Phytochemical Analysis and Anti-Ulcer Potential of Phenolic Compounds of Inonotus nidus-pici Pilát
Abstract
1. Introduction
2. Results
2.1. Spectrophotometric Analysis of Main Phenolic Compounds
2.2. HPLC Analysis of Flavonoid and Phenolic Acid Profiles in EPE (Enriched Phenolic Extract) from the Dry-Weight Extract (DWE)
2.3. Antioxidant Capacity of EPE
2.4. Macroscopic Evaluation of Gastric Ulcers
2.5. Histological Analysis of Gastric Ulcers
3. Discussion
- -
- Anti-inflammatory effect associated with a reduction in the expression of inflammatory cytokines (TNF-α, IL-6, and IL-1β) involved in gastrointestinal inflammation. Similar patterns have been observed in colitis, suggesting a role in alleviating conditions such as inflammatory bowel disease (IBD).
- -
- Antioxidant properties due to complexes of terpenoids and phenols, which show significant antioxidant effects. They help reduce oxidative stress and protect the gastrointestinal mucosa from damage.
- -
- The anticancer properties of Chaga point to its use in treating cancers, especially colorectal cancer. Compounds such as ergosterol show similar activity, inhibiting the proliferation of colorectal cancer cells and inducing apoptosis.
4. Materials and Methods
4.1. Spectrophotometric Analysis
4.1.1. Spectrophotometric Quantification of Total Phenols and Tannins
4.1.2. Spectrophotometric Quantification of Flavonoids
4.1.3. Spectrophotometric Quantification of Phenolic Acids
4.2. Extraction Method for the Enrichment of Phenolic Extract (EPE) from Substances
4.3. High-Performance Liquid Chromatography Analysis of Flavonoids and Phenolic Acids from Enriched Phenol Extract (EPE)
4.4. Antioxidant Activity
4.4.1. ABTS Assay
4.4.2. DPPH Assay
4.4.3. CUPRAC Assay
4.4.4. FRAP Assay
4.5. Animals
4.5.1. Experimental Design
4.5.2. Macroscopic Evaluation of Gastric Ulcers
4.5.3. Histopathological Evaluation of Gastric Mucosal Injury
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HPLC | High-performance liquid chromatography |
EPE | Enriched phenolic extract |
DWE | Dry-weight extract |
TE | Trolox equivalent |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
UI | Ulcer index |
FRAP | Ferric Reducing Antioxidant Power |
CUPRAC | Cupric Reducing Antioxidant Capacity |
References
- Garádi, Z.; Dékány, M.; Móricz, Á.M.; Gaál, A.; Papp, V.; Béni, S.; Ványolós, A. Antimicrobial, Antioxidant and Antiproliferative Secondary Metabolites from Inonotus nidus-pici. Molecules 2021, 26, 5453. [Google Scholar] [CrossRef]
- Szychowski, K.; Skóra, B.; Pomianek, T.; Gminski, J. Inonotus obliquus: From folk medicine to clinical use. J. Tradit. Complement. Med. 2021, 11, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Blagodatski, A.; Yatsunskaya, M.; Mikhailova, V.; Tiasto, V.; Kagansky, A.; Katanaev, V.L. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 2018, 9, 29259–29274. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Miao, K.; Liu, Y.; Zhao, Y.; Zhang, M.; Pan, S.; Dai, Y. Chemical Diversity of Biologically Active Metabolites in the Sclerotia of Inonotus obliquus and Submerged Culture Strategies for Up-Regulating Their Production. Appl. Microbiol. Biotechnol. 2010, 87, 1237–1254. [Google Scholar] [CrossRef]
- Milenković, I.; Radulović, Z.; Tomšovský, M.; Sikora, K.; Golubović Ćurguz, V.; Jovanović, D.; Karadžić, D. Distribution and New Hosts of the Parasitic Fungus Inonotus nidus-pici in Serbia. Glas. Šum. Fak. Univ. Banjoj Luci 2022, 32, 5–16. [Google Scholar] [CrossRef]
- Wang, Y.; Ouyang, F.; Teng, C.; Qu, J. Optimization for the Extraction of Polyphenols from Inonotus obliquus and Its Antioxidation Activity. Prep. Biochem. Biotechnol. 2021, 51, 852–859. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Critch, A.L.; Manful, C.F.; Rajakaruna, A.; Vidal, N.P.; Pham, T.H.; Cheema, M.; Thomas, R. Effects of pH and Temperature on Water under Pressurized Conditions in the Extraction of Nutraceuticals from Chaga (Inonotus obliquus) Mushroom. Antioxidants 2021, 10, 1322. [Google Scholar] [CrossRef]
- Hao, R.; Li, Y.; Shan, S.; Xu, H.; Li, J.; Li, Z.; Li, R. Antioxidant Potential of Styrene Pyrone Polyphenols from Inonotus obliquus: A Combined Experimental, Density Functional Theory (DFT) Approach and Molecular Dynamic (MD) Simulation. J. Saudi Chem. Soc. 2023, 27, 101652. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, W.; Shen, M. Antioxidant Activity of Liquid Cultured Inonotus obliquus Polyphenols Using Tween-20 as a Stimulatory Agent: Correlation of the Activity and the Phenolic Profiles. J. Taiwan Inst. Chem. Eng. 2016, 69, 41–47. [Google Scholar] [CrossRef]
- Zhao, W.; Huang, P.; Zhu, Z.; Chen, C.; Xu, X. Production of Phenolic Compounds and Antioxidant Activity via Bioconversion of Wheat Straw by Inonotus obliquus under Submerged Fermentation with the Aid of a Surfactant. J. Sci. Food Agric. 2021, 101, 1021–1029. [Google Scholar] [CrossRef]
- Ern, P.T.Y.; Quan, T.Y.; Yee, F.S.; Yin, A.C.Y. Therapeutic Properties of Inonotus obliquus (Chaga Mushroom): A Review. Mycology 2024, 15, 144–161. [Google Scholar] [CrossRef] [PubMed]
- Angelini, P.; Girometta, C.; Tirillini, B.; Moretti, S.; Covino, S.; Cipriani, M.; D’Ellena, E.; Angeles, G.; Federici, E.; Savino, E.; et al. A comparative study of the antimicrobial and antioxidant activities of Inonotus hispidus fruit and their mycelia extracts. Int. J. Food Prop. 2019, 22, 768–783. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Feng, X.-L.; Liu, C.; Gao, J.-M.; Qi, J. Diverse metabolites and pharmacological effects from the basidiomycetes Inonotus hispidus. Antibiotics 2022, 11, 1097. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Qu, J.; Veeraraghavan, V.P.; Mohan, S.K.; Gu, K. Assessment of the Gastroprotective Effect of the Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes), Against the Gastric Mucosal Ulceration Induced by Ethanol in Experimental Rats. Int. J. Med. Mushrooms 2019, 21, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Zan, L.-F.; Bao, H.-Y. Progress in Inonotus hispidus research. Acta Edulis Fungi 2011, 18, 78–82. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019; Volume 1, p. 310.
- Georgiev, K.; Iliev, I.; Jelev, I. Antitumor Effects of Pu-erh Tea Catechins in Human Cancer Cell Lines and Evaluation of Combination Effects with Oxaliplatin. World J. Pharm. Res. 2015, 4, 438–444. [Google Scholar]
- Marchev, A.; Georgiev, V.; Ivanov, I.; Badjakov, I.; Pavlov, A. Two-Phase Temporary Immersion System for Agrobacterium rhizogenes Genetic Transformation of Sage (Salvia tomentosa Mill.). Biotechnol. Lett. 2011, 33, 1873–1878. [Google Scholar] [CrossRef]
- Ivanov, I.G.; Vrancheva, R.Z.; Marchev, A.S.; Petkova, N.T.; Aneva, Y.; Denev, P.P.; Georgiev, V.G.; Pavlov, A.I. Antioxidant Activities and Phenolic Compounds in Bulgarian Fumaria Species. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 296–306. [Google Scholar]
- Kivrak, I.; Duru, M.E.; Öztürk, M.; Mercan, N.; Harmandar, M.; Topçu, G. Antioxidant, Anticholinesterase and Antimicrobial Constituents from the Essential Oil and Ethanol Extract of Salvia potentillifolia. Food Chem. 2009, 116, 470–479. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E.; Erçağ, E. The Cupric Ion Reducing Antioxidant Capacity and Polyphenolic Content of Some Herbal Teas. Int. J. Food Sci. Nutr. 2006, 57, 292–304. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; pp. 15–27. [Google Scholar] [CrossRef]
- Dekanski, J.B.; Macdonald, A.; Sacra, P. Effects of Fasting, Stress and Drugs on Gastric Glycoprotein Synthesis in the Rat. Br. J. Pharmacol. 1975, 55, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Adinortey, M.B.; Ansah, C.; Galyuon, I.; Nyarko, A. In Vivo Models Used for Evaluation of Potential Antigastroduodenal Ulcer Agents. Ulcers 2013, 2013, 796405. [Google Scholar] [CrossRef]
Type of Phenols | Compounds | Content, mg/g DWE * |
---|---|---|
Phenolic acids | Syringic acid | 0.70 ± 0.04 c |
p-Coumaric acid | 2.13 ± 0.12 b | |
Ferulic acid | 1.70 ± 0.03 a | |
Salicylic acid | 1.20 ± 0.02 b | |
Gallic acid | 0.16 ± 0.09 c | |
Protocatechuic acid | 0.86 ± 0.07 c | |
Chlorogenic acid | 0.99 ± 0.06 a | |
Vanillic acid | 0.81 ± 0.15 b | |
Caffeic acid | 1.00 ± 0.16 b | |
Rosmarinic acid | 6.41 ± 0.08 a | |
Flavonoids | Rutin | 0.44 ± 0.14 c |
Hesperidin | 0.83 ± 0.03 b | |
Kaempherol | 1.67 ± 0.09 b | |
Quercetin | 15.95 ± 0.05 a | |
(+)-Catechin | 9.86 ± 0.15 b | |
(+)-Epicatechin | nd |
ABTS (mM TE/g DWE) | DPPH (mM TE/g DWE) | FRAP (mM TE/g DWE) | CUPRAC (mM TE/g DWE) |
---|---|---|---|
723.15 ± 1.34 | 30.67 ± 0.25 | 1354.05 ± 2.87 | 1506.93 ± 2.61 |
Ulcer Index (UI) | Percentage of Protection (PP), % | |
---|---|---|
Group I (control group) | 0 | - |
Group II (IND) | 4.67 ± 0.45 | - |
Group III (FAM + IND) | 2.17 ± 0.61 ** | 53.57 |
Group IV (EPE, 25 mg/kg + IND) | 2.83 ± 0.60 * | 39.29 |
Group V (EPE, 10 mg/kg + IND) | 4.17 ± 0.37 | 10.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slavov, I.; Ivanova, N.; Radeva-Ilieva, M.; Stoeva-Grigorova, S.; Dzhenkov, D.; Georgiev, K.D. Phytochemical Analysis and Anti-Ulcer Potential of Phenolic Compounds of Inonotus nidus-pici Pilát. Pharmaceuticals 2025, 18, 1265. https://doi.org/10.3390/ph18091265
Slavov I, Ivanova N, Radeva-Ilieva M, Stoeva-Grigorova S, Dzhenkov D, Georgiev KD. Phytochemical Analysis and Anti-Ulcer Potential of Phenolic Compounds of Inonotus nidus-pici Pilát. Pharmaceuticals. 2025; 18(9):1265. https://doi.org/10.3390/ph18091265
Chicago/Turabian StyleSlavov, Iliya, Nadezhda Ivanova, Maya Radeva-Ilieva, Stanila Stoeva-Grigorova, Deyan Dzhenkov, and Kaloyan D. Georgiev. 2025. "Phytochemical Analysis and Anti-Ulcer Potential of Phenolic Compounds of Inonotus nidus-pici Pilát" Pharmaceuticals 18, no. 9: 1265. https://doi.org/10.3390/ph18091265
APA StyleSlavov, I., Ivanova, N., Radeva-Ilieva, M., Stoeva-Grigorova, S., Dzhenkov, D., & Georgiev, K. D. (2025). Phytochemical Analysis and Anti-Ulcer Potential of Phenolic Compounds of Inonotus nidus-pici Pilát. Pharmaceuticals, 18(9), 1265. https://doi.org/10.3390/ph18091265