Paeonol Ameliorates Benign Prostatic Hyperplasia via Suppressing Proliferation and NF-κB—In Silico and Experimental Studies
Abstract
1. Introduction
2. Results
2.1. Network Pharmacology Analysis Results
2.1.1. Identification and Network Analysis of Molecular Targets
2.1.2. Enrichment Analysis of the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways
2.1.3. Analyzing Paeonol’s Interaction with BPH-Related Proteins via Molecular Docking
2.2. In Vivo Experiment
2.2.1. Effects of Paeonol on Body Weight and Prostate in BPH
2.2.2. Effects of Paeonol on Prostate Tissue Morphology
2.2.3. Effects of Paeonol on Serum Testosterone Levels
2.2.4. Effects of Paeonol on Gene Expression in the Prostate Tissue
2.2.5. Effects of Paeonol on Kidney and Liver Functions
3. Discussion
4. Materials and Methods
4.1. Network Pharmacology Analysis
4.1.1. Identification of Paeonol and BPH-Associated Targets
4.1.2. Intersection Analysis of Paeonol and BPH Targets
4.1.3. PPI Network Visualization
4.1.4. Enrichment Analysis
4.1.5. Molecular Docking Analysis
4.2. In Vivo Study
4.2.1. Paeonol Preparation Method
4.2.2. Animal Study
4.2.3. Body Weight and Prostate Measurement
4.2.4. Histological Examination Using H&E Staining
4.2.5. Serum Testosterone Analysis
4.2.6. Gene Expression Analysis of Prostate Tissues
4.2.7. Liver and Kidney Function Assessment
4.2.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5AR2 | 5α-reductase 2 |
AGE–RAGE | Advanced glycation end-product receptors for advanced glycation end products |
Akt1 | Alpha serine/threonine-protein kinase |
AKT | Protein kinase B |
ALT | Alanine aminotransferase |
AR | Androgen receptor |
AST | Aspartate aminotransferase |
BCL-2 | B-cell lymphoma 2 |
BPH | Benign prostatic hyperplasia |
BUN | Blood urea nitrogen |
CASP3 | Caspase-3 |
CAT | Catalase |
COX-2 | Cyclooxygenase-2 |
DHT | Dihydrotestosterone |
FAK | Focal adhesion kinase |
FGF-1 | Fibroblast growth factor 1 |
GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
GR | Glutathione reductase |
GSK3β | Glycogen synthase kinase-3 beta |
H&E | Hematoxylin and eosin |
HMGB1 | High mobility group box 1 |
IL | Interleukin |
LUTS | Lower urinary tract symptoms |
mTOR | Mammalian target of rapamycin |
NF-κB | Nuclear factor-κB |
PBS | Phosphate-buffered saline |
PI3K | Phosphatidylinositol 3-kinase |
PPI | Protein–protein interaction |
qRT-PCR | Quantitative real-time polymerase chain reaction |
ROS | Reactive oxygen species |
RMSD | root-mean-square deviation |
SOD1 | Superoxide dismutase 1 |
TGF-β1 | Transforming growth factor beta-1 |
TNF | Tumor necrosis factor |
References
- Lepor, H. Pathophysiology, epidemiology, and natural history of benign prostatic hyperplasia. Rev. Urol. 2004, 6 (Suppl. S9), S3–S10. [Google Scholar] [PubMed]
- Foo, K.T. What is a disease? What is the disease clinical benign prostatic hyperplasia (BPH)? World J. Urol. 2019, 37, 1293–1296. [Google Scholar] [CrossRef] [PubMed]
- Roehrborn, C.G. Male lower urinary tract symptoms (LUTS) and benign prostatic hyperplasia (BPH). Med. Clin. N. Am. 2011, 95, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Devlin, C.M.; Simms, M.S.; Maitland, N.J. Benign prostatic hyperplasia—What do we know? BJU Int. 2021, 127, 389–399. [Google Scholar] [CrossRef]
- Minciullo, P.L.; Inferrera, A.; Navarra, M.; Calapai, G.; Magno, C.; Gangemi, S. Oxidative stress in benign prostatic hyperplasia: A systematic review. Urol. Int. 2015, 94, 249–254. [Google Scholar] [CrossRef]
- Sandhu, J.S.; Bixler, B.R.; Dahm, P.; Goueli, R.; Kirkby, E.; Stoffel, J.T.; Wilt, T.J. Management of lower urinary tract symptoms attributed to benign prostatic hyperplasia (BPH): AUA guideline amendment 2023. J. Urol. 2024, 211, 11–19. [Google Scholar] [CrossRef]
- Anderson, J.B.; Roehrborn, C.G.; Schalken, J.A.; Emberton, M. The progression of benign prostatic hyperplasia: Examining the evidence and determining the risk. Eur. Urol. 2001, 39, 390–399. [Google Scholar] [CrossRef]
- Miernik, A.; Gratzke, C. Current Treatment for Benign Prostatic Hyperplasia. Dtsch. Arztebl. Int. 2020, 117, 843–854. [Google Scholar] [CrossRef]
- Leisegang, K.; Jimenez, M.; Durairajanayagam, D.; Finelli, R.; Majzoub, A.; Henkel, R.; Agarwal, A. A systematic review of herbal medicine in the clinical treatment of benign prostatic hyperplasia. Phytomed. Plus 2022, 2, 100153. [Google Scholar] [CrossRef]
- Csikos, E.; Horvath, A.; Acs, K.; Papp, N.; Balazs, V.L.; Dolenc, M.S.; Kenda, M.; Kocevar Glavac, N.; Nagy, M.; Protti, M.; et al. Treatment of Benign Prostatic Hyperplasia by Natural Drugs. Molecules 2021, 26, 7141. [Google Scholar] [CrossRef]
- Mohammed, F.S.; Sevindik, M.; Uysal, İ.; Sabik, A.E. Quercetin: Derivatives, biosynthesis, biological activity, pharmacological and therapeutic effects. Prospect. Pharm. Sci. 2023, 21, 49–56. [Google Scholar] [CrossRef]
- Wang, Z.; He, C.; Peng, Y.; Chen, F.; Xiao, P. Origins, phytochemistry, pharmacology, analytical methods and safety of Cortex Moutan (Paeonia suffruticosa Andrew): A systematic review. Molecules 2017, 22, 946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, D.C.; Liu, L.F. Paeonol: Pharmacological effects and mechanisms of action. Int. Immunopharmacol. 2019, 72, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.P.; Sun, G.P.; Shen, Y.X.; Peng, W.R.; Wang, H.; Wei, W. Synergistic effect of combining paeonol and cisplatin on apoptotic induction of human hepatoma cell lines. Acta Pharmacol. Sin. 2007, 28, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhu, J.Y.; Lei, Z.M.; Wan, L.J.; Zhu, X.W.; Ye, F.; Tong, Y.Y. Anti-proliferative effects of paeonol on human prostate cancer cell lines DU145 and PC-3. J. Physiol. Biochem. 2017, 73, 157–165. [Google Scholar] [CrossRef]
- Roehrborn, C.G. Pathology of benign prostatic hyperplasia. Int. J. Impot. Res. 2008, 20 (Suppl. S3), S11–S18. [Google Scholar] [CrossRef]
- Calogero, A.E.; Burgio, G.; Condorelli, R.A.; Cannarella, R.; La Vignera, S. Epidemiology and risk factors of lower urinary tract symptoms/benign prostatic hyperplasia and erectile dysfunction. Aging Male 2019, 22, 12–19. [Google Scholar] [CrossRef]
- Scott Lucia, M.; Lambert, J.R. Growth factors in benign prostatic hyperplasia: Basic science implications. Curr. Urol. Rep. 2008, 9, 272–278. [Google Scholar] [CrossRef]
- Andriole, G.; Bruchovsky, N.; Chung, L.W.; Matsumoto, A.M.; Rittmaster, R.; Roehrborn, C.; Russell, D.; Tindall, D. Dihydrotestosterone and the prostate: The scientific rationale for 5alpha-reductase inhibitors in the treatment of benign prostatic hyperplasia. J. Urol. 2004, 172, 1399–1403. [Google Scholar] [CrossRef]
- Hennenberg, M.; Schreiber, A.; Ciotkowska, A.; Rutz, B.; Waidelich, R.; Strittmatter, F.; Stief, C.G.; Gratzke, C. Cooperative effects of EGF, FGF, and TGF-beta1 in prostate stromal cells are different from responses to single growth factors. Life Sci. 2015, 123, 18–24. [Google Scholar] [CrossRef]
- Yu, W.; Ilyas, I.; Aktar, N.; Xu, S. A review on therapeutical potential of paeonol in atherosclerosis. Front. Pharmacol. 2022, 13, 950337. [Google Scholar] [CrossRef]
- Giacomini, A.; Grillo, E.; Rezzola, S.; Ribatti, D.; Rusnati, M.; Ronca, R.; Presta, M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol. Rev. 2021, 101, 569–610. [Google Scholar] [CrossRef]
- Li, F.; Pascal, L.E.; Wang, K.; Zhou, Y.; Balasubramani, G.K.; O’Malley, K.J.; Dhir, R.; He, K.; Stolz, D.; DeFranco, D.B.; et al. Transforming growth factor beta 1 impairs benign prostatic luminal epithelial cell monolayer barrier function. Am. J. Clin. Exp. Urol. 2020, 8, 9–17. [Google Scholar]
- Novara, G.; Galfano, A.; Berto, R.B.; Ficarra, V.; Navarrete, R.V.; Artibani, W. Inflammation, apoptosis, and BPH: What is the evidence? Eur. Urol. Suppl. 2006, 5, 401–409. [Google Scholar] [CrossRef]
- Vela-Navarrete, R.; Escribano-Burgos, M.; Farre, A.L.; Garcia-Cardoso, J.; Manzarbeitia, F.; Carrasco, C. Serenoa repens treatment modifies bax/bcl-2 index expression and caspase-3 activity in prostatic tissue from patients with benign prostatic hyperplasia. J. Urol. 2005, 173, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Sarker, D.; Reid, A.H.; Yap, T.A.; de Bono, J.S. Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin. Cancer Res. 2009, 15, 4799–4805. [Google Scholar] [CrossRef] [PubMed]
- Lamont, K.R.; Tindall, D.J. Minireview: Alternative activation pathways for the androgen receptor in prostate cancer. Mol. Endocrinol. 2011, 25, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Vivanco, I.; Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2002, 2, 489–501. [Google Scholar] [CrossRef]
- Lloyd, G.L.; Marks, J.M.; Ricke, W.A. Benign Prostatic Hyperplasia and Lower Urinary Tract Symptoms: What Is the Role and Significance of Inflammation? Curr. Urol. Rep. 2019, 20, 54. [Google Scholar] [CrossRef]
- Song, H.; Shen, Q.; Hu, S.; Jin, J. The role of macrophage migration inhibitory factor in promoting benign prostatic hyperplasia epithelial cell growth by modulating COX-2 and P53 signaling. Biol. Open 2020, 9, bio053447. [Google Scholar] [CrossRef]
- El-Sahar, A.E.; Bekhit, N.; Eissa, N.M.; Abdelsalam, R.M.; Essam, R.M. Targeting HMGB1/PI3K/Akt and NF-κB/Nrf-2 signaling pathways by vildagliptin mitigates testosterone-induced benign prostate hyperplasia in rats. Life Sci. 2023, 322, 121645. [Google Scholar] [CrossRef]
- Austin, D.C.; Strand, D.W.; Love, H.L.; Franco, O.E.; Jang, A.; Grabowska, M.M.; Miller, N.L.; Hameed, O.; Clark, P.E.; Fowke, J.H. NF-κB and androgen receptor variant expression correlate with human BPH progression. Prostate 2016, 76, 491–511. [Google Scholar] [CrossRef]
- Jang, J.; Song, J.; Lee, J.; Moon, S.K.; Moon, B. Resveratrol Attenuates the Proliferation of Prostatic Stromal Cells in Benign Prostatic Hyperplasia by Regulating Cell Cycle Progression, Apoptosis, Signaling Pathways, BPH Markers, and NF-kappaB Activity. Int. J. Mol. Sci. 2021, 22, 5969. [Google Scholar] [CrossRef] [PubMed]
- Vickman, R.E.; Aaron-Brooks, L.; Zhang, R.; Lanman, N.A.; Lapin, B.; Gil, V.; Greenberg, M.; Sasaki, T.; Cresswell, G.M.; Broman, M.M. TNF is a potential therapeutic target to suppress prostatic inflammation and hyperplasia in autoimmune disease. Nat. Commun. 2022, 13, 2133. [Google Scholar] [CrossRef] [PubMed]
- Chughtai, B.; Lee, R.; Te, A.; Kaplan, S. Role of inflammation in benign prostatic hyperplasia. Rev. Urol. 2011, 13, 147. [Google Scholar] [PubMed]
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef]
- Arsova-Sarafinovska, Z.; Eken, A.; Matevska, N.; Erdem, O.; Sayal, A.; Savaser, A.; Banev, S.; Petrovski, D.; Dzikova, S.; Georgiev, V.; et al. Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer. Clin. Biochem. 2009, 42, 1228–1235. [Google Scholar] [CrossRef]
- Pace, G.; Di Massimo, C.; De Amicis, D.; Corbacelli, C.; Di Renzo, L.; Vicentini, C.; Miano, L.; Tozzi Ciancarelli, M.G. Oxidative stress in benign prostatic hyperplasia and prostate cancer. Urol. Int. 2010, 85, 328–333. [Google Scholar] [CrossRef]
- Meng, Q.; Peng, Z.; Chen, L.; Si, J.; Dong, Z.; Xia, Y. Nuclear Factor-kappaB modulates cellular glutathione and prevents oxidative stress in cancer cells. Cancer Lett. 2010, 299, 45–53. [Google Scholar] [CrossRef]
- Peng, Z.; Geh, E.; Chen, L.; Meng, Q.; Fan, Y.; Sartor, M.; Shertzer, H.G.; Liu, Z.G.; Puga, A.; Xia, Y. Inhibitor of kappaB kinase beta regulates redox homeostasis by controlling the constitutive levels of glutathione. Mol. Pharmacol. 2010, 77, 784–792. [Google Scholar] [CrossRef]
Target Name | PDB ID | Binding Affinity (kcal/mol) |
---|---|---|
5AR2 (5α-reductase type 2) | 7BW1 | −5.9 |
AR (Androgen receptor) | 5JJM | −6.7 |
TGF-β1 (Transforming growth factor beta-1) | 3GXL | −6.5 |
FGF-1 (Fibroblast growth factor 1) | 1FGK | −6.0 |
SOD1 (Superoxide dismutase 1) | 1OZU | −5.3 |
CAT (Catalase) | 1F4J | −5.2 |
GR (Glutathione reductase) | 1GSN | −6.1 |
AKT1 (Alpha serine/threonine-protein kinase) | 3O96 | −6.0 |
BCL-2 (B-cell lymphoma 2) | 1G5M | −5.3 |
CASP3 (Caspase 3) | 3DEI | −5.1 |
TNF (Tumor necrosis factor) | 5UUI | −5.3 |
NF-κB (nuclear factor-κB) | 6POZ | −6.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-Y.; Lee, M.-S.; Lee, B.-C. Paeonol Ameliorates Benign Prostatic Hyperplasia via Suppressing Proliferation and NF-κB—In Silico and Experimental Studies. Pharmaceuticals 2025, 18, 1322. https://doi.org/10.3390/ph18091322
Lee H-Y, Lee M-S, Lee B-C. Paeonol Ameliorates Benign Prostatic Hyperplasia via Suppressing Proliferation and NF-κB—In Silico and Experimental Studies. Pharmaceuticals. 2025; 18(9):1322. https://doi.org/10.3390/ph18091322
Chicago/Turabian StyleLee, Han-Young, Min-Seong Lee, and Byung-Cheol Lee. 2025. "Paeonol Ameliorates Benign Prostatic Hyperplasia via Suppressing Proliferation and NF-κB—In Silico and Experimental Studies" Pharmaceuticals 18, no. 9: 1322. https://doi.org/10.3390/ph18091322
APA StyleLee, H.-Y., Lee, M.-S., & Lee, B.-C. (2025). Paeonol Ameliorates Benign Prostatic Hyperplasia via Suppressing Proliferation and NF-κB—In Silico and Experimental Studies. Pharmaceuticals, 18(9), 1322. https://doi.org/10.3390/ph18091322