Structure Modeling and Virtual Screening with HCAR3 to Discover Potential Therapeutic Molecules
Abstract
1. Introduction
2. Results and Discussion
2.1. Cross-Docking Analysis and Homology Modeling of HCAR3
2.2. Retrospective Docking
2.3. Virtual Screening and ADMET Analysis
2.4. Molecular Dynamics Simulations of HCAR3–Ligand Complexes
2.5. Free Energy Calculation via Umbrella Sampling
3. Materials and Methods
3.1. Receptor Structure Comparison
3.2. Virtual Screening
3.3. ADMET Evaluation
3.4. Molecular Dynamics Simulations
3.5. Free Energy Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef]
- Wang, W.; Hu, M.; Liu, H.; Zhang, X.; Li, H.; Zhou, F.; Liu, Y.M.; Lei, F.; Qin, J.J.; Zhao, Y.C.; et al. Global Burden of Disease Study 2019 suggests that metabolic risk factors are the leading drivers of the burden of ischemic heart disease. Cell Metab. 2021, 33, 1943–1956. [Google Scholar] [CrossRef]
- Xiao, C.; Dash, S.; Morgantini, C.; Hegele, R.A.; Lewis, G.F. Pharmacological Targeting of the Atherogenic Dyslipidemia Complex: The Next Frontier in CVD Prevention Beyond Lowering LDL Cholesterol. Diabetes 2016, 65, 1767–1778. [Google Scholar] [CrossRef]
- Chapman, M.J.; Redfern, J.S.; McGovern, M.E.; Giral, P. Niacin and fibrates in atherogenic dyslipidemia: Pharmacotherapy to reduce cardiovascular risk. Pharmacol. Ther. 2010, 126, 314–345. [Google Scholar] [CrossRef] [PubMed]
- Vollset, S.E.; Ababneh, H.S.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasian, M.; Abbastabar, H.; Abd Al Magied, A.H.A.; Abd ElHafeez, S.; Abdelkader, A.; et al. Burden of disease scenarios for 204 countries and territories, 2022-2050: A forecasting analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2204–2256. [Google Scholar] [CrossRef]
- Shi, H.; Xia, Y.; Cheng, Y.; Liang, P.; Cheng, M.; Zhang, B.; Liang, Z.; Wang, Y.; Xie, W. Global burden of ischaemic heart disease from 2022 to 2050: Projections of incidence, prevalence, deaths, and disability-adjusted life years. Eur. Heart-J.-Qual. Care Clin. Outcomes 2024, 11, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; So, H.; Cerin, E.; Barnett, A.; Mubarik, S.; Hezam, K.; Feng, X.; Wang, Z.; Huang, J.; Zhong, C.; et al. The temporal trend of disease burden attributable to metabolic risk factors in China, 1990–2019: An analysis of the Global Burden of Disease study. Front. Nutr. 2023, 9, 1035439. [Google Scholar] [CrossRef]
- Theofilis, P.; Vordoni, A.; Koukoulaki, M.; Vlachopanos, G.; Kalaitzidis, R.G. Dyslipidemia in Chronic Kidney Disease: Contemporary Concepts and Future Therapeutic Perspectives. Am. J. Nephrol. 2021, 52, 693–701. [Google Scholar] [CrossRef]
- Tang, N.; Ma, J.; Tao, R.; Chen, Z.; Yang, Y.; He, Q.; Lv, Y.; Lan, Z.; Zhou, J. The effects of the interaction between BMI and dyslipidemia on hypertension in adults. Sci. Rep. 2022, 12, 927. [Google Scholar] [CrossRef]
- Nussbaumerova, B.; Rosolova, H. Obesity and Dyslipidemia. Curr. Atheroscler. Rep. 2023, 25, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Lang, S.; Goeser, T.; Demir, M.; Steffen, H.M.; Kasper, P. Management of dyslipidemia in patients with non-alcoholic fatty liver disease. Curr. Atheroscler. Rep. 2022, 24, 533–546. [Google Scholar] [CrossRef]
- Ahmed, K.; Tunaru, S.; Offermanns, S. GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol. Sci. 2009, 30, 557–562. [Google Scholar] [CrossRef]
- Offermanns, S. Hydroxy-Carboxylic Acid Receptor Actions in Metabolism. Trends Endocrinol. Metab. 2017, 28, 227–236. [Google Scholar] [CrossRef]
- Wang, J.; Qian, Y.; Han, Z.; Wang, Y.; Liu, Y.; Li, J.; Duanmu, Q.; Ye, S.; Qiao, A.; Wu, S. Insights into the Activation Mechanism of HCA1, HCA2, and HCA3. J. Med. Chem. 2025, 68, 4527–4539. [Google Scholar] [CrossRef] [PubMed]
- Wise, A.; Foord, S.M.; Fraser, N.J.; Barnes, A.A.; Elshourbagy, N.; Eilert, M.; Ignar, D.M.; Murdock, P.R.; Steplewski, K.; Green, A.; et al. Molecular identification of high and low affinity receptors for nicotinic acid. J. Biol. Chem. 2003, 278, 9869–9874. [Google Scholar] [CrossRef]
- Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.; Govender, T.; Naicker, T.; Kruger, H.G. Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021, 224, 113705. [Google Scholar] [CrossRef] [PubMed]
- Sadybekov, A.V.; Katritch, V. Computational approaches streamlining drug discovery. Nature 2023, 616, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Paggi, J.M.; Pandit, A.; Dror, R.O. The art and science of molecular docking. Annu. Rev. Biochem. 2024, 93, 389–410. [Google Scholar] [CrossRef]
- Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 2002, 9, 646–652. [Google Scholar] [CrossRef]
- Christ, C.D.; Mark, A.E.; Van Gunsteren, W.F. Basic ingredients of free energy calculations: A review. J. Comput. Chem. 2010, 31, 1569–1582. [Google Scholar] [CrossRef]
- Irwin, J.J.; Tang, K.G.; Young, J.; Dandarchuluun, C.; Wong, B.R.; Khurelbaatar, M.; Moroz, Y.S.; Mayfield, J.; Sayle, R.A. ZINC20-A Free Ultralarge-Scale Chemical Database for Ligand Discovery. J. Chem. Inf. Model. 2020, 60, 6065–6073. [Google Scholar] [CrossRef]
- Ferreira, L.L.; Andricopulo, A.D. ADMET modeling approaches in drug discovery. Drug Discov. Today 2019, 24, 1157–1165. [Google Scholar] [CrossRef]
- Tunaru, S.; Lattig, J.; Kero, J.; Krause, G.; Offermanns, S. Characterization of determinants of ligand binding to the nicotinic acid receptor GPR109A (HM74A/PUMA-G). Mol. Pharmacol. 2005, 68, 1271–1280. [Google Scholar] [CrossRef]
- Adepu, K.K.; Kachhap, S.; Bhandari, D.; Anishkin, A.; Chintapalli, S.V. Computational insights on molecular interactions of acifran with GPR109A and GPR109B. J. Mol. Model. 2022, 28, 237. [Google Scholar] [CrossRef]
- Suzuki, S.; Tanaka, K.; Nishikawa, K.; Suzuki, H.; Oshima, A.; Fujiyoshi, Y. Structural basis of hydroxycarboxylic acid receptor signaling mechanisms through ligand binding. Nat. Commun. 2023, 14, 5899. [Google Scholar] [CrossRef] [PubMed]
- Lemkul, J.A. From Proteins to Perturbed Hamiltonians: A Suite of Tutorials for the GROMACS-2018 Molecular Simulation Package [Article v1.0]. Living J. Comput. Mol. Sci. 2018, 1, 5068. [Google Scholar] [CrossRef]
- Hub, J.S.; De Groot, B.L.; Van Der Spoel, D. g_wham A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. J. Chem. Theory Comput. 2010, 6, 3713–3720. [Google Scholar] [CrossRef]
- Stierand, K.; Rarey, M. Drawing the PDB: Protein-ligand complexes in two dimensions. ACS Med. Chem. Lett. 2010, 1, 540–545. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2016, 54, 5–6. [Google Scholar] [CrossRef]
- Yang, Y.; Kang, H.J.; Gao, R.; Wang, J.; Han, G.W.; DiBerto, J.F.; Wu, L.; Tong, J.; Qu, L.; Wu, Y.; et al. Structural insights into the human niacin receptor HCA2-Gi signalling complex. Nat. Commun. 2023, 14, 1692. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Shamsara, J. A cross-docking study on matrix metalloproteinase family. Anti-Inflamm.-Anti-Allergy Agents Med. Chem. (Former. Curr. Med.-Chem.-Anti-Inflamm.-Anti-Allergy Agents) 2015, 14, 164–171. [Google Scholar] [CrossRef]
- Schrödinger, LLC. PyMOL Molecular Graphics System; Schrödinger, LLC: New York, NY, USA, 2025. [Google Scholar]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef]
- Sledz, P.; Caflisch, A. Protein structure-based drug design: From docking to molecular dynamics. Curr. Opin. Struct. Biol. 2018, 48, 93–102. [Google Scholar] [CrossRef]
- Harding, S.D.; Armstrong, J.F.; Faccenda, E.; Southan, C.; Alexander, S.H.; Davenport, A.P.; Spedding, M.; Davies, J.A. The IUPHAR/BPS Guide to PHARMACOLOGY in 2024. Nucleic Acids Res. 2023, 52, D1438–D1449. [Google Scholar] [CrossRef]
- Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [Google Scholar] [CrossRef] [PubMed]
- Bender, B.J.; Gahbauer, S.; Luttens, A.; Lyu, J.; Webb, C.M.; Stein, R.M.; Fink, E.A.; Balius, T.E.; Carlsson, J.; Irwin, J.J.; et al. A practical guide to large-scale docking. Nat. Protoc. 2021, 16, 4799–4832. [Google Scholar] [CrossRef]
- Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 2013, 53, 1893–1904. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Chemical Computing Group ULC. Molecular Operating Environment (MOE); Chemical Computing Group ULC: Montreal, QC, Canada, 2024. [Google Scholar]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Olsson, M.H.M.; Søndergaard, C.R.; Rostkowski, M.; Jensen, J.H. PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. J. Chem. Theory Comput. 2011, 7, 525–537. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Lee, J.; Cheng, X.; Jo, S.; MacKerell, A.D.; Klauda, J.B.; Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Biophys. J. 2016, 110, 641a. [Google Scholar] [CrossRef]
- Brooks, B.R.; Brooks, C.L., III; Mackerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmuller, H.; MacKerell, A.D.J. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017, 14, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010, 31, 671–690. [Google Scholar] [CrossRef]
- Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; Van Gunsteren, W.F.; Mark, A.E. Peptide folding: When simulation meets experiment. Angew. Chem. Int. Ed. 1999, 38, 236–240. [Google Scholar] [CrossRef]
Receptor | 7XK2 | 8IHB | 8IHF | 8IHH | 8IHI | 8IHJ | 8JEI | HCAR3_homology | |
---|---|---|---|---|---|---|---|---|---|
Ligand | |||||||||
MK6892 (7XK2) | 2.18 | 9.53 | 1.90 | 6.98 | 9.45 | ||||
GSK256073 (8IHB) | 4.65 | 1.18 | 6.77 | 2.53 | 2.13 | ||||
MK6892 (8IHF) | 2.05 | 9.39 | 1.13 | 6.94 | 9.14 | ||||
LUF6283 (8IHH) | 1.85 | 1.41 | 4.68 | 1.24 | 1.82 | ||||
Acifran (8IHI) | 3.11 | 1.48 | 4.73 | 1.78 | 1.20 | ||||
Acifran (8IHJ) | 0.83 | 2.90 | 2.30 | ||||||
Compound 5c (8JEI) | 3.75 | 1.86 | 3.78 | ||||||
MK6892 (HCAR3_homology) | 6.57 | 9.83 | 2.82 |
Compound | Docking Score | Lipinski Rule | Log P | TPSA | Pgp-Substrate | PAINS | AMES |
---|---|---|---|---|---|---|---|
1 | −14.1521 | Accepted | 2.779 | 94.91 | 0.019 | 1 | 0.005 |
2 | −13.6680 | Accepted | 0.174 | 94.58 | 0.003 | 1 | 0.025 |
3 | −13.6651 | Accepted | 2.304 | 98.07 | 0.006 | 1 | 0.006 |
4 | −13.6480 | Accepted | 1.464 | 117.2 | 0.059 | 1 | 0.251 |
5 | −13.6066 | Accepted | 1.294 | 91.67 | 0.004 | 1 | 0.016 |
6 | −13.5977 | Accepted | 2.127 | 108.74 | 0.001 | 1 | 0.045 |
7 | −13.4622 | Accepted | 2.252 | 75.43 | 0.003 | 0 | 0.015 |
8 | −13.4273 | Accepted | 2.779 | 94.91 | 0.019 | 1 | 0.005 |
9 | −13.2929 | Accepted | 1.275 | 112.41 | 0.066 | 0 | 0.014 |
10 | −13.1917 | Accepted | 0.341 | 119.75 | 0.003 | 1 | 0.015 |
11 | −13.1674 | Accepted | 0.408 | 94.58 | 0.05 | 1 | 0.025 |
12 | −13.1380 | Accepted | 1.294 | 91.67 | 0.004 | 1 | 0.016 |
13 | −13.1344 | Accepted | 2.443 | 98.47 | 0 | 0 | 0.013 |
14 | −12.9854 | Accepted | 0.695 | 112.74 | 0.001 | 0 | 0.03 |
15 | −12.9844 | Accepted | 2.757 | 96.6 | 0.004 | 1 | 0.022 |
16 | −12.9796 | Accepted | 0.408 | 94.58 | 0.05 | 1 | 0.025 |
17 | −12.9611 | Accepted | 2.776 | 77.84 | 0.005 | 1 | 0.007 |
18 | −12.9402 | Accepted | 0.913 | 99.6 | 0.035 | 0 | 0.004 |
19 | −12.9013 | Accepted | 0.757 | 107.53 | 0.003 | 0 | 0.049 |
20 | −12.8954 | Accepted | 0.356 | 94.58 | 0.117 | 1 | 0.01 |
21 | −12.8953 | Accepted | 0.882 | 137.43 | 0.02 | 1 | 0.14 |
22 | −12.8655 | Accepted | 0.299 | 94.91 | 0.018 | 0 | 0.089 |
23 | −12.8398 | Accepted | 2.776 | 77.84 | 0.005 | 1 | 0.007 |
24 | −12.8298 | Accepted | 2.96 | 77.84 | 0.114 | 1 | 0.008 |
25 | −12.8096 | Accepted | 0.562 | 84.66 | 0.012 | 0 | 0.006 |
26 | −12.8093 | Accepted | 0.278 | 92.5 | 0.011 | 0 | 0.015 |
27 | −12.8089 | Accepted | 1.333 | 117.5 | 0.004 | 1 | 0.082 |
28 | −12.7568 | Accepted | 2.556 | 76.37 | 0.002 | 1 | 0.16 |
29 | −12.7276 | Accepted | 2.55 | 73.4 | 0.452 | 0 | 0.009 |
30 | −12.6631 | Accepted | 1.01 | 76.07 | 0.009 | 0 | 0.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Peng, Y.; Zhao, Z.; Guo, Y.; Lin, B.; Chiang, Y.-C. Structure Modeling and Virtual Screening with HCAR3 to Discover Potential Therapeutic Molecules. Pharmaceuticals 2025, 18, 1290. https://doi.org/10.3390/ph18091290
Liu Y, Peng Y, Zhao Z, Guo Y, Lin B, Chiang Y-C. Structure Modeling and Virtual Screening with HCAR3 to Discover Potential Therapeutic Molecules. Pharmaceuticals. 2025; 18(9):1290. https://doi.org/10.3390/ph18091290
Chicago/Turabian StyleLiu, Yulan, Yunlu Peng, Zhihao Zhao, Yilin Guo, Bin Lin, and Ying-Chih Chiang. 2025. "Structure Modeling and Virtual Screening with HCAR3 to Discover Potential Therapeutic Molecules" Pharmaceuticals 18, no. 9: 1290. https://doi.org/10.3390/ph18091290
APA StyleLiu, Y., Peng, Y., Zhao, Z., Guo, Y., Lin, B., & Chiang, Y.-C. (2025). Structure Modeling and Virtual Screening with HCAR3 to Discover Potential Therapeutic Molecules. Pharmaceuticals, 18(9), 1290. https://doi.org/10.3390/ph18091290