Leveraging Natural Compounds for Pancreatic Lipase Inhibition via Virtual Screening
Abstract
1. Introduction
2. Results
2.1. Computational Identification of Selective Binders
2.2. Evaluation of Pancreatic Lipase Inhibitory Activity
2.3. Molecular Dynamics (MD) Simulations
3. Discussion
4. Materials and Methods
4.1. Database Preparation
4.2. Receptor Preparation
4.3. Structure-Based Virtual Screening (SBVS)
4.4. Post-Docking Filtering and Clustering for Hit Selection
4.5. In Vitro Pancreatic Lipase Inhibition
4.6. Molecular Dynamics Simulations (MD)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PL | Pancreatic Lipase |
SBVS | Structure-Based Virtual Screening |
ROC | Receiver Operating Characteristic |
AUC | Area Under the Curve |
EF | Enrichment Factors |
ORL | Orlistat |
G-Score | Glide XP Docking Score |
IC50 | Half Maximal Inhibitory Concentration |
MD | Molecular Dynamics |
RMSD | Root Mean Square Deviation |
PDB | Protein Data Bank |
OPLS | Optimized Potentials for Liquid Simulations |
DUD-E | Directory of Useful Decoys, Enhanced |
TPSA | Topological Polar Surface Area |
PBS | Phosphate Buffer |
OD | Optical Density |
MTK_NPT | Martyna–Tobias–Klein for NPT Ensemble |
NVT | Canonical Ensemble |
NPT | Isothermal–Isobaric Ensemble |
RMSF | Root Mean Square Fluctuation |
References
- Lingvay, I.; Cohen, R.V.; Roux, C.W.L.; Sumithran, P. Obesity in adults. Lancet 2024, 404, 972–987. [Google Scholar] [CrossRef] [PubMed]
- Gilden, A.H.; Catenacci, V.A.; Taormina, J.M. Obesity. Ann. Intern. Med. 2024, 177, ITC65–ITC80. [Google Scholar] [CrossRef]
- Welsh, A.; Hammad, M.; Piña, I.L.; Kulinski, J. Obesity and cardiovascular health. Eur. J. Prev. Cardiol. 2024, 31, 1026–1035. [Google Scholar] [CrossRef]
- Gonzalez-Gutierrez, L.; Motiño, O.; Barriuso, D.; de la Puente-Aldea, J.; Alvarez-Frutos, L.; Kroemer, G.; Palacios-Ramirez, R.; Senovilla, L. Obesity-Associated Colorectal Cancer. Int. J. Mol. Sci. 2024, 25, 8836. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; He, W.; Yang, G.; Zhu, L.; Liu, X. The Impact of Weight Cycling on Health and Obesity. Metabolites 2024, 14, 344. [Google Scholar] [CrossRef]
- Omer, E.; Chiodi, C. Fat digestion and absorption: Normal physiology and pathophysiology of malabsorption, including diagnostic testing. Nutr. Clin. Pract. 2024, 39 (Suppl. S1), S6–S16. [Google Scholar] [CrossRef]
- Ren, C.; Cao, Z.; Liu, Y.; Wang, R.; Lin, C.; Wang, Z. Medicinal chemistry aspects of fat mass and obesity associated protein: Structure, function and inhibitors. Future Med. Chem. 2024, 16, 1705–1726. [Google Scholar] [CrossRef]
- Kumar, A.; Chauhan, S. Pancreatic lipase inhibitors: The road voyaged and successes. Life Sci. 2021, 271, 119115. [Google Scholar] [CrossRef]
- Feng, X.; Lin, Y.; Zhuo, S.; Dong, Z.; Shao, C.; Ye, J.; Zhong, B. Treatment of obesity and metabolic-associated fatty liver disease with a diet or orlistat: A randomized controlled trial. Am. J. Clin. Nutr. 2023, 117, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Heck, A.M.; Yanovski, J.A.; Calis, K.A. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy 2000, 20, 270–279. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Derdemezis, C.S.; Gazi, I.F.; Nakou, E.S.; Mikhailidis, D.P.; Elisaf, M.S. Orlistat-associated adverse effects and drug interactions: A critical review. Drug Saf. 2008, 31, 53–65. [Google Scholar] [CrossRef]
- Bialecka-Florjanczyk, E.; Fabiszewska, A.U.; Krzyczkowska, J.; Kurylowicz, A. Synthetic and Natural Lipase Inhibitors. Mini Rev. Med. Chem. 2018, 18, 672–683. [Google Scholar] [CrossRef]
- Faraone, I.; Russo, D.; Genovese, S.; Milella, L.; Monné, M.; Epifano, F.; Fiorito, S. Screening of in vitro and in silico α-amylase, α-glucosidase, and lipase inhibitory activity of oxyprenylated natural compounds and semisynthetic derivatives. Phytochemistry 2021, 187, 112781. [Google Scholar] [CrossRef] [PubMed]
- He, X.Q.; Zou, H.D.; Liu, Y.; Chen, X.J.; Atanasov, A.G.; Wang, X.L.; Xia, Y.; Ng, S.B.; Matin, M.; Wu, D.T.; et al. Discovery of Curcuminoids as Pancreatic Lipase Inhibitors from Medicine-and-Food Homology Plants. Nutrients 2024, 16, 2566. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Q.; He, W.Y.; Yang, S.Y.; Ma, H.H.; Zhou, J.; Li, H.; Zhu, Y.D.; Qian, X.K.; Zou, L.W. Discovery of natural anthraquinones as potent inhibitors against pancreatic lipase: Structure-activity relationships and inhibitory mechanism. J. Enzyme Inhib. Med. Chem. 2024, 39, 2398561. [Google Scholar] [CrossRef]
- Buchholz, T.; Melzig, M.F. Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta Med. 2015, 81, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Cardullo, N.; Muccilli, V.; Pulvirenti, L.; Tringali, C. Natural Isoflavones and Semisynthetic Derivatives as Pancreatic Lipase Inhibitors. J. Nat. Prod. 2021, 84, 654–665. [Google Scholar] [CrossRef]
- Maruca, A.; Ambrosio, F.A.; Lupia, A.; Romeo, I.; Rocca, R.; Moraca, F.; Talarico, C.; Bagetta, D.; Catalano, R.; Costa, G. 12. Computer-based techniques for lead identification and optimization I: Basics. In Fundamental Concepts; De Gruyter: Berlin, Germany, 2020; pp. 311–332. [Google Scholar]
- Lupia, A.; Moraca, F.; Bagetta, D.; Maruca, A.; Ambrosio, F.A.; Rocca, R.; Catalano, R.; Romeo, I.; Talarico, C.; Ortuso, F. Computer-based techniques for lead identification and optimization II: Advanced search methods. Phys. Sci. Rev. 2020, 5, 20180114. [Google Scholar] [CrossRef]
- Sciacca, C.; Cardullo, N.; Pulvirenti, L.; Di Francesco, A.; Muccilli, V. Evaluation of honokiol, magnolol and of a library of new nitrogenated neolignans as pancreatic lipase inhibitors. Bioorg. Chem. 2023, 134, 106455. [Google Scholar] [CrossRef] [PubMed]
- Cardullo, N.; Calcagno, D.; Pulvirenti, L.; Sciacca, C.; Pittalà, M.G.G.; Maccarronello, A.E.; Thevenard, F.; Muccilli, V. Flavonoids with lipase inhibitory activity from lemon squeezing waste: Isolation, multispectroscopic and in silico studies. J. Sci. Food Agric. 2024, 104, 7639–7648. [Google Scholar] [CrossRef]
- Yang, L.; Cao, S.; Xie, M.; Shi, T. Virtual screening, activity evaluation, and stability of pancreatic lipase inhibitors in the gastrointestinal degradation of nattokinase. Heliyon 2024, 10, e24868. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Pan, F.; Zhu, Z.; Yang, Z.; Wang, O.; Li, Q.; Zhao, L. Construction of a QSAR Model Based on Flavonoids and Screening of Natural Pancreatic Lipase Inhibitors. Nutrients 2023, 15, 3489. [Google Scholar] [CrossRef]
- Zloh, M.; Kirton, S.B. The benefits of in silico modeling to identify possible small-molecule drugs and their off-target interactions. Future Med. Chem. 2018, 10, 423–432. [Google Scholar] [CrossRef]
- Schierle, S.; Neumann, S.; Heitel, P.; Willems, S.; Kaiser, A.; Pollinger, J.; Merk, D. Design and Structural Optimization of Dual FXR/PPARδ Activators. J. Med. Chem. 2020, 63, 8369–8379. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Shen, S.; Jiang, X.; Liu, Y.; Li, J.; Chen, W.; Wang, Y.; Shi, J.; Liu, J.; Ma, S.; et al. Discovery of Azo-Aminopyrimidines as Novel and Potent Chitinase O. J. Agric. Food Chem. 2022, 70, 12203–12210. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.B.; Giacomoni, F.; Pavot, B.; Fillatre, Y.; Rothwell, J.; Sualdea, B.B.; Veyrat, C.; Garcia-Villalba, R.; Gladine, C.; Kopec, R.; et al. PhytoHub V1.4: A new release for the online database dedicated to food phytochemicals and their human metabolites. In Proceedings of the 1. International Conference on Food Bioactives & Health, Norwich, UK, 13 September 2016. [Google Scholar]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Maestro, Schrödinger Release 2023-1; Schrödinger, LLC: New York, NY, USA, 2023.
- Visioli, F.; Galli, C. The role of antioxidants in the Mediterranean diet. Lipids 2001, 36, S49–S52. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64 (Suppl. 3), S112–S120. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef]
- Adlercreutz, H. Lignans and human health. Crit. Rev. Clin. Lab. Sci. 2007, 44, 483–525. [Google Scholar] [CrossRef] [PubMed]
- De Silva, S.F.; Alcorn, J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals 2019, 12, 68. [Google Scholar] [CrossRef] [PubMed]
- Rowland, I.; Faughnan, M.; Hoey, L.; Wähälä, K.; Williamson, G.; Cassidy, A. Bioavailability of phyto-oestrogens. Br. J. Nutr. 2003, 89 (Suppl. 1), S45–S58. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.Q.; Di, J.M.; Luo, Y.; Cheng, K.J.; Wei, X.; Shi, Z. Resveratrol oligomers for the prevention and treatment of cancers. Oxid. Med. Cell Longev. 2014, 2014, 765832. [Google Scholar] [CrossRef]
- Buckland, G.; Bach, A.; Serra-Majem, L. Obesity and the Mediterranean diet: A systematic review of observational and intervention studies. Obes. Rev. 2008, 9, 582–593. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. Retraction and Republication: Primary Prevention of Cardiovascular Disease with a Mediterranean Diet. N. Eng. J. Med. 2013, 368, 1279–1290, reprinted in N. Engl. J. Med. 2018, 378, 2441–2442. [Google Scholar] [CrossRef]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health Benefits of the Mediterranean Diet: Metabolic and Molecular Mechanisms. J. Gerontol. Ser. A 2018, 73, 318–326. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Kastorini, C.M.; Milionis, H.J.; Esposito, K.; Giugliano, D.; Goudevenos, J.A.; Panagiotakos, D.B. The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011, 57, 1299–1313. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef]
- Ohara, K.; Kusano, K.; Kitao, S.; Yanai, T.; Takata, R.; Kanauchi, O. ε-Viniferin, a resveratrol dimer, prevents diet-induced obesity in mice. Biochem. Biophys. Res. Commun. 2015, 468, 877–882. [Google Scholar] [CrossRef]
- Ji, Y.L.; Feng, X.; Chang, Y.Q.; Zheng, Y.G.; Hou, F.J.; Zhang, D.; Guo, L. Chemical characterization of different parts of Forsythia suspensa and α-glucosidase and pancreatic lipase inhibitors screening based on UPLC-QTOF-MS/MS and plant metabolomics analysis. Arab. J. Chem. 2024, 17, 105723. [Google Scholar] [CrossRef]
- Schrödinger, LLC. LigPrep, v4.5; Schrödinger, LLC: New York, NY, USA, 2018.
- Yadav, M.; Singh, V.P. Glutathione Peroxidase-like Antioxidant Activity of 1,3-Benzoselenazoles: Synthesis and In Silico Molecular Docking Studies as Pancreatic Lipase Inhibitors. J. Org. Chem. 2023, 88, 16934–16948. [Google Scholar] [CrossRef]
- Samira, N.; Khedidja, B.; Zahra, A.F.; Elyakine, C.K.N.; Mohamed, Y. In silico and in vitro Study of the Inhibitory Effect of Antiinflammatory Drug Betamethasone on Two Lipases. Antiinflamm. Antiallergy Agents Med. Chem. 2020, 19, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- van Tilbeurgh, H.; Egloff, M.P.; Martinez, C.; Rugani, N.; Verger, R.; Cambillau, C. Interfacial activation of the lipase–procolipase complex by mixed micelles revealed by X-ray crystallography. Biochemistry 1993, 32, 6170–6177. [Google Scholar] [CrossRef]
- Protein Preparation Wizard, v4.1; Epik, Schrodinger Schrödinger, LLC: New York, NY, USA, 2018.
- Shivakumar, D.; Harder, E.; Damm, W.; Friesner, R.A.; Sherman, W. Improving the Prediction of Absolute Solvation Free Energies Using the Next Generation OPLS Force Field. J. Chem. Theory Comput. 2012, 8, 2553–2558. [Google Scholar] [CrossRef]
- Lowe, M.E. Structure and function of pancreatic lipase and colipase. Annu. Rev. Nutr. 1997, 17, 141–158. [Google Scholar] [CrossRef]
- Glide, v7.8; Schrödinger, LLC: New York, NY, USA, 2018.
- Liu, T.; Hwang, L.; Burley, S.K.; Nitsche, C.I.; Southan, C.; Walters, W.P.; Gilson, M.K. BindingDB in 2024: A FAIR knowledgebase of protein-small molecule binding data. Nucleic Acids Res. 2025, 53, D1633–D1644. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Shoichet, B.K.; Irwin, J.J. Benchmarking sets for molecular docking. J. Med. Chem. 2006, 49, 6789–6801. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger. Desmond Molecular Dynamics System ver. 4.4; Schrödinger: New York, NY, USA; D. E. Shaw Research: New York, NY, USA, 2021. [Google Scholar]
- Nayar, D.; Agarwal, M.; Chakravarty, C. Comparison of Tetrahedral Order, Liquid State Anomalies, and Hydration Behavior of mTIP3P and TIP4P Water Models. J. Chem. Theory Comput. 2011, 7, 3354–3367. [Google Scholar] [CrossRef] [PubMed]
Cluster Number | PhytoHub ID Database | Common Name | 2D Structure | G-Score (Kcal/mol) |
---|---|---|---|---|
5 | PHUB001408 | Curcumin | −7.93 | |
15 | PHUB000235 | Archangelicin | −8.16 | |
14 | PHUB000318 | Ɛ-Viniferin | −9.13 | |
20 | PHUB000255 | Diidroxybergamottin | −9.23 | |
11 | PHUB001722 | Isolariciresinol | −9.49 | |
16 | PHUB001389 | Pinoresinol | −10.00 |
Compound | IC50 (µM) |
---|---|
Orlistat | 0.15 ± 0.02 e |
Pinoresinol | 10.1 ± 0.3 d |
Isolariciresinol | 12.3 ± 1.2 d |
ε-Viniferin | 13.2 ± 0.6 d |
Archangelicin | 49.3 ± 1.4 b |
Curcumin | 36.5 ± 4.8 c |
Diidroxybergamottin | 84.5 ± 1.5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Citriniti, E.L.; Rocca, R.; Sciacca, C.; Cardullo, N.; Muccilli, V.; Ortuso, F.; Alcaro, S. Leveraging Natural Compounds for Pancreatic Lipase Inhibition via Virtual Screening. Pharmaceuticals 2025, 18, 1246. https://doi.org/10.3390/ph18091246
Citriniti EL, Rocca R, Sciacca C, Cardullo N, Muccilli V, Ortuso F, Alcaro S. Leveraging Natural Compounds for Pancreatic Lipase Inhibition via Virtual Screening. Pharmaceuticals. 2025; 18(9):1246. https://doi.org/10.3390/ph18091246
Chicago/Turabian StyleCitriniti, Emanuele Liborio, Roberta Rocca, Claudia Sciacca, Nunzio Cardullo, Vera Muccilli, Francesco Ortuso, and Stefano Alcaro. 2025. "Leveraging Natural Compounds for Pancreatic Lipase Inhibition via Virtual Screening" Pharmaceuticals 18, no. 9: 1246. https://doi.org/10.3390/ph18091246
APA StyleCitriniti, E. L., Rocca, R., Sciacca, C., Cardullo, N., Muccilli, V., Ortuso, F., & Alcaro, S. (2025). Leveraging Natural Compounds for Pancreatic Lipase Inhibition via Virtual Screening. Pharmaceuticals, 18(9), 1246. https://doi.org/10.3390/ph18091246