Old Therapy, New Questions: Rethinking Phlebotomy in a Pharmacologic Landscape
Abstract
1. Introduction
2. Physiology, Benefits and Adverse Effects of Phlebotomy
2.1. Hemorheological Rationale and Viscosity Reduction
2.2. Iron Metabolism: Stores, Toxicity, and Depletion
2.3. The Hepcidin–Ferroportin Axis
2.4. Hepcidin Mimetics: Toward “Chemical Phlebotomy”
2.5. Other Adverse Effects of Phlebotomy
2.6. Differences Between Phlebotomy and Apheresis
3. Therapeutic Phlebotomy in Myeloproliferative Neoplasms
3.1. Clinical Presentation and Diagnosis
3.2. Risk Stratification and Treatment Goals
3.3. Treatments in PV
3.4. Myelofibrosis and Post-PV Evolution
3.5. Phlebotomy Limitations in Real-World Practice
4. Future Directions in the Management of PV
4.1. Iron-Modulating Therapies and Hepcidin Mimetics
4.2. Epigenetic and Molecular Therapies
4.3. Givinostat: Epigenetic Targeting via Histone Deacetylase Inhibition
4.4. Comparative Perspective
5. Key Takeaways for Phlebotomy in PV from Current Expert Consensus
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cook, L.S. Therapeutic Phlebotomy: A Review of Diagnoses and Treatment Considerations. J. Infus. Nurs. 2010, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Khatami, S.; Rahimzade, M.; Lavari, N.; Jadidi, T.; Adel-Mehraban, M.S. Clinical Advantages of Phlebotomy: An Umbrella Review of Meta-Analyses. Iran J. Public Health 2024, 53, 2683–2693. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Oh, K.Y. Clinical Applications of Therapeutic Phlebotomy. J. Blood Med. 2016, 7, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, K.K.; Lotfollahzadeh, S. Phlebotomy. Chest 2023, 143, 1831. [Google Scholar] [CrossRef]
- Edahiro, Y.; Komatsu, N. Iron Deficiency and Phlebotomy in Patients with Polycythemia Vera. Int. J. Hematol. 2025, 121, 39–44. [Google Scholar] [CrossRef]
- Masarova, L.; Chifotides, H.T. SOHO State of the Art Update and Next Questions: Novel Therapies for Polycythemia Vera. Clin. Lymphoma Myeloma Leuk 2024, 24, 141–148. [Google Scholar] [CrossRef]
- Holsworth, R.E.; Cho, Y.I.; Weidman, J.J.; Sloop, G.D.; St. Cyr, J.A. Cardiovascular Benefits of Phlebotomy: Relationship to Changes in Hemorheological Variables. Perfusion 2014, 29, 102–116. [Google Scholar] [CrossRef]
- Prystacka-Szar, D.; Rulewska, N.; Grabowski, F.; Siemko, J.; Neska, D.; Stadler-Szajda, J.; Czyżnikiewicz, A.; Stołowski, W.; Bujak, M.; Waśniowska, M. Hereditary Hemochromatosis: Pathogenesis, Symptoms, Diagnosis and Current Treatment—Literature Review. J. Educ. Health Sport 2025, 80, 58359. [Google Scholar] [CrossRef]
- Tefferi, A.; Barbui, T. Polycythemia Vera: 2024 Update on Diagnosis, Risk-Stratification, and Management. Am. J. Hematol. 2023, 98, 1465–1487. [Google Scholar] [CrossRef]
- Taco-Vasquez, E.D.; Barrera, F.; Serrano-Duenas, M.; Jimenez, E.; Rocuts, A.; Perez, E.R. Association between Blood Viscosity and Cardiovascular Risk Factors in Patients with Arterial Hypertension in a High Altitude Setting. Cureus 2019, 11, e3925. [Google Scholar] [CrossRef]
- Milone, G.; Bellofiore, C.; Leotta, S.; Milone, G.A.; Cupri, A.; Duminuco, A.; Garibaldi, B.; Palumbo, G. Endothelial Dysfunction after Hematopoietic Stem Cell Transplantation: A Review Based on Physiopathology. J. Clin. Med. 2022, 11, 623. [Google Scholar] [CrossRef]
- Valencia, I.; Lumpuy-Castillo, J.; Magalhaes, G.; Sánchez-Ferrer, C.F.; Lorenzo, Ó.; Peiró, C. Mechanisms of Endothelial Activation, Hypercoagulation and Thrombosis in COVID-19: A Link with Diabetes Mellitus. Cardiovasc. Diabetol. 2024, 23, 75. [Google Scholar] [CrossRef]
- McEwan, A.; Greenwood, M.; Ward, C.; Ritchie, D.; Szer, J.; Gardiner, E.; Colic, A.; Sipavicius, J.; Panek-Hudson, Y.; Kerridge, I. Diagnosis and Management of Endothelial Disorders Following Haematopoietic Stem Cell Transplantation. Intern. Med. J. 2023, 53, 2162–2174. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.M.; Tong, W.; Levine, R.L.; Scott, M.A.; Beer, P.A.; Stratton, M.R.; Futreal, P.A.; Erber, W.N.; McMullin, M.F.; Harrison, C.N.; et al. JAK2 Exon 12 Mutations in Polycythemia Vera and Idiopathic Erythrocytosis. N. Engl. J. Med. 2007, 356, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Inokuchi, K. JAK2 Mutations in Myeloproliferative Disorders. N. Engl. J. Med. 2005, 353, 1416–1417. [Google Scholar] [CrossRef]
- Vannucchi, A.M.; Antonioli, E.; Guglielmelli, P.; Rambaldi, A.; Barosi, G.; Marchioli, R.; Marfisi, R.M.; Finazzi, G.; Guerini, V.; Fabris, F.; et al. Clinical Profile of Homozygous JAK2 617V>F Mutation in Patients with Polycythemia Vera or Essential Thrombocythemia. Blood 2007, 110, 840–846. [Google Scholar] [CrossRef]
- Marchioli, R.; Finazzi, G.; Specchia, G.; Cacciola, R.; Cavazzina, R.; Cilloni, D.; De Stefano, V.; Elli, E.; Iurlo, A.; Latagliata, R.; et al. Cardiovascular Events and Intensity of Treatment in Polycythemia Vera. N. Engl. J. Med. 2013, 368, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Rishi, G.; Subramaniam, V.N. The Relationship between Systemic Iron Homeostasis and Erythropoiesis. Biosci. Rep. 2017, 37, BSR20170195. [Google Scholar] [CrossRef] [PubMed]
- Toyokuni, S. Iron and Carcinogenesis: From Fenton Reaction to Target Genes. Redox Rep. 2002, 7, 189–197. [Google Scholar] [CrossRef]
- Ahmed, S.; Peterson, S.J.; Parikh, M.A.; Frishman, W.H. Cardiovascular Manifestations of Hemochromatosis: A Review of Pathophysiology, Mechanisms, and Treatment Options. Cardiol. Rev. 2025, 33, 359–364. [Google Scholar] [CrossRef]
- Porter, J.L.; Rawla, P. Hemochromatosis. In Firestein & Kelley’s Textbook of Rheumatology, 2-Volume Set; Elsevier: Amsterdam, The Netherlands, 2024; Volume 2, pp. 2135–2145.e3. ISBN 978-0-323-93540-1. [Google Scholar]
- Ru, Q.; Li, Y.; Chen, L.; Wu, Y.; Min, J.; Wang, F. Iron Homeostasis and Ferroptosis in Human Diseases: Mechanisms and Therapeutic Prospects. Signal Transduct. Target. Ther. 2024, 9, 271. [Google Scholar] [CrossRef]
- Barton, J.C.; Bottomley, S.S. Iron Deficiency Due to Excessive Therapeutic Phlebotomy Hemochromatosis. Am. J. Hematol. 2000, 65, 223–226. [Google Scholar] [CrossRef]
- Conrad, M.E.; Crosby, W.H. The Natural History of Iron Deficiency Induced by Phlebotomy. Blood 1962, 20, 173–185. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. The Hepcidin-Ferroportin System as a Therapeutic Target in Anemias and Iron Overload Disorders. Hematol. Am. Soc. Hematol. Educ. Program 2011, 2011, 538–542. [Google Scholar] [CrossRef]
- Chifotides, H.T.; Bose, P.; Verstovsek, S. Momelotinib: An Emerging Treatment for Myelofibrosis Patients with Anemia. J. Hematol. Oncol. 2022, 15, 7. [Google Scholar] [CrossRef]
- Handa, S.; Ginzburg, Y.; Hoffman, R.; Kremyanskaya, M. Hepcidin Mimetics in Polycythemia Vera: Resolving the Irony of Iron Deficiency and Erythrocytosis. Curr. Opin. Hematol. 2023, 30, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Alfaro-Magallanes, V.M.; Babitt, J.L. Physiological and Pathophysiological Mechanisms of Hepcidin Regulation: Clinical Implications for Iron Disorders. Br. J. Haematol. 2020, 193, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Roemhild, K.; von Maltzahn, F.; Weiskirchen, R.; Knüchel, R.; von Stillfried, S.; Lammers, T. Iron Metabolism: Pathophysiology and Pharmacology. Trends Pharmacol. Sci. 2021, 42, 640–656. [Google Scholar] [CrossRef] [PubMed]
- Maslah, N.; Soret, J.; Dosquet, C.; Vercellino, L.; Belkhodja, C.; Schlageter, M.H.; Cassinat, B.; Kiladjian, J.J.; Chomienne, C.; Giraudier, S. Masked Polycythemia Vera: Analysis of a Single Center Cohort of 2480 Red Cell Masses. Haematologica 2020, 105, e95–e97. [Google Scholar] [CrossRef]
- Kremyanskaya, M.; Kuykendall, A.T.; Pemmaraju, N.; Ritchie, E.K.; Gotlib, J.; Gerds, A.; Palmer, J.; Pettit, K.; Nath, U.K.; Yacoub, A.; et al. Rusfertide, a Hepcidin Mimetic, for Control of Erythrocytosis in Polycythemia Vera. N. Engl. J. Med. 2024, 390, 723–735. [Google Scholar] [CrossRef]
- Krecak, I.; Lucijanic, M.; Verstovsek, S. Advances in Risk Stratification and Treatment of Polycythemia Vera and Essential Thrombocythemia. Curr. Hematol. Malig. Rep. 2022, 17, 155–169. [Google Scholar] [CrossRef]
- Serra, R.; Ielapi, N.; Barbetta, A.; Buffone, G.; Mellace, S.; Bevacqua, E.; Traina, L.; DI Mizio, G.; De Franciscis, S.; Gasbarro, V. Adverse Complications of Venipuncture: A Systematic Review. ACTA Phlebol. 2018, 19, 11–15. [Google Scholar] [CrossRef]
- Duminuco, A.; Novello, G.; Mauro, E.; Scalisi, E.; Del Fabro, V.; Sambataro, D.; Palumbo, G.; Di Raimondo, F.; Romeo, D. Chemotherapy Extravasation: Diagnosis, Prevention and Management. J. Chemother. 2025, 1–13. [Google Scholar] [CrossRef]
- Romón, I.; Domíguez-García, J.; Fernández, C.; Carretón, M.; Martínez, N.; Calzada, L.; Cortés, M.A.; Mendez, G.A.; Gorostidi, I.; Briz, M.; et al. Adverse Effects of Therapeutic Phlebotomies: Prospective Study of 587 Procedures. Transfusion 2024, 64, 1262–1269. [Google Scholar] [CrossRef] [PubMed]
- Berk, P.D.; Goldberg, J.D.; Donovan, P.B.; Fruchtman, S.M.; Berlin, N.I.; Wasserman, L.R. Therapeutic Recommendations in Polycythemia Vera Based on Polycythemia Vera Study Group Protocols. Semin. Hematol. 1986, 23, 132–143. [Google Scholar]
- Alvarez-Larrán, A.; Pérez-Encinas, M.; Ferrer-Marín, F.; Hernández-Boluda, J.C.; José Ramírez, M.; Martínez-López, J.; Magro, E.; Cruz, Y.; Mata, M.I.; Aragües, P.; et al. Risk of Thrombosis According to Need of Phlebotomies in Patients with Polycythemia Vera Treated with Hydroxyurea. Haematologica 2017, 102, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Carobbio, A.; Ghirardi, A.; Masciulli, A.; Rambaldi, A.; Vannucchi, A.M. No Correlation of Intensity of Phlebotomy Regimen with Risk of Thrombosis in Polycythemia Vera: Evidence from European Collaboration on Low-Dose Aspirin in Polycythemia Vera and Cytoreductive Therapy in Polycythemia Vera Clinical Trials. Haematologica 2017, 102, e219–e221. [Google Scholar] [CrossRef]
- Stussi, G.; Buser, A.; Holbro, A. Red Blood Cells: Exchange, Transfuse, or Deplete. Transfus. Med. Hemother. 2019, 46, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Infanti, L. Red Cell Apheresis: Pros and Cons. ISBT Sci. Ser. 2018, 13, 16–22. [Google Scholar] [CrossRef]
- Liu, H.; Liu, H.; Shen, J.; Sun, C.; Guo, C.; Lin, H.; Yao, J.; Ma, R.; Zhang, M. A Clinical Analysis of Erythrocytapheresis for the Treatment of Polycythemia. Transfusion. Apher. Sci. 2013, 48, 229–233. [Google Scholar] [CrossRef]
- Cabibbo, S.; Manenti, G.O.; Antolino, A.; Poidomani, M.; Elia, R.; Palumbo, G.A.; Di Raimondo, F. Evaluation of Erythrocytapheresis Compared to Phlebotomy in Polycythaemia Vera Patients. Hematol. Transfus. Cell Ther. 2024, 46, 393–396. [Google Scholar] [CrossRef]
- Connelly-Smith, L.; Alquist, C.R.; Aqui, N.A.; Hofmann, J.C.; Klingel, R.; Onwuemene, O.A.; Patriquin, C.J.; Pham, H.P.; Sanchez, A.P.; Schneiderman, J.; et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice–Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Ninth Special Issue. J. Clin. Apher. 2023, 38, 77–278. [Google Scholar] [CrossRef]
- Tremblay, D.; Kremyanskaya, M.; Mascarenhas, J.; Hoffman, R. Diagnosis and Treatment of Polycythemia Vera: A Review. JAMA 2025, 333, 153–160. [Google Scholar] [CrossRef]
- Duminuco, A.; Nardo, A.; Giuffrida, G.; Leotta, S.; Markovic, U.; Giallongo, C.; Tibullo, D.; Romano, A.; Di Raimondo, F.; Palumbo, G.A. Myelofibrosis and Survival Prognostic Models: A Journey between Past and Future. J. Clin. Med. 2023, 12, 2188. [Google Scholar] [CrossRef] [PubMed]
- Palandri, F.; Palumbo, G.A.; Benevolo, G.; Iurlo, A.; Elli, E.M.; Abruzzese, E.; Polverelli, N.; Tiribelli, M.; Auteri, G.; Tieghi, A.; et al. Incidence of Blast Phase in Myelofibrosis Patients According to Anemia Severity at Ruxolitinib Start and during Therapy. Cancer 2024, 130, 1270–1280. [Google Scholar] [CrossRef] [PubMed]
- Björkholm, M.; Hultcrantz, M.; Derolf, Å.R. Leukemic Transformation in Myeloproliferative Neoplasms: Therapy-Related or Unrelated? Best Pract. Res. Clin. Haematol. 2014, 27, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Alkhateeb, H.; Gangat, N. Blast Phase Myeloproliferative Neoplasm: Contemporary Review and 2024 Treatment Algorithm. Blood Cancer J. 2023, 13, 108. [Google Scholar] [CrossRef]
- Kelliher, S.; Falanga, A. Thrombosis in Myeloproliferative Neoplasms: A Clinical and Pathophysiological Perspective. Thromb. Update 2021, 5, 100081. [Google Scholar] [CrossRef]
- Barbui, T.; Carobbio, A.; De Stefano, V. Thrombosis in Myeloproliferative Neoplasms during Cytoreductive and Antithrombotic Drug Treatment. Res. Pract. Thromb. Haemost. 2022, 6, e12657. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Carobbio, A.; Thiele, J.; Passamonti, F.; Rumi, E.; Ruggeri, M.; Rodeghiero, F.; Randi, M.L.; Bertozzi, I.; Vannucchi, A.M.; Antonioli, E.; et al. Risk Factors for Arterial and Venous Thrombosis in WHO-Defined Essential Thrombocythemia: An International Study of 891 Patients. Blood 2011, 117, 5857–5859. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Marchioli, R.; Finazzi, G.; Landolfi, R.; Kutti, J.; Gisslinger, H.; Patrono, C.; Marilus, R.; Villegas, A.; Tognoni, G.; Barbui, T. Vascular and Neoplastic Risk in a Large Cohort of Patients with Polycythemia Vera. J. Clin. Oncol. 2005, 23, 2224–2232. [Google Scholar] [CrossRef]
- Gerds, A.T.; Altomare, I.; Colucci, P.; Paranagama, D.; Burke, J.M. REVEAL: Characteristics of Patients with Polycythemia Vera Who Were Diagnosed within 6 Months of Enrollment. Blood 2019, 134, 5370. [Google Scholar] [CrossRef]
- Masselli, E.; Pozzi, G.; Gobbi, G.; Merighi, S.; Gessi, S.; Vitale, M.; Carubbi, C. Cytokine Profiling in Myeloproliferative Neoplasms: Overview on Phenotype Correlation, Outcome Prediction, and Role of Genetic Variants. Cells 2020, 9, 2136. [Google Scholar] [CrossRef] [PubMed]
- Leiva, O.; Hobbs, G.; Ravid, K.; Libby, P. Cardiovascular Disease in Myeloproliferative Neoplasms: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2022, 4, 166–182. [Google Scholar] [CrossRef]
- Wesseling, M.; Sakkers, T.R.; de Jager, S.C.A.; Pasterkamp, G.; Goumans, M.J. The Morphological and Molecular Mechanisms of Epithelial/Endothelial-to-Mesenchymal Transition and Its Involvement in Atherosclerosis. Vasc. Pharmacol. 2018, 106, 1–8. [Google Scholar] [CrossRef]
- Tadmor, T.; Bejar, J.; Attias, D.; Mischenko, E.; Sabo, E.; Neufeld, G.; Vadasz, Z. The Expression of Lysyl-Oxidase Gene Family Members in Myeloproliferative Neoplasms. Am. J. Hematol. 2013, 88, 355–358. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- McMullin, M.F.F.; Mead, A.J.; Ali, S.; Cargo, C.; Chen, F.; Ewing, J.; Garg, M.; Godfrey, A.; Knapper, S.; McLornan, D.P.; et al. A Guideline for the Management of Specific Situations in Polycythaemia Vera and Secondary Erythrocytosis: A British Society for Haematology Guideline. Br. J. Haematol. 2019, 184, 161–175. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Wang, Y.; Teng, G.; Li, D.; Wang, Y.; Du, C.; Chen, Y.; Zhang, H.; Li, Y.; et al. Thrombosis among 1537 Patients with JAK2V617F-Mutated Myeloproliferative Neoplasms: Risk Factors and Development of a Predictive Model. Cancer Med. 2020, 9, 2096–2105. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Au Yeung, J.; Vaghela, R.; Virdee, S.; Woodley, C.; Asirvatham, S.; Curto-Garcia, N.; Sriskandarajah, P.; O’Sullivan, J.; de Lavallade, H.; et al. Development of a Natural Language Processing Pipeline for Assessment of Cardiovascular Risk in Myeloproliferative Neoplasms. Hemasphere 2024, 8, e143. [Google Scholar] [CrossRef]
- Haider, M.; Gangat, N.; Lasho, T.; Abou Hussein, A.K.; Elala, Y.C.; Hanson, C.; Tefferi, A. Validation of the Revised International Prognostic Score of Thrombosis for Essential Thrombocythemia (IPSET-Thrombosis) in 585 Mayo Clinic Patients. Am. J. Hematol. 2016, 91, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Vaghela, R.; Virdee, S.; Woodley, C.; Asirvatham, S.; Curto-Garcia, N.; Sriskandarajah, P.; O’Sullivan, J.; de Lavallade, H.; Radia, D.; et al. QRISK3 Score Is Predictive of Thrombotic Risk in Patients with Myeloproliferative Neoplasms. Leukemia 2025. [Google Scholar] [CrossRef]
- Tefferi, A.; Vannucchi, A.M.; Barbui, T. Polycythemia Vera: Historical Oversights, Diagnostic Details, and Therapeutic Views. Leukemia 2021, 35, 3339–3351. [Google Scholar] [CrossRef]
- Tartaglia, A.P.; Goldberg, J.D.; Berk, P.D.; Wasserman, L.R. Adverse Effects of Antiaggregating Platelet Therapy in the Treatment of Polycythemia Vera. Semin. Hematol. 1986, 23, 172–176. Available online: https://www.scirp.org/reference/referencespapers?referenceid=1847848 (accessed on 20 July 2025). [PubMed]
- Landolfi, R.; Marchioli, R.; Kutti, J.; Gisslinger, H.; Tognoni, G.; Patrono, C.; Barbui, T. Efficacy and Safety of Low-Dose Aspirin in Polycythemia Vera. N. Engl. J. Med. 2004, 350, 114–124. [Google Scholar] [CrossRef]
- Chen, A.; Stecker, E.; Warden, B.A. Direct Oral Anticoagulant Use: A Practical Guide to Common Clinical Challenges. J. Am. Heart Assoc. 2020, 9, e017559. [Google Scholar] [CrossRef]
- Raskob, G.E.; van Es, N.; Verhamme, P.; Carrier, M.; Di Nisio, M.; Garcia, D.; Grosso, M.A.; Kakkar, A.K.; Kovacs, M.J.; Mercuri, M.F.; et al. Edoxaban for the Treatment of Cancer-Associated Venous Thromboembolism. N. Engl. J. Med. 2018, 378, 615–624. [Google Scholar] [CrossRef]
- Barbui, T.; De Stefano, V.; Carobbio, A.; Iurlo, A.; Alvarez-Larran, A.; Cuevas, B.; Ferrer Marín, F.; Vannucchi, A.M.; Palandri, F.; Harrison, C.; et al. Direct Oral Anticoagulants for Myeloproliferative Neoplasms: Results from an International Study on 442 Patients. Leukemia 2021, 35, 2989–2993. [Google Scholar] [CrossRef]
- Fruchtman, S.M.; Mack, K.; Kaplan, M.E.; Peterson, P.; Berk, P.D.; Wasserman, L.R. From Efficacy to Safety: A Polycythemia Vera Study Group Report on Hydroxyurea in Patients with Polycythemia Vera: Polycythemia Vera. Semin. Hematol. 1997, 34, 17–23. [Google Scholar] [PubMed]
- Barbui, T.; Vannucchi, A.M.; Finazzi, G.; Finazzi, M.C.; Masciulli, A.; Carobbio, A.; Ghirardi, A.; Tognoni, G. A Reappraisal of the Benefit-Risk Profile of Hydroxyurea in Polycythemia Vera: A Propensity-Matched Study. Am. J. Hematol. 2017, 92, 1131–1136. [Google Scholar] [CrossRef]
- Kiladjian, J.J.; Chevret, S.; Dosquet, C.; Chomienne, C.; Rain, J.D. Treatment of Polycythemia Vera with Hydroxyurea and Pipobroman: Final Results of a Randomized Trial Initiated in 1980. J. Clin. Oncol. 2011, 29, 3907–3913. [Google Scholar] [CrossRef]
- Barosi, G.; Birgegard, G.; Finazzi, G.; Griesshammer, M.; Harrison, C.; Hasselbalch, H.C.; Kiladjian, J.J.; Lengfelder, E.; McMullin, M.F.; Passamonti, F.; et al. Response Criteria for Essential Thrombocythemia and Polycythemia Vera: Result of a European LeukemiaNet Consensus Conference. Blood 2009, 113, 4829–4833. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, M.H.; McCarthy, W.F.; Castro, O.; Ballas, S.K.; Armstrong, F.D.; Smith, W.; Ataga, K.; Swerdlow, P.; Kutlar, A.; DeCastro, L.; et al. The Risks and Benefits of Long-Term Use of Hydroxyurea in Sickle Cell Anemia: A 17.5 Year Follow-Up. Am. J. Hematol. 2010, 85, 403–408. [Google Scholar] [CrossRef]
- Kiladjian, J.J.; Giraudier, S.; Cassinat, B. Interferon-Alpha for the Therapy of Myeloproliferative Neoplasms: Targeting the Malignant Clone. Leukemia 2015, 30, 776–781. [Google Scholar] [CrossRef]
- Mascarenhas, J.; Kosiorek, H.E.; Prchal, J.T.; Rambaldi, A.; Berenzon, D.; Yacoub, A.; Harrison, C.N.; McMullin, M.F.; Vannucchi, A.M.; Ewing, J.; et al. A Randomized Phase 3 Trial of Interferon-α vs Hydroxyurea in Polycythemia Vera and Essential Thrombocythemia. Blood 2022, 139, 2931–2941. [Google Scholar] [CrossRef]
- Gisslinger, H.; Klade, C.; Georgiev, P.; Krochmalczyk, D.; Gercheva-Kyuchukova, L.; Egyed, M.; Rossiev, V.; Dulicek, P.; Illes, A.; Pylypenko, H.; et al. Ropeginterferon Alfa-2b versus Standard Therapy for Polycythaemia Vera (PROUD-PV and CONTINUATION-PV): A Randomised, Non-Inferiority, Phase 3 Trial and Its Extension Study. Lancet Haematol. 2020, 7, e196–e208. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Torre, E.; Palumbo, G.A.; Harrison, C. A Journey Through JAK Inhibitors for the Treatment of Myeloproliferative Diseases. Curr. Hematol. Malig. Rep. 2023, 18, 176–189. [Google Scholar] [CrossRef] [PubMed]
- Vannucchi, A.M.; Kiladjian, J.J.; Griesshammer, M.; Masszi, T.; Durrant, S.; Passamonti, F.; Harrison, C.N.; Pane, F.; Zachee, P.; Mesa, R.; et al. Ruxolitinib versus Standard Therapy for the Treatment of Polycythemia Vera. N. Engl. J. Med. 2015, 372, 426–435. [Google Scholar] [CrossRef]
- Passamonti, F.; Griesshammer, M.; Palandri, F.; Egyed, M.; Benevolo, G.; Devos, T.; Callum, J.; Vannucchi, A.M.; Sivgin, S.; Bensasson, C.; et al. Ruxolitinib for the Treatment of Inadequately Controlled Polycythaemia Vera without Splenomegaly (RESPONSE-2): A Randomised, Open-Label, Phase 3b Study. Lancet Oncol. 2017, 18, 88–99. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.N.; Nangalia, J.; Boucher, R.; Jackson, A.; Yap, C.; O’Sullivan, J.; Fox, S.; Ailts, I.; Dueck, A.C.; Geyer, H.L.; et al. Ruxolitinib Versus Best Available Therapy for Polycythemia Vera Intolerant or Resistant to Hydroxycarbamide in a Randomized Trial. J. Clin. Oncol. 2023, 41, 3534–3544. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Scarso, S.; Cupri, A.; Parrinello, N.L.; Villari, L.; Scuderi, G.; Giunta, G.; Leotta, S.; Milone, G.A.; Giuffrida, G.; et al. Leishmania Infection during Ruxolitinib Treatment: The Cytokines-Based Immune Response in the Setting of Immunocompromised Patients. J. Clin. Med. 2023, 12, 578. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, G.A.; Cambria, D.; La Spina, E.; Duminuco, A.; Laneri, A.; Longo, A.; Vetro, C.; Giallongo, S.; Romano, A.; Di Raimondo, F.; et al. Ruxolitinib Treatment in Myelofibrosis and Polycythemia Vera Causes Suboptimal Humoral Immune Response Following Standard and Booster Vaccination with BNT162b2 MRNA COVID-19 Vaccine. Front. Oncol. 2023, 13, 1117815. [Google Scholar] [CrossRef]
- Duminuco, A.; Nardo, A.; Orofino, A.; Giunta, G.; Conticello, C.; Del Fabro, V.; Chiarenza, A.; Parisi, M.S.; Figuera, A.; Leotta, S.; et al. Efficacy and Safety of Tixagevimab-Cilgavimab versus SARS-CoV-2 Breakthrough Infection in the Hematological Conditions. Cancer 2024, 130, 41–50. [Google Scholar] [CrossRef]
- Elli, E.M.; Baratè, C.; Mendicino, F.; Palandri, F.; Palumbo, G.A. Mechanisms Underlying the Anti-Inflammatory and Immunosuppressive Activity of Ruxolitinib. Front. Oncol. 2019, 9, 1186. [Google Scholar] [CrossRef]
- Lin, J.Q.; Li, S.Q.; Li, S.; Kiamanesh, E.F.; Aasi, S.Z.; Kwong, B.Y.; Su Chang, A.L. A 10-Year Retrospective Cohort Study of Ruxolitinib and Association with Nonmelanoma Skin Cancer in Patients with Polycythemia Vera and Myelofibrosis. J. Am. Acad. Dermatol. 2022, 86, 339–344. [Google Scholar] [CrossRef]
- Lussana, F.; Cattaneo, M.; Rambaldi, A.; Squizzato, A. Ruxolitinib-Associated Infections: A Systematic Review and Meta-Analysis. Am. J. Hematol. 2018, 93, 339–347. [Google Scholar] [CrossRef]
- Dioverti, M.V.; Abu Saleh, O.M.; Tande, A.J. Infectious Complications in Patients on Treatment with Ruxolitinib: Case Report and Review of the Literature. Infect. Dis. 2018, 50, 381–387. [Google Scholar] [CrossRef]
- Mesa, R.A.; Verstovsek, S.; Gupta, V.; Mascarenhas, J.O.; Atallah, E.; Burn, T.; Sun, W.; Sandor, V.; Gotlib, J. Effects of Ruxolitinib Treatment on Metabolic and Nutritional Parameters in Patients with Myelofibrosis from COMFORT-I. Clin. Lymphoma Myeloma Leuk. 2015, 15, 214–221.e1. [Google Scholar] [CrossRef]
- Palandri, F.; Breccia, M.; Morsia, E.; Elli, E.M.; Benevolo, G.; Tiribelli, M.; Beggiato, E.; Farina, M.; Caocci, G.; Pugliese, N.; et al. Treatment Strategies and Survival after Ruxolitinib Discontinuation in Myelofibrosis Patients: The Italian RUX-MF Multicenter Study. Leuk. Res. 2025, 154, 107719. [Google Scholar] [CrossRef]
- Passamonti, F.; Mora, B.; Maffioli, M. Management of Post ET/PV MF: Different from Primary MF. Clin. Lymphoma Myeloma Leuk. 2017, 17, S24–S26. [Google Scholar] [CrossRef]
- Duminuco, A.; Chifotides, H.T.; Giallongo, S.; Giallongo, C.; Tibullo, D.; Palumbo, G.A. ACVR1: A Novel Therapeutic Target to Treat Anemia in Myelofibrosis. Cancers 2023, 16, 154. [Google Scholar] [CrossRef]
- Chifotides, H.T.; Duminuco, A.; Torre, E.; Vetro, C.; Harrington, P.; Palumbo, G.A.; Bose, P. Emerging Therapeutic Approaches for Anemia in Myelofibrosis. Curr. Hematol. Malig. Rep. 2025, 20, 7. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Vetro, C.; Giallongo, C.; Palumbo, G.A. The Pharmacotherapeutic Management of Patients with Myelofibrosis: Looking beyond JAK Inhibitors. Expert Opin. Pharmacother. 2023, 24, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Duminuco, A.; Del Fabro, V.; De Luca, P.; Leotta, D.; Limoli, M.C.; Longo, E.; Nardo, A.; Santuccio, G.; Petronaci, A.; Stanzione, G.; et al. Emergencies in Hematology: Why, When and How I Treat? J. Clin. Med. 2024, 13, 7572. [Google Scholar] [CrossRef]
- Duminuco, A.; Nardo, A.; Palumbo, G.A. Occurrence of Lymphoproliferative Disorders during Ruxolitinib Treatment: May Fedratinib Be the Turning Point? Hematol. Oncol. 2024, 42, e3259. [Google Scholar] [CrossRef]
- Kuykendall, A.T.; Fine, J.T.; Kremyanskaya, M. Contemporary Challenges in Polycythemia Vera Management From the Perspective of Patients and Physicians. Clin. Lymphoma Myeloma Leuk. 2024, 24, 512–522. [Google Scholar] [CrossRef]
- Pasricha, S.R.; McHugh, K.; Drakesmith, H. Regulation of Hepcidin by Erythropoiesis: The Story so Far. Annu. Rev. Nutr. 2016, 36, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, Y.Z.; Feola, M.; Zimran, E.; Varkonyi, J.; Ganz, T.; Hoffman, R. Dysregulated Iron Metabolism in Polycythemia Vera: Etiology and Consequences. Leukemia 2018, 32, 2105–2116. [Google Scholar] [CrossRef]
- Gerds, A.T.; Kuykendall, A.T.; Kremyanskaya, M.; Ritchie, E.K.; Gotlib, J.; Palmer, J.; Pettit, K.M.; Priego, V.; Nath, U.K.; Yacoub, A.; et al. Final Results from the Phase 2 Revive Study Investigating the Hepcidin Mimetic Rusfertide in Patients with Polycythemia Vera (PV). Blood 2024, 144, 4559. [Google Scholar] [CrossRef]
- Ramsay, A.J.; Hooper, J.D.; Folgueras, A.R.; Velasco, G.; López-Otín, C. Matriptase-2 (TMPRSS6): A Proteolytic Regulator of Iron Homeostasis. Haematologica 2009, 94, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Carden, M. Single- and Multiple-Ascending Doses of Disc-3405, A Recombinant Humanized Antibody Targeting Tmprss6, Increased Hepcidin and Reduced Iron and Hematocrit in Healthy Volunteers. EHA-1724. 14 June 2025. Available online: https://library.ehaweb.org/eha/2025/eha2025-congress/4161281/marcus.carden.single-.and.multiple-ascending.doses.of.disc-3405.a.recombinant.html?f=listing%3D0%2Abrowseby%3D8%2Asortby%3D2%2Atopic%3D1574%2Asearch%3Dconcept (accessed on 20 July 2025).
- Silvestri, L.; Pagani, A.; Nai, A.; De Domenico, I.; Kaplan, J.; Camaschella, C. The Serine Protease Matriptase-2 (TMPRSS6) Inhibits Hepcidin Activation by Cleaving Membrane Hemojuvelin. Cell Metab. 2008, 8, 502–511. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.; Parhiz, H.; Rivella, S. Novel Potential Therapeutics to Modify Iron Metabolism and Red Cell Synthesis in Diseases Associated with Defective Erythropoiesis. Haematologica 2023, 108, 2582–2593. [Google Scholar] [CrossRef]
- Rienhoff, H.Y.; Gill, H. Bomedemstat as an Investigative Treatment for Myeloproliferative Neoplasms. Expert Opin. Investig. Drugs 2023, 32, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Gill, H. Lysine-Specific Demethylase 1 (LSD1/KDM1A) Inhibition as a Target for Disease Modification in Myelofibrosis. Cells 2022, 11, 2107. [Google Scholar] [CrossRef]
- Chifotides, H.T.; Bose, P.; Verstovsek, S. Givinostat: An Emerging Treatment for Polycythemia Vera. Expert Opin. Investig. Drugs. 2020, 29, 525–536. [Google Scholar] [CrossRef]
- Amaru Calzada, A. Mechanism of Action of Histone Deacetylase Inhibitor. Givinostat in Chronic Myeloproliferative Neoplasm. Ph.D. Thesis, University of Milano-Bicocca, Milan, Italy, 2025. [Google Scholar]
- Finazzi, G.; Caruso, V.; Marchioli, R.; Capnist, G.; Chisesi, T.; Finelli, C.; Gugliotta, L.; Landolfi, R.; Kutti, J.; Gisslinger, H.; et al. Acute Leukemia in Polycythemia Vera: An Analysis of 1638 Patients Enrolled in a Prospective Observational Study. Blood 2005, 105, 2664–2670. [Google Scholar] [CrossRef]
- Ahmed, A.U.; Williams, B.R.G.; Hannigan, G.E. Transcriptional Activation of Inflammatory Genes: Mechanistic Insight into Selectivity and Diversity. Biomolecules 2015, 5, 3087. [Google Scholar] [CrossRef]
- Finazzi, G.; Vannucchi, A.M.; Martinelli, V.; Ruggeri, M.; Nobile, F.; Specchia, G.; Pogliani, E.M.; Olimpieri, O.M.; Fioritoni, G.; Musolino, C.; et al. A Phase II Study of Givinostat in Combination with Hydroxycarbamide in Patients with Polycythaemia Vera Unresponsive to Hydroxycarbamide Monotherapy. Br. J. Haematol. 2013, 161, 688–694. [Google Scholar] [CrossRef]
- Assi, T.B.; Baz, E. Current Applications of Therapeutic Phlebotomy. Blood Transfus. 2014, 12 (Suppl. 1), s75–s83. [Google Scholar] [CrossRef]
- Barbui, T.; Finazzi, M.C.; Finazzi, G. Front-Line Therapy in Polycythemia Vera and Essential Thrombocythemia. Blood Rev. 2012, 26, 205–211. [Google Scholar] [CrossRef]
- Kiraly, J.F.; Feldmann, J.E.; Wheby, M.S. Hazards of Phlebotomy in Polycythemic Patients With Cardiovascular Disease. JAMA 1976, 236, 2080–2081. [Google Scholar] [CrossRef]
- Thorne, S.A. Management of Polycythaemia in Adults with Cyanotic Congenital Heart Disease. Heart 1998, 79, 315–316. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Boluda, J.C.; Gómez, M. Target Hematologic Values in the Management of Essential Thrombocythemia and Polycythemia Vera. Eur. J. Haematol. 2015, 94, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Anastasi, J.; Vardiman, J.W. Myeloproliferative Neoplasms. In Knowles’ Neoplastic Hematopathology, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014; pp. 1108–1139. [Google Scholar]
- Geyer, H.; Scherber, R.; Kosiorek, H.; Dueck, A.C.; Kiladjian, J.J.; Xiao, Z.; Slot, S.; Zweegman, S.; Sackmann, F.; Fuentes, A.K.; et al. Symptomatic Profiles of Patients with Polycythemia Vera: Implications of Inadequately Controlled Disease. J. Clin. Oncol. 2016, 34, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Passamonti, F.; Accorsi, P.; Pane, F.; Vannucchi, A.M.; Velati, C.; Gale, R.P.; Tura, S.; Barosi, G. Evidence- and Consensus-Based Recommendations for Phlebotomy in Polycythemia Vera. Leukemia 2018, 32, 2077–2081. [Google Scholar] [CrossRef]
- McMullin, M.F.; Harrison, C.N. How I Treat Patients with Low-Risk Polycythemia Vera Who Require Cytoreduction. Blood 2025, 145, 1717–1723. [Google Scholar] [CrossRef]
Agents | Description | Clinical Results | Side Effects |
---|---|---|---|
Rusfertide | Synthetic hepcidin mimetic that reduces iron export | Significant reduction in phlebotomy requirements, with over 80% of patients achieving phlebotomy independence | Injection site reactions, fatigue, pruritus; grade 3 adverse events in about a quarter of patients |
TMPRSS6 Inhibitors | Inhibitors of TMPRSS6 that increase hepcidin expression | Effective in preclinical models of β-thalassemia and PV | No serious adverse events in participants; favorable pharmacokinetic profile with monthly dosing |
Anti-Hemojuvelin (HJV) Antibodies | Modulate BMP-SMAD-hepcidin signaling axis | Early-stage development; primarily studied in β-thalassemia and anemia of inflammation | - |
Bomedemstat (IMG-7289) | Inhibitor of lysine-specific demethylase 1 (LSD1) involved in hematopoietic stem cell self-renewal and myeloid differentiation | Achieved durable Hct control without phlebotomy in about 65% of patients at 24 weeks; improved symptom burden, maintained molecular stability | No progression to acute leukemia; no significant adverse effects reported |
Givinostat | Selective inhibitor of class I and II histone deacetylases (HDACs) with anti-proliferative, anti-inflammatory, and pro-apoptotic effects | Significant hematologic and symptomatic improvement; over 80% of patients achieved Hct control without phlebotomy with complete or partial response rates of 50–55% and good control of pruritus | Gastrointestinal symptoms, elevated liver enzymes, mild thrombocytopenia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duminuco, A.; Harrington, P.; Del Fabro, V.; Scalisi, E.; Santuccio, G.; Santisi, A.; Sbriglione, A.; Garibaldi, B.; Markovic, U.; Di Raimondo, F.; et al. Old Therapy, New Questions: Rethinking Phlebotomy in a Pharmacologic Landscape. Pharmaceuticals 2025, 18, 1212. https://doi.org/10.3390/ph18081212
Duminuco A, Harrington P, Del Fabro V, Scalisi E, Santuccio G, Santisi A, Sbriglione A, Garibaldi B, Markovic U, Di Raimondo F, et al. Old Therapy, New Questions: Rethinking Phlebotomy in a Pharmacologic Landscape. Pharmaceuticals. 2025; 18(8):1212. https://doi.org/10.3390/ph18081212
Chicago/Turabian StyleDuminuco, Andrea, Patrick Harrington, Vittorio Del Fabro, Elvira Scalisi, Gabriella Santuccio, Annalisa Santisi, Arianna Sbriglione, Bruno Garibaldi, Uros Markovic, Francesco Di Raimondo, and et al. 2025. "Old Therapy, New Questions: Rethinking Phlebotomy in a Pharmacologic Landscape" Pharmaceuticals 18, no. 8: 1212. https://doi.org/10.3390/ph18081212
APA StyleDuminuco, A., Harrington, P., Del Fabro, V., Scalisi, E., Santuccio, G., Santisi, A., Sbriglione, A., Garibaldi, B., Markovic, U., Di Raimondo, F., Palumbo, G. A., Pugliese, N., & Vetro, C. (2025). Old Therapy, New Questions: Rethinking Phlebotomy in a Pharmacologic Landscape. Pharmaceuticals, 18(8), 1212. https://doi.org/10.3390/ph18081212