Unraveling the Mechanisms of Madecassoside Derivatives in Wound Healing: Network Pharmacology and Experimental Validation
Abstract
1. Introduction
2. Results
2.1. Preparation of MA2G and MA1G
2.2. Skin Penetration Test for MDs
2.3. Network Construction and Enrichment Analysis of Targets
2.4. Molecular Docking Analysis
2.5. Reparative Effect In Vitro
2.6. Antioxidant Effects
2.7. The Expressions of Core Targets
2.8. The Repair Effect of MDs In Vivo
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Network Pharmacology
4.3. Molecular Docking
4.4. Preparation and Identification of MA1G and MA2G
4.5. Skin Permeation Test Studies
4.6. Cell Viability Assay
4.7. Scratch Wound Assay
4.8. Reactive Oxygen Species Assay
4.9. Detection of Biochemical Indicators of Oxidative Stress
4.10. RT-qPCR Analysis
4.11. Healing Effect of MDs on Zebrafish
4.12. The Anti-Inflammatory Effect of MDs on Zebrafish
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Zhang, Y.; Yu, W.; Zhang, W.; Tang, H.; Yuan, W. In situ forming ROS-scavenging hybrid hydrogel loaded with polydopamine-modified fullerene nanocomposites for promoting skin wound healing. J. Nanobiotechnol. 2023, 21, 129. [Google Scholar] [CrossRef]
- Cao, Y.; Harvey, B.P.; Jin, L.; Westmoreland, S.; Wang, J.; Puri, M.; Yang, Y.; Robb, H.M.; Tanriverdi, S.; Hu, C.; et al. Therapeutic TNF inhibitors exhibit differential levels of efficacy in accelerating cutaneous wound healing. JID Innov. 2023, 4, 100250. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Xu, W.; Zhou, X.; Tang, F.; Chen, Q.; Zhang, X.; Bai, X.; Li, Z.; Jiang, X.; Chen, Q. An ROS-scavenging Treg-recruiting hydrogel patch for diabetic wound healing. Adv. Funct. Mater. 2024, 34, 2314500. [Google Scholar] [CrossRef]
- Uberoi, A.; McCready-Vangi, A.; Grice, E.A. The wound microbiota: Microbial mechanisms of impaired wound healing and infection. Nat. Rev. Microbiol. 2024, 22, 507–521. [Google Scholar] [CrossRef]
- Moraes, T.R.; Veras, F.P.; Barchuk, A.R.; Nogueira, E.S.C.; Kanashiro, A.; Galdino, G. Spinal HMGB1 participates in the early stages of paclitaxel-induced neuropathic pain via microglial TLR4 and RAGE activation. Front. Immunol. 2024, 15, 1303937. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, B.; Liu, C.; Yang, C.; Zhao, B. Proteomic analysis reveals the mechanism that low molecular weight hyaluronic acid enhances cell migration in keratinocyte. J. Pharm. Biomed. Anal. 2024, 250, 116402. [Google Scholar] [CrossRef]
- Mangum, K.D.; denDekker, A.; Li, Q.; Tsoi, L.C.; Joshi, A.D.; Melvin, W.J.; Wolf, S.J.; Moon, J.Y.; Audu, C.O.; Shadiow, J.; et al. The STAT3/SETDB2 axis dictates NF-κB-mediated inflammation in macrophages during wound repair. JCI Insight 2024, 9, e179017. [Google Scholar] [CrossRef]
- Wang, N.; Hong, B.; Zhao, Y.; Ding, C.; Chai, G.; Wang, Y.; Yang, J.; Zhang, L.; Yu, W.; Lu, Y.; et al. Dopamine-grafted oxidized hyaluronic acid/gelatin/cordycepin nanofiber membranes modulate the TLR4/NF-κB signaling pathway to promote diabetic wound healing. Int. J. Biol. Macromol. 2024, 262, 130079. [Google Scholar] [CrossRef]
- Yao, M.; He, Q.; Tao, Y.; Kang, X.; Wu, X.; Shi, F.; Wei, Y.; Liu, J.; Meng, Z.; Gu, R.; et al. Chitosan-derived carbon quantum dots with dual ROS scavenging and anti-inflammatory functionalities for accelerated wound repair. ACS Appl. Mater. Interfaces 2025, 17, 40157–40172. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Xie, D.; Hu, Z.; Song, H.; Tang, P.; Jin, Y.; Xia, J.; Ji, Y.; Xiao, Y.; Chen, S.; et al. Enhanced diabetic wound healing with injectable hydrogel containing self-assembling nanozymes. J. Control. Release 2024, 372, 265–280. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Hu, H.; Ma, L. A highly transparent dopamine-copolymerized hydrogel with enhanced ROS-scavenging and tissue-adhesive properties for chronic diabetic wounds. Acta Biomater. 2025, 198, 161–173. [Google Scholar] [CrossRef]
- Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E.G. Chemical, pharmacological and clinical profile of the East Asian medical plant Centella asiatica. Phytomedicine 2000, 7, 427–448. [Google Scholar] [CrossRef]
- Rachpirom, M.; Pichayakorn, W.; Puttarak, P. Preparation, development, and scale-up of standardized pentacyclic triterpenoid-rich extract from Centella asiatica (L.) Urb. and study of its wound healing activity. Heliyon 2023, 9, e17807. [Google Scholar] [CrossRef]
- Han, X.; Zhao, J.; Zhou, H.; Zhou, X.; Deng, Z.; Liu, Z.; Yu, Y. The biosynthesis of asiaticoside and madecassoside reveals tandem duplication-directed evolution of glycoside glycosyltransferases in the Apiales. Plant Commun. 2024, 5, 101005. [Google Scholar] [CrossRef]
- Tripathy, S.; Verma, D.K.; Thakur, M.; Chakravorty, N.; Singh, S.; Srivastav, P.P. Recent trends in extraction, identification and quantification methods of Centella asiatica phytochemicals with potential applications in food industry and therapeutic relevance: A review. Food Biosci. 2022, 49, 101864. [Google Scholar] [CrossRef]
- Chianese, G.; Masi, F.; Cicia, D.; Ciceri, D.; Arpini, S.; Falzoni, M.; Pagano, E.; Taglialatela-Scafati, O. Comparison of the antioxidant potency of four triterpenes of Centella asiatica against oxidative stress. Biomolecules 2021, 11, 494. [Google Scholar] [CrossRef]
- Suhail, M.; Chiu, I.H.; Ullah, A.; Khan, A.; Ullah, H.; Al-Sowayan, N.S.; Wu, P.C. Formulation and in vitro assessment of polymeric pH-responsive nanogels of chitosan for sustained delivery of madecassoside. ACS Omega 2024, 9, 19345–19352. [Google Scholar] [CrossRef]
- Leng, D.; Han, W.; Rui, Y.; Dai, Y.; Xia, Y. In vivo disposition and metabolism of madecassoside, a major bioactive constituent in Centella asiatica (L.) Urb. J. Ethnopharmacol. 2013, 150, 601–608. [Google Scholar] [CrossRef]
- Nakhjavani, M.; Smith, E.; Yeo, K.; Tomita, Y.; Price, T.; Yool, A.; Townsend, A.R.; Hardingham, J.E. Differential antiangiogenic and anticancer activities of the active metabolites of ginsenoside Rg3. J. Ginseng Res. 2024, 48, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, M.; Farzaei, H.M.; Kiani, S.; Khodarahmi, R. Immunomodulatory; anti-inflammatory/antioxidant effects of polyphenols: A comparative review on the parental compounds and their metabolites. Food Rev. Int. 2021, 37, 759–811. [Google Scholar] [CrossRef]
- Li, C.; Dai, T.; Chen, J.; Chen, M.; Liang, R.; Liu, C.; Du, L.; McClements, D.J. Modification of flavonoids: Methods and influences on biological activities. Crit. Rev. Food Sci. Nutr. 2023, 63, 10637–10658. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A. Biotransformation of natural compounds to create useful medicinal products. Phytochem. Rev. 2024, 8, 2759–2772. [Google Scholar] [CrossRef]
- Sohn, J.S.; Choi, J.S. Development of a tadalafil transdermal formulation and evaluation of its ability to in vitro transdermal permeate using Strat-M® membrane. Eur. J. Pharm. Sci. 2024, 192, 106615. [Google Scholar] [CrossRef]
- Manosalva, C.; Alarcón, P.; González, K.; Soto, J.; Igor, K.; Peña, F.; Medina, G.; Burgos, R.A.; Hidalgo, M.A. Free fatty acid receptor 1 signaling contributes to migration, MMP-9 activity, and expression of IL-8 induced by linoleic acid in HaCaT cells. Front. Pharmacol. 2020, 11, 595. [Google Scholar] [CrossRef]
- Hu, J.; Yu, X.; Zhang, S.; Zhang, Y.; Chen, X.; Long, Z.; Hu, H.; Xie, D.; Zhang, W.; Chen, J.; et al. Hydrogel with ROS scavenging effect encapsulates BR@Zn-BTB nanoparticles for accelerating diabetic mice wound healing via multimodal therapy. iScience 2023, 26, 106775. [Google Scholar] [CrossRef]
- Cho, K.H.; Kim, J.E.; Bahuguna, A.; Kang, D.J. Ozonated sunflower oil exerted potent anti-inflammatory activities with enhanced wound healing and tissue regeneration abilities against acute toxicity of carboxymethyllysine in zebrafish with improved blood lipid profile. Antioxidants 2023, 12, 1625. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhang, P.; Xue, M.; Zhang, M.; Xiao, Z.; Xu, C.; Fan, Y.; Liu, W.; Wu, Y.; Wu, M.; et al. Anti-inflammatory and antioxidant properties of rice bran oil extract in copper sulfate-induced inflammation in zebrafish (Danio rerio). Fish. Shellfish Immunol. 2023, 136, 108740. [Google Scholar] [CrossRef]
- Lin, P.; Shi, H.Y.; Lu, Y.Y.; Lin, J. Centella asiatica alleviates psoriasis through JAK/STAT3-mediated inflammation: An in vitro and in vivo study. J. Ethnopharmacol. 2023, 317, 116746. [Google Scholar] [CrossRef]
- Witkowska, K.; Paczkowska-Walendowska, M.; Garbiec, E.; Cielecka-Piontek, J. Topical application of Centella asiatica in wound healing: Recent insights into mechanisms and clinical efficacy. Pharmaceutics 2024, 16, 1252. [Google Scholar] [CrossRef]
- Shi, P.; Chen, J.; Ge, W.; Liu, Z.; Han, N.; Yin, J. Antichilblain components in eggplant based on network pharmacology and biological evaluation. J. Agric. Food Chem. 2023, 71, 11442–11453. [Google Scholar] [CrossRef] [PubMed]
- Na, Y.; Woo, J.; Choi, W.I.; Lee, J.H.; Hong, J.; Sung, D. α-Tocopherol-loaded reactive oxygen species-scavenging ferrocene nanocapsules with high antioxidant efficacy for wound healing. Int. J. Pharm. 2021, 596, 120205. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Cai, W.; Ni, Q.; Lin, S.; Jiang, C.; Yi, Y.; Liu, L.; Liu, Q.; Shen, C. A new perspective on signaling pathways and structure-activity relationships of natural active ingredients in metabolic crosstalk between liver and brown adipose tissue: A narrative review. Phytother. Res. 2025, 39, 3062–3090. [Google Scholar] [CrossRef]
- Lim, J.; Lee, H.; Hong, S.; Lee, J.; Kim, Y. Comparison of the antioxidant potency of four triterpenes of Centella asiatica against oxidative stress. Antioxidants 2024, 13, 483. [Google Scholar] [CrossRef]
- Yang, B.; Min, R.; Chen, P.; Mei, S.; Deng, F.; Zheng, Z.; Jiang, C.; Miao, R.; Wu, Z.; Zhang, P.; et al. Disulfiram blocks inflammatory TLR4 signaling by targeting MD-2. Proc. Natl. Acad. Sci. USA 2023, 120, e2306399120. [Google Scholar] [CrossRef]
- Bukhari, H.A.; Afzal, M.; Al-Abbasi, F.A.; Sheikh, R.A.; Alqurashi, M.M.; Bawadood, A.S.; Alzarea, S.I.; Alamri, A.; Sayyed, N.; Kazmi, I. In vivo and computational investigation of butin against alloxan-induced diabetes via biochemical, histopathological, and molecular interactions. Sci. Rep. 2024, 14, 20633. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, L.; Quan, Y.; Wang, Z.; Wu, F.; Deng, W. 3D-QSAR modeling and molecular docking study on small molecule Stat3 inhibitors, Src homology 2 domain binders. Lett. Drug Des. Discov. 2017, 14, 36–49. [Google Scholar] [CrossRef]
- Jiang, J.; Xiao, J.; He, J.; Cai, Z.; Chen, J.; Yin, J. Prediction and verification of epimedium flavonoids with different glycosylation numbers in reversing glucocorticoid-induced bone formation inhibition by molecular docking and zebrafish. Front. Environ. Sci. 2022, 9, 793527. [Google Scholar] [CrossRef]
- Yang, J.; Lee, H.; Sung, J.; Kim, Y.; Jeong, H.S.; Lee, J. Conversion of rutin to quercetin by acid treatment in relation to biological activities. Prev. Nutr. Food Sci. 2019, 24, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gao, Z.; Chao, S.; Lu, W.; Zhang, P. Transdermal delivery of inflammatory factors regulated drugs for rheumatoid arthritis. Drug Deliv. 2022, 29, 1934–1950. [Google Scholar] [CrossRef] [PubMed]
- Boira, C.; Chapuis, E.; Lapierre, L.; Auriol, D.; Jarrin, C.; Robe, P.; Tiguemounine, J.; Scandolera, A.; Reynaud, R. Epigallocatechin gallate enzymatic alpha glucosylation potentiates its skin-lightening activity-involvement of skin microbiota. Molecules 2024, 29, 5391. [Google Scholar] [CrossRef]
- Uchiyama, H.; Minoura, K.; Yamada, E.; Ando, K.; Yamauchi, R.; Nakanishi, A.; Tandia, M.; Kadota, K.; Tozuka, Y. Solubilization mechanism of α-glycosylated naringin based on self-assembled nanostructures and its application to skin formulation. Eur. J. Pharm. Biopharm. 2024, 200, 114316. [Google Scholar] [CrossRef]
- Jiao, W.; Mi, S.; Sang, Y.; Jin, Q.; Chitrakar, B.; Wang, X.; Wang, S. Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol. Food Chem. 2022, 374, 131755. [Google Scholar] [CrossRef]
- Thakur, P.; Kumar, R.; Choudhary, N.; Sharma, R.; Chaudhary, A. Network pharmacology on mechanistic role of Thymus linearis Benth. against gastrointestinal and neurological diseases. Phytomedicine 2023, 121, 155098. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, R.; Liu, X.; Lu, Y.; Cheng, J.; Jiang, S.; Guo, M. Proteomic characterization and comparison of milk fat globule membrane proteins collected from two ethnic groups of women in China using DIA technique. Food Biosci. 2022, 50, 102192. [Google Scholar] [CrossRef]
- Jaradat, N.J.; Alshaer, W.; Hatmal, M.; Taha, M.O. Discovery of new STAT3 inhibitors as anticancer agents using ligand-receptor contact fingerprints and docking-augmented machine learning. RSC Adv. 2023, 13, 4623–4640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xing, S.; Du, J.; Xia, J.; Dong, S.; Li, Z.; Liu, Z.; Song, Y. Discovery of novel TLR4/MD-2 inhibitors: Receptor structure-based virtual screening studies and anti-inflammatory evaluation. Bioorg. Chem. 2023, 141, 106880. [Google Scholar] [CrossRef]
- Anastasiou, I.A.; Sarantis, P.; Eleftheriadou, I.; Tentolouris, K.N.; Mourouzis, I.; Karamouzis, M.V.; Pantos, K.; Tentolouris, N. Effects of hypericin on cultured primary normal human dermal fibroblasts under increased oxidative stress. Int. J. Low. Extrem. Wounds 2023, 15347346231212332. [Google Scholar] [CrossRef]
- Radstake, W.E.; Gautam, K.; Rompay, C.V.; Vermeesen, R.; Tabury, K.; Verslegers, M.; Baatout, S.; Baselet, B. Comparison of in vitro scratch wound assay experimental procedures. Biochem. Biophys. Rep. 2023, 33, 101423. [Google Scholar] [CrossRef]
- Yu, Y.; Fu, W.; Xu, J.; Lei, Y.; Song, X.; Liang, Z.; Zhu, T.; Liang, Y.; Hao, Y.; Yuan, L.; et al. Bromodomain-containing proteins BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and vital for their genomic targeting in Arabidopsis. Mol. Plant 2021, 14, 888–904. [Google Scholar] [CrossRef]
Samples | Formula | Rt (min) | Found Mass (m/z) | MS/MS (m/z) |
---|---|---|---|---|
MA2G | C42H68O16 | 7.53 | 829 [M + H]+ | 649, 487 |
MA1G | C36H58O11 | 8.28 | 667 [M + H]+ | 505, 487, 405 |
Targets | Compounds | Binding Energy (kcal/mol) | RMSD (Å) |
---|---|---|---|
TLR4 | MA | −8.6 | 0.0202 |
MA1G | −8.7 | 0.2501 | |
MA2G | −8.2 | 0.0386 | |
MA3G | −9.6 | 0.1914 | |
Positive control | −7.4 | 0.0043 | |
NF-κB | MA | −7.1 | 0.0484 |
MA1G | −7.2 | 0.0301 | |
MA2G | −7.6 | 0.2153 | |
MA3G | −8.9 | 0.0289 | |
Positive control | −6.6 | 0.0153 | |
STAT3 | MA | −6.5 | 0.1072 |
MA1G | −6.6 | 0.2085 | |
MA2G | −6.7 | 0.1806 | |
MA3G | −7.3 | 0.2047 | |
Positive control | −9.0 | 0.1918 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Li, Y.; Yang, C.; Zhao, B. Unraveling the Mechanisms of Madecassoside Derivatives in Wound Healing: Network Pharmacology and Experimental Validation. Pharmaceuticals 2025, 18, 1292. https://doi.org/10.3390/ph18091292
Liu J, Li Y, Yang C, Zhao B. Unraveling the Mechanisms of Madecassoside Derivatives in Wound Healing: Network Pharmacology and Experimental Validation. Pharmaceuticals. 2025; 18(9):1292. https://doi.org/10.3390/ph18091292
Chicago/Turabian StyleLiu, Jing, Yuanyuan Li, Cheng Yang, and Bingtian Zhao. 2025. "Unraveling the Mechanisms of Madecassoside Derivatives in Wound Healing: Network Pharmacology and Experimental Validation" Pharmaceuticals 18, no. 9: 1292. https://doi.org/10.3390/ph18091292
APA StyleLiu, J., Li, Y., Yang, C., & Zhao, B. (2025). Unraveling the Mechanisms of Madecassoside Derivatives in Wound Healing: Network Pharmacology and Experimental Validation. Pharmaceuticals, 18(9), 1292. https://doi.org/10.3390/ph18091292