Med. Chem. 2020, 63, 13825–13850. [Google Scholar] [CrossRef]
- Shaabani, S.; Huizinga, H.P.S.; Butera, R.; Kouchi, A.; Guzik, K.; Magiera-Mularz, K.; Holak, T.A.; Dömling, A. A patent review on PD-1/PD-L1 antagonists: Small molecules, peptides, and macrocycles (2015–2018). Expert. Opin. Ther. Pat. 2018, 28, 665–678. [Google Scholar] [CrossRef]
- Pan, B.J.; Xu, C.; Ping, G.Q.; Song, G.X.; Zhang, W.M.; Wang, C.; Zhang, Z.H. Correlation analysis of PD-L1 expression and prognosis in triple-negative breast cancers. Zhonghua Bing Li Xue Za Zhi 2017, 46, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Okano, S.; Morita, M.; Saeki, H.; Tsutsumi, S.; Tsukihara, H.; Nakashima, Y.; Ando, K.; Imamura, Y.; Ohgaki, K.; et al. Expression of PD-L1 and HLA Class I in Esophageal Squamous Cell Carcinoma: Prognostic Factors for Patient Outcome. Ann. Surg. Oncol. 2016, 23, 508–515. [Google Scholar] [CrossRef]
- Inaguma, S.; Lasota, J.; Wang, Z.; Felisiak-Golabek, A.; Ikeda, H.; Miettinen, M. Clinicopathologic profile, immunophenotype, and genotype of CD274 (PD-L1)-positive colorectal carcinomas. Mod. Pathol. 2017, 30, 278–285. [Google Scholar] [CrossRef]
- Nakanishi, J.; Wada, Y.; Matsumoto, K.; Azuma, M.; Kikuchi, K.; Ueda, S. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol. Immunother. 2007, 56, 1173–1182. [Google Scholar] [CrossRef]
- Straub, M.; Drecoll, E.; Pfarr, N.; Weichert, W.; Langer, R.; Hapfelmeier, A.; Götz, C.; Wolff, K.D.; Kolk, A.; Specht, K. CD274/PD-L1 gene amplification and PD-L1 protein expression are common events in squamous cell carcinoma of the oral cavity. Oncotarget 2016, 7, 12024–12034. [Google Scholar] [CrossRef] [PubMed]
- Nagato, T.; Ohkuri, T.; Ohara, K.; Hirata, Y.; Kishibe, K.; Komabayashi, Y.; Ueda, S.; Takahara, M.; Kumai, T.; Ishibashi, K.; et al. Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: A potential rationale for immunotherapy. Cancer Immunol. Immunother. 2017, 66, 877–890. [Google Scholar] [CrossRef]
- Kwok, G.; Yau, T.C.; Chiu, J.W.; Tse, E.; Kwong, Y.L. Pembrolizumab (Keytruda). Hum. Vaccin. Immunother. 2016, 12, 2777–2789. [Google Scholar] [CrossRef]
- Pillai, R.N.; Behera, M.; Owonikoko, T.K.; Kamphorst, A.O.; Pakkala, S.; Belani, C.P.; Khuri, F.R.; Ahmed, R.; Ramalingam, S.S. Comparison of the toxicity profile of PD-1 versus PD-L1 inhibitors in non-small cell lung cancer: A systematic analysis of the literature. Cancer 2018, 124, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Conner, K.P.; Devanaboyina, S.C.; Thomas, V.A.; Rock, D.A. The biodistribution of therapeutic proteins: Mechanism, implications for pharmacokinetics, and methods of evaluation. Pharmacol. Ther. 2020, 212, 107574. [Google Scholar] [CrossRef]
- Zhan, M.M.; Hu, X.Q.; Liu, X.X.; Ruan, B.F.; Xu, J.; Liao, C. From monoclonal antibodies to small molecules: The development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discov. Today 2016, 21, 1027–1036. [Google Scholar] [CrossRef]
- Skalniak, L.; Zak, K.M.; Guzik, K.; Magiera, K.; Musielak, B.; Pachota, M.; Szelazek, B.; Kocik, J.; Grudnik, P.; Tomala, M.; et al. Small-molecule inhibitors of PD-1/PD-L1 immune checkpoint alleviate the PD-L1-induced exhaustion of T-cells. Oncotarget 2017, 8, 72167–72181. [Google Scholar] [CrossRef]
- Acúrcio, R.C.; Scomparin, A.; Conniot, J.; Salvador, J.A.R.; Satchi-Fainaro, R.; Florindo, H.F.; Guedes, R.C. Structure-Function Analysis of Immune Checkpoint Receptors to Guide Emerging Anticancer Immunotherapy. J. Med. Chem. 2018, 61, 10957–10975. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, M.; Liu, G.; Ma, J.; Zhang, L.; Wang, S. Advances in the structural characterization of complexes of therapeutic antibodies with PD-1 or PD-L1. MAbs 2023, 15, 2236740. [Google Scholar] [CrossRef]
- Zak, K.M.; Grudnik, P.; Guzik, K.; Zieba, B.J.; Musielak, B.; Dömling, A.; Dubin, G.; Holak, T.A. Structural basis for small molecule targeting of the programmed death ligand 1 (PD-L1). Oncotarget 2016, 7, 30323–30335. [Google Scholar] [CrossRef]
- Wu, X.; Liang, J.; Meng, L.; Wang, B.; Liu, B.; Jin, Y. Towards novel small-molecule inhibitors blocking PD-1/PD-L1 pathway: From explainable machine learning models to molecular dynamics simulation. Int. J. Biol. Macromol. 2024, 282, 136325. [Google Scholar] [CrossRef]
- Vemula, D.; Jayasurya, P.; Sushmitha, V.; Kumar, Y.N.; Bhandari, V. CADD, AI and ML in drug discovery: A comprehensive review. Eur. J. Pharm. Sci. 2023, 181, 106324. [Google Scholar] [CrossRef]
- Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [Google Scholar] [CrossRef] [PubMed]
- Seidel, T.; Schuetz, D.A.; Garon, A.; Langer, T. The Pharmacophore Concept and Its Applications in Computer-Aided Drug Design. Prog. Chem. Org. Nat. Prod. 2019, 110, 99–141. [Google Scholar] [CrossRef]
- Petersen, R.L. Strategies Using Bio-Layer Interferometry Biosensor Technology for Vaccine Research and Development. Biosensors 2017, 7, 49. [Google Scholar] [CrossRef] [PubMed]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Soria, J.C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef]
- Cui, H.Y.; Wu, J.; Lin, L. Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese. J. Dairy. Sci. 2016, 99, 6097–6104. [Google Scholar] [CrossRef]
- Jin, J.; Ma, H.; Wang, W.; Luo, M.; Wang, B.; Qu, W.; He, R.; Owusu, J.; Li, Y. Effects and mechanism of ultrasound pretreatment on rapeseed protein enzymolysis. J. Sci. Food Agric. 2016, 96, 1159–1166. [Google Scholar] [CrossRef]
Pharmacophore Models | Number of Compounds | Match Count | Match Rate |
---|---|---|---|
Hypo1 | 30 | 28 | 93.3% |
Hypo2 | 30 | 29 | 96.7% |
Hypo3 | 30 | 28 | 93.3% |
Hypo4 | 30 | 22 | 73.33% |
Hypo5 | 30 | 24 | 80.00% |
PD-1 Interacting Residues | PD-L1 Interacting Residues | Interaction Patterns |
---|---|---|
Ile134PD-1, Glu136PD-1, and Thr76PD-1 | Tyr123PD-L1 | Alkyl-π hyperconjugation and hydrogen bond |
Asn66PD-1 | Ala121PD-L1 | Hydrogen bond |
Tyr68PD-1 | Asp122PD-L1 | Hydrogen bond |
Glu136PD-1 | Arg125PD-L1 and Arg113PD-L1 | Hydrogen bond and salt bridge |
Gln75PD-1 | Arg125PD-L1 and Asp26PD-L1 | Hydrogen bond |
Ile134PD-1 | Glu58PD-L1 and Glu60PD-L1 | Hydrogen bond |
Ala132PD-1 | Gln66PD-L1 | Hydrogen bond |
Thr76PD-1 | Tyr124PD-L1 | Hydrogen bond |
Lys78PD-1 | Phe19PD-L1 | Hydrogen bond |
Asn66PD-1 | Ala121PD-L1 | Hydrogen bond |
Groups of Small-Molecule Compounds | PD-L1 Interacting Residues | Interaction Patterns |
---|---|---|
Benzene ring with biphenyl structure | Tyr56PD-L1A | T-Stacking (π–π stacking) |
Biphenyl structural terminal benzene ring | Met115PD-L1A Ala121PD-L1B | π–alkyl interactions |
Biphenyl intermediate phenylmethyl ring | Met115PD-L1B Ala121PD-L1A | Hydrophobic interaction |
Methoxypyridine of BMS202 | Tyr56PD-L1B Ala121PD-L1A Asp122PD-L1A Phe19PD-L1A | π–π conjugation, carbonyl–π interactions, anion–π interactions, and water molecule-mediated lone electron pair–π interactions |
BMS202 with the methoxy group of BMS37, the carboxyl and hydroxyl groups of BMS-8, BMS-200, and BMS-1001 | Asp122PD-L1A Lys124PD-L1A Tyr123PD-L1A | Water molecule-mediated hydrogen bonding interactions |
Acetamide of BMS202 and BMS37 | Lys124PD-L1A | Hydrogen bonding interaction |
iphenyl side chains of BMS-8, BMS200, and BMS-37 and the five-membered ring N | Gln66PD-L1B Thr20PD-L1A | Hydrogen bonding interaction |
Compounds | Binding Sites on Compounds | Interacting Residues of PD-L1 | Interaction Patterns |
---|---|---|---|
Tannic acid | O-33 | Ala121 | H-donor |
O-41 | Asp122 | H-donor | |
O-41, O-36, O-32 | Glu58 | H-donor | |
C-50, O-21, O-25 | Asp61 | H-donor | |
O-20 | Lys75 | H-donor | |
O-27 | Gln66 | H-acceptor | |
C-105 | Tyr123 | H-pi | |
Anidulafungin | O-97, N-59 | Asp61 | H-donor |
O-90, O-15, O-45 | Arg113 | H-acceptor | |
6-ring | Phe19 | pi-H | |
6-ring, O-45 | Ala121 | pi-H, H-acceptor | |
6-ring | Lys124 | pi-cation | |
O-84 | Ser117P | H-acceptor | |
6-ring | Gly120 | pi-H |
Groups | Tumor Volumes (cm3) | Tumor Weights (g) | TGI (%) |
---|---|---|---|
Durvalumab (1.25 mg/kg) | 1.72 ± 0.63 | 1.8 ± 1.01 | 89.17 |
Anidulafungin (5 mg/kg) | 7.27 ± 0.24 | 7.5 ± 0.97 | 24.77 |
Anidulafungin (25 mg/kg) | 5.59 ± 0.84 | 5.45 ± 0.89 | 45.34 |
Anidulafungin (50 mg/kg) | 3.95 ± 0.21 | 3.60 ± 0.91 | 63.89 |
5-FU (25 mg/kg) | 2.24 ± 0.31 | 2.18 ± 0.47 | 78.13 |
Normal saline | 10.93 ± 0.35 | 9.97 ± 0.87 | - |
Groups | Normal Saline | Durvalumab (1.25 mg/kg) | Anidulafungin (5 mg/kg) | Anidulafungin (25 mg/kg) | Anidulafungin (50 mg/kg) | 5-FU (25 mg/kg) |
---|---|---|---|---|---|---|
IFN-γ (pg/mL) | 89.47 ± 22.96 | 732.17 ± 30.74 | 249.92 ± 17.66 | 456.57 ± 39.50 | 576.43 ± 18.99 | 95.35 ± 22.34 |
IL-4 (pg/mL) | 109.42 ± 26.11 | 679.95 ± 59.08 | 207.32 ± 16.92 | 426.14 ± 36.75 | 595.42 ± 31.96 | 105.73 ± 28.54 |
Groups | Normal Saline | Durvalumab (1.25 mg/kg) | Anidulafungin (5 mg/kg) | Anidulafungin (25 mg/kg) | Anidulafungin (50 mg/kg) | FU (25 mg/kg) |
---|---|---|---|---|---|---|
IFN-γ positive rate (%) | 1.85 ± 0.97 | 41.30 ± 2.99 | 7.67 ± 2.28 | 22.73 ± 2.90 | 33.67 ± 4.96 | 1.72 ± 1.19 |
GZMB positive rate (%) | 2.18 ± 1.15 | 42.03 ± 2.62 | 6.61 ± 1.57 | 20.03 ± 2.75 | 32.73 ± 4.13 | 2.78 ± 1.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.; Ge, Y.; Wang, S.; Li, M.; Chen, Q.; Dong, H.; Rui, M. Discovery of Small-Molecule PD-L1 Inhibitors via Virtual Screening and Their Immune-Mediated Anti-Tumor Effects. Pharmaceuticals 2025, 18, 1209. https://doi.org/10.3390/ph18081209
Feng C, Ge Y, Wang S, Li M, Chen Q, Dong H, Rui M. Discovery of Small-Molecule PD-L1 Inhibitors via Virtual Screening and Their Immune-Mediated Anti-Tumor Effects. Pharmaceuticals. 2025; 18(8):1209. https://doi.org/10.3390/ph18081209
Chicago/Turabian StyleFeng, Chunlai, Yingying Ge, Siqi Wang, Mengru Li, Qiying Chen, Hangyu Dong, and Mengjie Rui. 2025. "Discovery of Small-Molecule PD-L1 Inhibitors via Virtual Screening and Their Immune-Mediated Anti-Tumor Effects" Pharmaceuticals 18, no. 8: 1209. https://doi.org/10.3390/ph18081209
APA StyleFeng, C., Ge, Y., Wang, S., Li, M., Chen, Q., Dong, H., & Rui, M. (2025). Discovery of Small-Molecule PD-L1 Inhibitors via Virtual Screening and Their Immune-Mediated Anti-Tumor Effects. Pharmaceuticals, 18(8), 1209. https://doi.org/10.3390/ph18081209