Ketamine’s Role in Neuroinflammation and Neuroprotection Across Neurological and Psychiatric Disorders: A Narrative Review
Abstract
1. Introduction
2. Methods
3. Results
3.1. An Overview of NMDRAs
3.2. Protective Effects on Neurodegenerative Diseases
3.2.1. Parkinson’s Disease
3.2.2. Alzheimer’s Disease
3.2.3. Multiple Sclerosis
3.3. Role in Acute Neuroinflammatory Disorders
3.4. Neuromodulation in Psychiatric Disorders
3.5. Therapeutic Effects as an Adjuvant Drug in Neuroanesthesia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corssen, G.; Domino, E.F. Dissociative anesthesia: Further pharmacologic studies and first clinical experience with the phencyclidine derivative CI-581. Anesth. Analg. 1966, 45, 29–40. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, C.; Lan, X.; Li, H.; Chao, Z.; Ning, Y. Plasma inflammatory cytokines and treatment-resistant depression with comorbid pain: Improvement by ketamine. J. Neuroinflamm. 2021, 18, 200. [Google Scholar] [CrossRef]
- Guo, J.; Qiu, D.; Gu, H.-W.; Wang, X.-M.; Hashimoto, K.; Zhang, G.-F.; Yang, J.-J. Efficacy and safety of perioperative application of ketamine on postoperative depression: A meta-analysis of randomized controlled studies. Mol. Psychiatry 2023, 28, 2266–2276. [Google Scholar] [CrossRef]
- Andreasen, T.H.; Madsen, F.A.; Barbateskovic, M.; Lindschou, J.; Gluud, C.; Møller, K. Ketamine for Critically Ill Patients with Severe Acute Brain Injury: A Systematic Review with Meta-analysis and Trial Sequential Analysis of Randomized Clinical Trials. Neurocrit. Care 2024, 42, 610–621. [Google Scholar] [CrossRef]
- Bell, J.D. In Vogue: Ketamine for Neuroprotection in Acute Neurologic Injury. Anesthesia Analg. 2017, 124, 1237–1243. [Google Scholar] [CrossRef]
- Beaurain, M.; Salabert, A.-S.; Payoux, P.; Gras, E.; Talmont, F. NMDA Receptors: Distribution, Role, and Insights into Neuropsychiatric Disorders. Pharmaceuticals 2024, 17, 1265. [Google Scholar] [CrossRef]
- Egunlusi, A.O.; Joubert, J. NMDA Receptor Antagonists: Emerging Insights into Molecular Mechanisms and Clinical Applications in Neurological Disorders. Pharmaceuticals 2024, 17, 639. [Google Scholar] [CrossRef] [PubMed]
- Kawczak, P.; Feszak, I.; Bączek, T. Ketamine, Esketamine, and Arketamine: Their Mechanisms of Action and Applications in the Treatment of Depression and Alleviation of Depressive Symptoms. Biomedicines 2024, 12, 2283. [Google Scholar] [CrossRef]
- Laws, J.C.; Vance, E.H.; Betters, K.A.; Anderson, J.J.; Fleishman, S.; Bonfield, C.M.; Wellons, J.C., III; Xu, M.; Slaughter, J.C.; Giuse, D.A.; et al. Acute Effects of Ketamine on Intracranial Pressure in Children with Severe Traumatic Brain Injury. Crit. Care Med. 2023, 51, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Liu, Y.; Zhou, H.; Lu, H.; Zhang, Y.; Hua, J.; Liao, X. Esketamine is neuroprotective against traumatic brain injury through its modulation of autophagy and oxidative stress via AMPK/mTOR-dependent TFEB nuclear translocation. Exp. Neurol. 2023, 366, 114436. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Traynelis, S.F.; Hansen, K.B. Selective Cell-Surface Expression of Triheteromeric NMDA Receptors. In NMDA Receptors. Methods in Molecular Biology; Burnashev, N., Szepetowski, P., Eds.; Humana: New York, NY, USA, 2024; Volume 2799. [Google Scholar] [CrossRef]
- Chou, T.-H.; Epstein, M.; Fritzemeier, R.G.; Akins, N.S.; Paladugu, S.; Ullman, E.Z.; Liotta, D.C.; Traynelis, S.F.; Furukawa, H. Molecular mechanism of ligand gating and opening of NMDA receptor. Nature 2024, 632, 209–217. [Google Scholar] [CrossRef]
- González-Cota, A.L.; Martínez-Flores, D.; Rosendo-Pineda, M.J.; Vaca, L. NMDA receptor-mediated Ca2+ signaling: Impact on cell cycle regulation and the development of neurodegenerative diseases and cancer. Cell Calcium 2024, 119, 102856. [Google Scholar] [CrossRef]
- Hanson, J.E.; Yuan, H.; Perszyk, R.E.; Banke, T.G.; Xing, H.; Tsai, M.-C.; Menniti, F.S.; Traynelis, S.F. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology 2024, 49, 51–66. [Google Scholar] [CrossRef]
- Arrabal-Gómez, C.; Beltran-Casanueva, R.; Hernández-García, A.; Bayolo-Guanche, J.V.; Barbancho-Fernández, M.A.; Serrano-Castro, P.J.; Narváez, M. Enhancing Cognitive Functions and Neuronal Growth through NPY1R Agonist and Ketamine Co-Administration: Evidence for NPY1R-TrkB Heteroreceptor Complexes in Rats. Cells 2024, 13, 669. [Google Scholar] [CrossRef]
- Sahin, F.; Gunel, A.; Atasoy, B.T.; Guler, U.; Salih, B.; Kuzu, I.; Taspinar, M.; Cinar, O.; Kahveci, S. Enhancing proteasome activity by NMDAR antagonists explains their therapeutic effect in neurodegenerative and mental diseases. Sci. Rep. 2025, 15, 1165. [Google Scholar] [CrossRef]
- Li, X.; Saiyin, H.; Chen, X.; Yu, Q.; Ma, L.; Liang, W. Ketamine impairs growth cone and synaptogenesis in human GABAergic projection neurons via GSK-3β and HDAC6 signaling. Mol. Psychiatry 2024, 29, 1647–1659. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.R.; Spillantini, M.G.; Sue, C.M.; Williams-Gray, C.H. The pathogenesis of Parkinson’s disease. Lancet 2024, 403, 293–304. [Google Scholar] [CrossRef]
- Stopera, C.J.; Bartlett, M.J.; Liu, C.; Esqueda, A.; Parmar, R.; Heien, M.L.; Sherman, S.J.; Falk, T. Differential effects of opioid receptor antagonism on the anti-dyskinetic and anti-parkinsonian effects of sub-anesthetic ketamine treatment in a preclinical model. Neuropharmacology 2024, 257, 110047. [Google Scholar] [CrossRef]
- Rafe, R.; Saha, P.; Bello, S.T. Targeting NMDA receptors with an antagonist is a promising therapeutic strategy for treating neurological disorders. Behav. Brain Res. 2024, 472, 115173. [Google Scholar] [CrossRef] [PubMed]
- Zamanian, M.Y.; Nazifi, M.; Khachatryan, L.G.; Taheri, N.; Ivraghi, M.S.; Menon, S.V.; Husseen, B.; Prasad, K.D.V.; Petkov, I.; Nikbakht, N. The Neuroprotective Effects of Agmatine on Parkinson’s Disease: Focus on Oxidative Stress, Inflammation and Molecular Mechanisms. Inflammation 2024, 48, 1078–1092. [Google Scholar] [CrossRef] [PubMed]
- Self, W.K.; Holtzman, D.M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med. 2023, 29, 2187–2199. [Google Scholar] [CrossRef]
- Son, S.H.; Lee, N.-R.; Gee, M.S.; Song, C.W.; Lee, S.J.; Lee, S.-K.; Lee, Y.; Kim, H.J.; Kil Lee, J.; Inn, K.-S.; et al. Chemical Knockdown of Phosphorylated p38 Mitogen-Activated Protein Kinase (MAPK) as a Novel Approach for the Treatment of Alzheimer′s Disease. ACS Cent. Sci. 2023, 9, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Y.; Miao, C.; Liu, Y.; Liu, R. Coriolus versicolor polysaccharides (CVP) regulates neuronal apoptosis in cerebral ischemia-reperfusion injury via the p38MAPK signaling pathway. Ann. Transl. Med. 2020, 8, 1168. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-H.; Guo, Q.-H.; Xu, X.-D.; Lin, J.-C.; You, G.-T.; Lin, C.-H.; Zhang, L.-C. Ketamine exerts dual effects on the apoptosis of primary cultured hippocampal neurons from fetal rats in vitro. Metab. Brain Dis. 2023, 38, 2417–2426. [Google Scholar] [CrossRef]
- Shehata, I.M.; Masood, W.; Nemr, N.; Anderson, A.; Bhusal, K.; Edinoff, A.N.; Cornett, E.M.; Kaye, A.M.; Kaye, A.D. The Possible Application of Ketamine in the Treatment of Depression in Alzheimer’s Disease. Neurol. Int. 2022, 14, 310–321. [Google Scholar] [CrossRef]
- Wen, G.; Zhan, X.; Xu, X.; Xia, X.; Jiang, S.; Ren, X.; Ren, W.; Lou, H.; Lu, L.; Hermenean, A.; et al. Ketamine Improves the Glymphatic Pathway by Reducing the Pyroptosis of Hippocampal Astrocytes in the Chronic Unpredictable Mild Stress Model. Mol. Neurobiol. 2024, 61, 2049–2062. [Google Scholar] [CrossRef]
- Fitzgerald, K.C.; Morris, B.; Soroosh, A.; Balshi, A.; Maher, D.; Kaplin, A.; Nourbakhsh, B. Pilot randomized active-placebo-controlled trial of low-dose ketamine for the treatment of multiple sclerosis–related fatigue. Mult. Scler. J. 2021, 27, 942–953. [Google Scholar] [CrossRef]
- Ghajarzadeh, M.; Roman, S.; Vega, L.; Nourbakhsh, B. Low-dose ketamine infusion for the treatment of multiple sclerosis fatigue (INKLING-MS): Study protocol for a randomized, double-blind, active placebo-controlled phase II trial. Contemp. Clin. Trials 2023, 126, 107106. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chang, L.; Wan, X.; Tan, Y.; Qu, Y.; Shan, J.; Yang, Y.; Ma, L.; Hashimoto, K. (R)-ketamine ameliorates demyelination and facilitates remyelination in cuprizone-treated mice: A role of gut–microbiota–brain axis. Neurobiol. Dis. 2022, 165, 105635. [Google Scholar] [CrossRef]
- Wang, X.; Chang, L.; Tan, Y.; Qu, Y.; Shan, J.; Hashimoto, K. (R)-ketamine ameliorates the progression of experimental autoimmune encephalomyelitis in mice. Brain Res. Bull. 2021, 177, 316–323. [Google Scholar] [CrossRef]
- Reinhart, K.M.; Morton, R.A.; Brennan, K.C.; Carlson, A.P.; Shuttleworth, C.W. Ketamine improves neuronal recovery following spreading depolarization in peri-infarct tissues. J. Neurochem. 2023, 168, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Zanza, C.; Piccolella, F.; Racca, F.; Romenskaya, T.; Longhitano, Y.; Franceschi, F.; Savioli, G.; Bertozzi, G.; De Simone, S.; Cipolloni, L.; et al. Ketamine in acute brain injury: Current opinion following cerebral circulation and electrical activity. Healthcare 2022, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Kochanek, P.M.; Adelson, P.D.; Rosario, B.L.; Hutchison, J.; Miller Ferguson, N.; Ferrazzano, P.; O’Brien, N.; Beca, J.; Sarnaik, A.; LaRovere, K.; et al. Comparison of Intracranial Pressure Measurements Before and After Hypertonic Saline or Mannitol Treatment in Children With Severe Traumatic Brain Injury. JAMA Netw. Open 2022, 5, e220891. [Google Scholar] [CrossRef]
- García-Ruiz, M.; Rodríguez, P.M.; Palliotti, L.; Lastras, C.; Romeral-Jiménez, M.; Morales, I.G.; Rey, C.P.; Rodrigo-Gisbert, M.; Campos-Fernández, D.; Santamarina, E.; et al. Ketamine in the treatment of refractory and super-refractory status epilepticus: Experience from two centres. Seizure 2024, 117, 13–19. [Google Scholar] [CrossRef]
- Jacobwitz, M.; Mulvihill, C.; Kaufman, M.C.; Gonzalez, A.K.; Resendiz, K.; MacDonald, J.M.; Francoeur, C.; Helbig, I.; Topjian, A.A.; Abend, N.S. Ketamine for management of neonatal and pediatric refractory status epilepticus. Neurology 2022, 99, E1227–E1238. [Google Scholar] [CrossRef]
- Adhikari, A.; Yadav, S.K.; Nepal, G.; Aryal, R.; Baral, P.; Neupane, P.; Paudel, A.; Pantha, B.; Acharya, S.; Shrestha, G.S.; et al. Use of ketamine in Super Refractory Status Epilepticus: A systematic review. Neurol. Res. Pract. 2024, 6, 33. [Google Scholar] [CrossRef]
- Anderson, M.; Levy, M. Advances in the long-term treatment of neuromyelitis optica spectrum disorder. J. Cent. Nerv. Syst. Dis. 2024, 16, 11795735241231094. [Google Scholar] [CrossRef]
- Abboud, H.; Salazar-Camelo, A.; George, N.; Planchon, S.M.; Matiello, M.; Mealy, M.A.; Goodman, A. Symptomatic and restorative therapies in neuromyelitis optica spectrum disorders. J. Neurol. 2022, 269, 1786–1801. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Gogos, A.; Papageorgiou, C.; Angelopoulos, E.; Gogos, C. Ketamine in COVID-19 patients: Thinking out of the box. J. Med. Virol. 2020, 93, 4069–4070. [Google Scholar] [CrossRef]
- Walsh, Z.; Mollaahmetoglu, O.M.; Rootman, J.; Golsof, S.; Keeler, J.; Marsh, B.; Nutt, D.J.; Morgan, C.J. Ketamine for the treatment of mental health and substance use disorders: Comprehensive systematic review. BJPsych Open 2022, 8, e19. [Google Scholar] [CrossRef] [PubMed]
- Shafique, H.; Demers, J.C.; Biesiada, J.; Golani, L.K.; Cerne, R.; Smith, J.L.; Szostak, M.; Witkin, J.M. (R)-(-)-Ketamine: The Promise of a Novel Treatment for Psychiatric and Neurological Disorders. Int. J. Mol. Sci. 2024, 25, 6804. [Google Scholar] [CrossRef]
- Alnefeesi, Y.; Chen-Li, D.; Krane, E.; Jawad, M.Y.; Rodrigues, N.B.; Ceban, F.; Di Vincenzo, J.D.; Meshkat, S.; Ho, R.C.; Gill, H.; et al. Real-world effectiveness of ketamine in treatment-resistant depression: A systematic review & meta-analysis. J. Psychiatr. Res. 2022, 151, 693–709. [Google Scholar] [PubMed]
- Dwyer, J.B.; Landeros-Weisenberger, A.; Johnson, J.A.; Londono Tobon, A.; Flores, J.M.; Nasir, M.; Couloures, K.; Sanacora, G.; Bloch, M.H. Efficacy of intravenous ketamine in adolescent treatment-resistant depression: A randomized midazolam-controlled trial. Am. J. Psychiatry 2021, 178, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhou, X.; Li, M.; Zhang, C.; Zhai, H.; Li, H.; Wang, H.; Wang, X. S-ketamine Alleviates Neuroinflammation and Attenuates Lipopolysaccharide-Induced Depression Via Targeting SIRT2. Adv. Sci. 2025, 12, e2416481. [Google Scholar] [CrossRef] [PubMed]
- Turki, M.; Abidi, O.; Ellouze, S.; Ben Jmeaa, R.; Nasri, J.; Halouani, N.; Aloulou, J. Ketamine As A New Therapeutic Option For The Management Of Mental Disorders. Eur. Psychiatry 2022, 65, S877–S878. [Google Scholar] [CrossRef]
- Bruton, A.M.; Wesemann, D.G.; Machingo, T.A.; Majak, G.; Johnstone, J.M.; Marshall, R.D. Ketamine for mood disorders, anxiety, and suicidality in children and adolescents: A systematic review. Eur. Child Adolesc. Psychiatry 2025, 34, 141–157. [Google Scholar] [CrossRef]
- Simmler, L.D.; Li, Y.; Hadjas, L.C.; Hiver, A.; van Zessen, R.; Lüscher, C. Dual action of ketamine confines addiction liability. Nature 2022, 608, 368–373. [Google Scholar] [CrossRef]
- Ingrosso, G.; Cleare, A.J.; Juruena, M.F. Is there a risk of addiction to ketamine during the treatment of depression? A systematic review of available literature. J. Psychopharmacol. 2025, 39, 49–65. [Google Scholar] [CrossRef]
- Pickering, G.; Voute, M.; Sorel, M.; Pereira, B.; Riant, T. Sex and Age Differences in Ketamine Efficacy and Safety in Chronic Pain Alleviation. J. Clin. Med. 2025, 14, 4269. [Google Scholar] [CrossRef]
- Subramanian, S.; Haroutounian, S.; Palanca, B.J.A.; Lenze, E.J. Ketamine as a therapeutic agent for depression and pain: Mechanisms and evidence. J. Neurol. Sci. 2022, 434, 120152. [Google Scholar] [CrossRef]
- Graff, V.; Gabutti, L.; Treglia, G.; Pascale, M.; Anselmi, L.; Cafarotti, S.; La Regina, D.; Mongelli, F.; Saporito, A. Perioperative costs of local or regional anesthesia versus general anesthesia in the outpatient setting: A systematic review of recent literature. Braz. J. Anesthesiol. 2023, 73, 316–339. [Google Scholar] [CrossRef]
- Silva, G.N.; Brandão, V.G.; Perez, M.V.; Lewandrowski, K.-U.; Fiorelli, R.K.A. Effects of Dexmedetomidine on Immunomodulation and Pain Control in Videolaparoscopic Cholecystectomies: A Randomized, Two-Arm, Double-Blinded, Placebo-Controlled Trial. J. Pers. Med. 2023, 13, 622. [Google Scholar] [CrossRef]
- Silva, G.N.; Brandão, V.G.; Fiorelli, R.; Perez, M.V.; Mello, C.R.; Negrini, D.; Levandrowski, K.-U.; Martinelli, R.B.; dos Reis, T.P.D.A. Outcomes of dexmedetomidine as adjuvant drug in patients undergoing videolaparoscopic cholecystectomy: A randomized and prospective clinical trial. Int. J. Immunopathol. Pharmacol. 2023, 37, 03946320231196977. [Google Scholar] [CrossRef] [PubMed]
- Brandão, V.G.A.; Silva, G.N.; Perez, M.V.; Lewandrowski, K.-U.; Fiorelli, R.K.A. Effect of Quadratus Lumborum Block on Pain and Stress Response after Video Laparoscopic Surgeries: A Randomized Clinical Trial. J. Pers. Med. 2023, 13, 586. [Google Scholar] [CrossRef]
- Silva, G.N.; Brandão, V.G.A.; Perez, M.V.; Blum, K.; Lewandrowski, K.-U.; Fiorelli, R.K.A. Neuroinflammatory Approach to Surgical Trauma: Biomarkers and Mechanisms of Immune and Neuroendocrine Responses. J. Pers. Med. 2024, 14, 829. [Google Scholar] [CrossRef]
- Burman, S.; Chouhan, R.S.; Kumar, N.; Mahajan, C. Effect of Ketamine Analgosedation on Neurological Outcome in patients with Severe Traumatic Brain Injury: A Randomized Controlled Pilot Study. Neurocrit. Care 2025, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kamp, J.; Olofsen, E.; Henthorn, T.K.; van Velzen, M.; Niesters, M.; Dahan, A.; for the Ketamine Pharmacokinetic Study Group. Ketamine Pharmacokinetics. Anesthesiology 2020, 133, 1192–1213. [Google Scholar] [CrossRef]
- Hartings, J.A.; Andaluz, N.; Bullock, M.R.; Hinzman, J.M.; Mathern, B.; Pahl, C.; Puccio, A.; Shutter, L.A.; Strong, A.J.; Vagal, A.; et al. Prognostic value of spreading depolarizations in patients with severe traumatic brain injury. JAMA Neurol. 2020, 77, 489–499. [Google Scholar] [CrossRef]
- Godoy, D.A.; Badenes, R.; Pelosi, P.; Robba, C. Ketamine in acute phase of severe traumatic brain injury “an old drug for new uses?”. Crit. Care 2021, 25, 19. [Google Scholar] [CrossRef] [PubMed]
- De Sloovere, V.; Mebis, L.; Wouters, P.; Guïza, F.; Boonen, E.; Bourgeois, M.; Dubois, J.; Ledoux, D.; Lormans, P.; Maréchal, H.; et al. Brain Injury and Ketamine study (BIKe): A prospective, randomized controlled double blind clinical trial to study the effects of ketamine on therapy intensity level and intracranial pressure in severe traumatic brain injury patients. Trials 2025, 26, 177. [Google Scholar] [CrossRef]
- Nguyen, A.; Mandavalli, A.; Diaz, M.J.; Root, K.T.; Patel, A.; Casauay, J.; Perisetla, P.; Lucke-Wold, B. Neurosurgical Anesthesia: Optimizing Outcomes with Agent Selection. Biomedicines 2023, 11, 372. [Google Scholar] [CrossRef]
- Maheswari, N.M.; Panda, N.B.; Mahajan, S.M.; Luthra, A.M.; Pattnaik, S.; Bhatia, N.; Karthigeyan, M.M.; Kaloria, N.M.; Chauhan, R.M.; Soni, S.M.; et al. Ketofol as an Anesthetic Agent in Patients with Isolated Moderate to Severe Traumatic Brain Injury: A Prospective, Randomized Double-blind Controlled Trial. J. Neurosurg. Anesthesiol. 2023, 35, 49–55. [Google Scholar] [CrossRef]
- Wanchoo, S.; Khazanehdari, S.; Patel, A.; Lin, A.; Rebeiz, T.; DeMatteo, C.; Ullman, J.; Ledoux, D. Ketamine for empiric treatment of cortical spreading depolarization after subdural hematoma evacuation. Clin. Neurol. Neurosurg. 2021, 200, 106318. [Google Scholar] [CrossRef]
- Chen, K.; Xie, Y.; Chi, S.; Chen, D.; Ran, G.; Shen, X. Effects of intraoperative low-dose esketamine on postoperative pain after vestibular schwannoma resection: A prospective randomized, double-blind, placebo-controlled study. Br. J. Clin. Pharmacol. 2024, 90, 1892–1899. [Google Scholar] [CrossRef] [PubMed]
- Ornowska, M.; Wormsbecker, A.; Andolfatto, G.; Leung, T.S.; Khan, I.; Medvedev, G. The use of ketamine as a neuroprotective agent following cardiac arrest: A scoping review of current literature. CNS Neurosci. Ther. 2023, 29, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Brinck, E.C.V.; Virtanen, T.; Mäkelä, S.; Soini, V.; Hynninen, V.-V.; Mulo, J.; Savolainen, U.; Rantakokko, J.; Maisniemi, K.; Liukas, A.; et al. S-ketamine in patient-controlled analgesia reduces opioid consumption in a dose-dependent manner after major lumbar fusion surgery: A randomized, double-blind, placebo-controlled clinical trial. PLoS ONE 2021, 16, e0252626. [Google Scholar] [CrossRef]
- Hall, J.; Chung, J.; Khilkin, M.; Elkomos-Botros, G. Ketamine as part of multi-modal analgesia may reduce opioid requirements following cardiac surgery: A retrospective observational cohort study. J. Cardiothorac. Surg. 2025, 20, 178. [Google Scholar] [CrossRef] [PubMed]
- Kadian, S.; Gupta, P.; Agrawal, S. Comparative Evaluation of analgesic efficacy of ketamine and magnesium sulfate as adjuvants to bupivacaine for scalp block in supratentorial Craniotomy: A Randomized, Double-Blind clinical study. J. Clin. Neurosci. 2025, 137, 111347. [Google Scholar] [CrossRef]
Disorder/Context | Behavioral Parameters Assessed | Observed Effects with Ketamine |
---|---|---|
Autism Spectrum Disorder (ASD) | – ABC (Aberrant Behavior Checklist) social withdrawal subscale – CGI-I (Clinical Global Impressions scale–Improvement) | Improvement in social withdrawal and overall clinical assessment over ~35 days. |
Bipolar depression/treatment-resistant depression | – Depressive symptoms (rapid antidepressant effect) – Suicidal ideation | Rapid reduction in depressive symptoms and suicidal ideation within hours/days, with improvement maintained for up to 3 days after a single dose. |
Anxiety and affective comorbidities | – General anxiety, anhedonia, and various affective symptoms | Significant anxiolytic effects, reduced suicidal ideation, and improvement in symptoms such as anhedonia. |
Post-traumatic stress disorder (PTSD) | – ‘Freezing’ behavior during re-exposure – Other fear or stress responses | In animal models of PTSD, ketamine worsened ‘freezing’ behavior in animals with extreme behavioral response (EBR), with no changes in BDNF or glucose metabolism. |
Prolonged exposure/adolescence | – Locomotion, social behavior, memory, anxiety, motor activity, affective behavior (preclinical) | Changes in locomotion, social behavior, anxiety, depression, memory, and neurotoxic/apoptotic effects in animal models; in human adolescents, mood improvement but risk of cognitive/behavioral impairment. |
Prolonged sedation in pediatric patients | – Withdrawal signs (WAT-1) – Behavioral, motor, and cognitive deficits after discontinuation | Withdrawal syndrome, as well as motor and cognitive impairment observed (persistent language deficits detected up to 20 days after hospitalization). |
Adult animals (various models) | – Open field behavior, conditioned place preference, immobility, emotional and motor reactivity, conditioned tolerance | Development of tolerance to context-conditioned sedative effects, increased time spent in the center of the open field (low reactivity behavior), no motor impairment; changes in dopaminergic and serotonergic systems. |
Postpartum depression in rats | – Forced swim test (immobility, swimming, climbing) – Exploratory activity in the open field – Maternal behavior – Inflammation markers (IL-6, MPO) | Ketamine reversed induced depressive-like behavior (males) and reduced IL-6 and MPO; in females, it reduces MPO in the frontal cortex. It also alters maternal behavior and induces stereotyped behavior with higher prolonged doses. |
Neural network/cognition (neural level) | – Short-term memory, dissociative psychoactivity, changes in neuronal synchronization, neural network function | Ketamine affects short-term memory and induces psychedelic effects; it also alters firing patterns and neuronal synchronization, promoting arrhythmic connectivity and potentially modulating cortical networks for therapeutic purposes. |
Neuroplastic mechanisms | – Synaptogenesis, neuroplasticity, BDNF expression, mTOR activation, reconsolidation of dysfunctional memories | Stimulation of neuroplasticity via mTOR activation. BDNF increases, promoting brain reconnections and renewal of dysfunctional circuits—the basis for its rapid and profound therapeutic effects. |
Key Points of Clinical Use of Ketamine | Outcomes and Clinical Implications |
---|---|
Mechanisms of action and interaction pathways |
|
Protective effects on neurodegenerative diseases |
|
Role in acute neuroinflammatory disorders |
|
Addiction and psychiatric disorders |
|
Therapeutic effects as an adjuvant drug in neuroanesthesia |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, G.N.; Brandão, V.G.A.; Blum, K.; Lewandrowski, K.-U.; Fiorelli, R.K.A. Ketamine’s Role in Neuroinflammation and Neuroprotection Across Neurological and Psychiatric Disorders: A Narrative Review. Pharmaceuticals 2025, 18, 1298. https://doi.org/10.3390/ph18091298
Silva GN, Brandão VGA, Blum K, Lewandrowski K-U, Fiorelli RKA. Ketamine’s Role in Neuroinflammation and Neuroprotection Across Neurological and Psychiatric Disorders: A Narrative Review. Pharmaceuticals. 2025; 18(9):1298. https://doi.org/10.3390/ph18091298
Chicago/Turabian StyleSilva, Gustavo N., Virna G. A. Brandão, Kenneth Blum, Kai-Uwe Lewandrowski, and Rossano K. A. Fiorelli. 2025. "Ketamine’s Role in Neuroinflammation and Neuroprotection Across Neurological and Psychiatric Disorders: A Narrative Review" Pharmaceuticals 18, no. 9: 1298. https://doi.org/10.3390/ph18091298
APA StyleSilva, G. N., Brandão, V. G. A., Blum, K., Lewandrowski, K.-U., & Fiorelli, R. K. A. (2025). Ketamine’s Role in Neuroinflammation and Neuroprotection Across Neurological and Psychiatric Disorders: A Narrative Review. Pharmaceuticals, 18(9), 1298. https://doi.org/10.3390/ph18091298