Advances in Modeling the Inner Blood–Retinal Barrier: From Static Tissue Cell Cultures to Microphysiological Systems
Abstract
1. Introduction
1.1. The Inner Blood-Retinal Barrier (iBRB in Health and Disease)
1.1.1. Beyond a Barrier: The iBRB as a Dynamic Component of the Neurovascular Unit (NVU)
1.1.2. Breaking the Barrier: iBRB Dysfunction in the Retinal Disease
1.2. Rationale for In Vitro Modeling of the iBRB: Bridging the Translational Gap in Retinal Drug Development
From Bench to Barrier: The Preclinical Challenge in Drug Development
2. Modeling the NVU of the Retina
2.1. Static Single-EC Culture Models: The Foundation
2.2. Static Multicellular Models: Toward Structural Complexity
2.3. Microphysiological Models of the iBRB: Bridging Physiology and Pharmacology
3. Challenges & Future Directions
3.1. Key Areas for Addressing Current Challenges
3.1.1. ECM
3.1.2. Cellular Components
3.1.3. Reproducibility
3.1.4. Monitoring Throughput
3.1.5. Scaling
3.1.6. Standardization and Accessibility
3.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cunha-Vaz, J.; Bernardes, R.; Lobo, C. Blood-retinal barrier. Eur. J. Ophthalmol. 2011, 21 (Suppl. 6), S3–S9. [Google Scholar] [CrossRef]
- Guymer, R.H.; Bird, A.C.; Hageman, G.S. Cytoarchitecture of choroidal capillary endothelial cells. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1660–1666. [Google Scholar] [CrossRef] [PubMed]
- Gensheimer, T.; Veerman, D.; van Oosten, E.M.; Segerink, L.; Garanto, A.; van der Meer, A.D. Retina-on-chip: Engineering functional in vitro models of the human retina using organ-on-chip technology. Lab. A Chip 2025, 25, 996–1014. [Google Scholar] [CrossRef]
- Nian, S.; Lo, A.C.Y.; Mi, Y.; Ren, K.; Yang, D. Neurovascular unit in diabetic retinopathy: Pathophysiological roles and potential therapeutical targets. Eye Vis. 2021, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Gardner, T.W.; Davila, J.R. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2017, 255, 1–6. [Google Scholar] [CrossRef]
- O’Leary, F.; Campbell, M. The blood-retina barrier in health and disease. FEBS J. 2023, 290, 878–891. [Google Scholar] [CrossRef] [PubMed]
- Günzel, D.; Yu, A.S. Claudins and the modulation of tight junction permeability. Physiol. Rev. 2013, 93, 525–569. [Google Scholar] [CrossRef]
- Klaassen, I.; Van Noorden, C.J.; Schlingemann, R.O. Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog. Retin. Eye Res. 2013, 34, 19–48. [Google Scholar] [CrossRef]
- van Meer, G.; Simons, K. The function of tight junctions in maintaining differences in lipid composition between the apical and the basolateral cell surface domains of MDCK cells. EMBO J. 1986, 5, 1455–1464. [Google Scholar] [CrossRef]
- Díaz-Coránguez, M.; Ramos, C.; Antonetti, D.A. The inner blood-retinal barrier: Cellular basis and development. Vis. Res. 2017, 139, 123–137. [Google Scholar] [CrossRef]
- Ben-Zvi, A.; Lacoste, B.; Kur, E.; Andreone, B.J.; Mayshar, Y.; Yan, H.; Gu, C. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature 2014, 509, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.S.; Routhe, L.J.; Moos, T. The vascular basement membrane in the healthy and pathological brain. J. Cereb. Blood Flow. Metab. 2017, 37, 3300–3317. [Google Scholar] [CrossRef] [PubMed]
- Stenzel, D.; Franco, C.A.; Estrach, S.; Mettouchi, A.; Sauvaget, D.; Rosewell, I.; Schertel, A.; Armer, H.; Domogatskaya, A.; Rodin, S.; et al. Endothelial basement membrane limits tip cell formation by inducing Dll4/Notch signalling in vivo. EMBO Rep. 2011, 12, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Frank, R.N.; Turczyn, T.J.; Das, A. Pericyte coverage of retinal and cerebral capillaries. Investig. Ophthalmol. Vis. Sci. 1990, 31, 999–1007. [Google Scholar]
- Lindblom, P.; Gerhardt, H.; Liebner, S.; Abramsson, A.; Enge, M.; Hellstrom, M.; Backstrom, G.; Fredriksson, S.; Landegren, U.; Nystrom, H.C.; et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 2003, 17, 1835–1840. [Google Scholar] [CrossRef]
- Park, D.Y.; Lee, J.; Kim, J.; Kim, K.; Hong, S.; Han, S.; Kubota, Y.; Augustin, H.G.; Ding, L.; Kim, J.W.; et al. Plastic roles of pericytes in the blood-retinal barrier. Nat. Commun. 2017, 8, 15296. [Google Scholar] [CrossRef]
- Gerhardt, H.; Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 2003, 314, 15–23. [Google Scholar] [CrossRef]
- Trost, A.; Lange, S.; Schroedl, F.; Bruckner, D.; Motloch, K.A.; Bogner, B.; Kaser-Eichberger, A.; Strohmaier, C.; Runge, C.; Aigner, L.; et al. Brain and Retinal Pericytes: Origin, Function and Role. Front. Cell. Neurosci. 2016, 10, 20. [Google Scholar] [CrossRef]
- Santos, G.S.P.; Prazeres, P.; Mintz, A.; Birbrair, A. Role of pericytes in the retina. Eye 2018, 32, 483–486. [Google Scholar] [CrossRef]
- Newman, E.A. Glial cell regulation of neuronal activity and blood flow in the retina by release of gliotransmitters. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140195. [Google Scholar] [CrossRef]
- Dorrell, M.I.; Aguilar, E.; Friedlander, M. Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3500–3510. [Google Scholar]
- Holden, J.M.; Wareham, L.K.; Calkins, D.J. Retinal astrocyte morphology predicts integration of vascular and neuronal architecture. Front. Neurosci. 2023, 17, 1244679. [Google Scholar] [CrossRef]
- Abbott, N.J.; Ronnback, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef]
- Vecino, E.; Rodriguez, F.D.; Ruzafa, N.; Pereiro, X.; Sharma, S.C. Glia-neuron interactions in the mammalian retina. Prog. Retin. Eye Res. 2016, 51, 1–40. [Google Scholar] [CrossRef]
- Metea, M.R.; Newman, E.A. Glial cells dilate and constrict blood vessels: A mechanism of neurovascular coupling. J. Neurosci. 2006, 26, 2862–2870. [Google Scholar] [CrossRef]
- Biesecker, K.R.; Srienc, A.I.; Shimoda, A.M.; Agarwal, A.; Bergles, D.E.; Kofuji, P.; Newman, E.A. Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina. J. Neurosci. 2016, 36, 9435–9445. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Fruttiger, M.; Zhu, L.; Chung, S.H.; Barnett, N.L.; Kirk, J.K.; Lee, S.; Coorey, N.J.; Killingsworth, M.; Sherman, L.S.; et al. Conditional Mullercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model. J. Neurosci. 2012, 32, 15715–15727. [Google Scholar] [CrossRef]
- Weiner, G.A.; Shah, S.H.; Angelopoulos, C.M.; Bartakova, A.B.; Pulido, R.S.; Murphy, A.; Nudleman, E.; Daneman, R.; Goldberg, J.L. Cholinergic neural activity directs retinal layer-specific angiogenesis and blood retinal barrier formation. Nat. Commun. 2019, 10, 2477. [Google Scholar] [CrossRef] [PubMed]
- Grimes, W.N.; Berson, D.M.; Sabnis, A.; Hoon, M.; Sinha, R.; Tian, H.; Diamond, J.S. Layer-specific anatomical and physiological features of the retina’s neurovascular unit. Curr. Biol. 2025, 35, 109–120.e104. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.Y.; Liu, Z.G.; Sun, Y.Q.; Li, Y.Z.; Teng, Z.Q.; Liu, C.M. Preserving blood-retinal barrier integrity: A path to retinal ganglion cell protection in glaucoma and traumatic optic neuropathy. Cell Regen. 2025, 14, 13. [Google Scholar] [CrossRef]
- Westenskow, P.D. Neurovascular signaling: Irrigating the retina. Curr. Biol. 2023, 33, R1193–R1194. [Google Scholar] [CrossRef]
- Checchin, D.; Sennlaub, F.; Levavasseur, E.; Leduc, M.; Chemtob, S. Potential role of microglia in retinal blood vessel formation. Investig. Ophthalmol. Vis. Sci. 2006, 47, 3595–3602. [Google Scholar] [CrossRef]
- Morris, G.P.; Foster, C.G. Microglia directly associate with pericytes in the central nervous system. Glia 2023, 71, 1847–1869. [Google Scholar] [CrossRef]
- Jobling, A.I.; Greferath, U.; Dixon, M.A.; Quiriconi, P.; Eyar, B.; van Koeverden, A.K.; Mills, S.A.; Vessey, K.A.; Bui, B.V.; Fletcher, E.L. Microglial regulation of the retinal vasculature in health and during the pathology associated with diabetes. Prog. Retin. Eye Res. 2025, 106, 101349. [Google Scholar] [CrossRef]
- Inada, M.; Xu, H.; Takeuchi, M.; Ito, M.; Chen, M. Microglia increase tight-junction permeability in coordination with Muller cells under hypoxic condition in an in vitro model of inner blood-retinal barrier. Exp. Eye Res. 2021, 205, 108490. [Google Scholar] [CrossRef]
- Kugler, E.C.; Greenwood, J.; MacDonald, R.B. The “Neuro-Glial-Vascular” Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction. Front. Cell Dev. Biol. 2021, 9, 732820. [Google Scholar] [CrossRef] [PubMed]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Tonade, D.; Kern, T.S. Photoreceptor cells and RPE contribute to the development of diabetic retinopathy. Prog. Retin. Eye Res. 2021, 83, 100919. [Google Scholar] [CrossRef]
- Antonetti, D.A.; Silva, P.S.; Stitt, A.W. Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat. Rev. Endocrinol. 2021, 17, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Augustine, J.; Troendle, E.P.; Barabas, P.; McAleese, C.A.; Friedel, T.; Stitt, A.W.; Curtis, T.M. The Role of Lipoxidation in the Pathogenesis of Diabetic Retinopathy. Front. Endocrinol. 2021, 11, 621938. [Google Scholar] [CrossRef]
- Altmann, C.; Schmidt, M.H.H. The Role of Microglia in Diabetic Retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration. Int. J. Mol. Sci. 2018, 19, 110. [Google Scholar] [CrossRef]
- Karia, N. Retinal vein occlusion: Pathophysiology and treatment options. Clin. Ophthalmol. 2010, 4, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Xiao, W.; Zhu, X.; Mao, Y.; Liu, X.; Chen, X.; Huang, J.; Tang, S.; Rizzolo, L.J. Differential expression of claudins in retinas during normal development and the angiogenesis of oxygen-induced retinopathy. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7556–7564. [Google Scholar] [CrossRef]
- Kim, J.; Chun, J.; Ahn, M.; Jung, K.; Moon, C.; Shin, T. Blood-retina barrier dysfunction in experimental autoimmune uveitis: The pathogenesis and therapeutic targets. Anat. Cell Biol. 2022, 55, 20–27. [Google Scholar] [CrossRef]
- Choi, Y.K.; Kim, J.H.; Kim, W.J.; Lee, H.Y.; Park, J.A.; Lee, S.W.; Yoon, D.K.; Kim, H.H.; Chung, H.; Yu, Y.S.; et al. AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia-inducible factor-1alpha. J. Neurosci. 2007, 27, 4472–4481. [Google Scholar] [CrossRef]
- Tripathi, R.; Ashton, N. Electron microscopical study of Coat’s disease. Br. J. Ophthalmol. 1971, 55, 289–301. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.H.; Huang, S.; Chen, J. Wnt Signaling in vascular eye diseases. Prog. Retin. Eye Res. 2019, 70, 110–133. [Google Scholar] [CrossRef]
- Yang, M.; Li, S.; Huang, L.; Zhao, R.; Dai, E.; Jiang, X.; He, Y.; Lu, J.; Peng, L.; Liu, W.; et al. CTNND1 variants cause familial exudative vitreoretinopathy through the Wnt/cadherin axis. JCI Insight 2022, 7, e158428. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Tischfield, M.; Williams, J.; Smallwood, P.M.; Rattner, A.; Taketo, M.M.; Nathans, J. Canonical WNT signaling components in vascular development and barrier formation. J. Clin. Investig. 2014, 124, 3825–3846. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Y.; Wu, X.; Wang, H.; Jin, Z.; Wang, P.; Feng, J.; Chen, S.; Zhou, W. Efficacy and prognostic factors of anti-VEGF treatment for neovascular age-related macular degeneration: An OCTA imaging-based deep learning analysis. Photodiagn. Photodyn. Ther. 2025, 55, 104701. [Google Scholar] [CrossRef] [PubMed]
- Hauck, S.M.; Suppmann, S.; Ueffing, M. Proteomic profiling of primary retinal Muller glia cells reveals a shift in expression patterns upon adaptation to in vitro conditions. Glia 2003, 44, 251–263. [Google Scholar] [CrossRef]
- Chavkin, N.W.; Walsh, K.; Hirschi, K.K. Isolation of Highly Purified and Viable Retinal Endothelial Cells. J. Vasc. Res. 2021, 58, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Wisniewska-Kruk, J.; Hoeben, K.A.; Vogels, I.M.; Gaillard, P.J.; Van Noorden, C.J.; Schlingemann, R.O.; Klaassen, I. A novel co-culture model of the blood-retinal barrier based on primary retinal endothelial cells, pericytes and astrocytes. Exp. Eye Res. 2012, 96, 181–190. [Google Scholar] [CrossRef]
- Bora, K.; Kushwah, N.; Maurya, M.; Pavlovich, M.C.; Wang, Z.; Chen, J. Assessment of Inner Blood-Retinal Barrier: Animal Models and Methods. Cells 2023, 12, 2443. [Google Scholar] [CrossRef]
- Charbel Issa, P.; Barnard, A.R.; Singh, M.S.; Carter, E.; Jiang, Z.; Radu, R.A.; Schraermeyer, U.; MacLaren, R.E. Fundus autofluorescence in the Abca4(-/-) mouse model of Stargardt disease—Correlation with accumulation of A2E, retinal function, and histology. Investig. Ophthalmol. Vis. Sci. 2013, 54, 5602–5612. [Google Scholar] [CrossRef]
- Volland, S.; Esteve-Rudd, J.; Hoo, J.; Yee, C.; Williams, D.S. A comparison of some organizational characteristics of the mouse central retina and the human macula. PLoS ONE 2015, 10, e0125631. [Google Scholar] [CrossRef]
- Bennis, A.; Gorgels, T.G.; Ten Brink, J.B.; van der Spek, P.J.; Bossers, K.; Heine, V.M.; Bergen, A.A. Comparison of Mouse and Human Retinal Pigment Epithelium Gene Expression Profiles: Potential Implications for Age-Related Macular Degeneration. PLoS ONE 2015, 10, e0141597. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.H.; Siah, K.W.; Lo, A.W. Estimation of clinical trial success rates and related parameters. Biostatistics 2019, 20, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Balijepalli, A.; Sivaramakrishan, V. Organs-on-chips: Research and commercial perspectives. Drug Discov. Today 2017, 22, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Deinsberger, J.; Reisinger, D.; Weber, B. Global trends in clinical trials involving pluripotent stem cells: A systematic multi-database analysis. NPJ Regen. Med. 2020, 5, 15. [Google Scholar] [CrossRef]
- Bell, C.M.; Zack, D.J.; Berlinicke, C.A. Human Organoids for the Study of Retinal Development and Disease. Annu. Rev. Vis. Sci. 2020, 6, 91–114. [Google Scholar] [CrossRef]
- Jin, Z.B.; Gao, M.L.; Deng, W.L.; Wu, K.C.; Sugita, S.; Mandai, M.; Takahashi, M. Stemming retinal regeneration with pluripotent stem cells. Prog. Retin. Eye Res. 2019, 69, 38–56. [Google Scholar] [CrossRef]
- Kruczek, K.; Swaroop, A. Pluripotent stem cell-derived retinal organoids for disease modeling and development of therapies. Stem Cells 2020, 38, 1206–1215. [Google Scholar] [CrossRef]
- Fernandez, C.E.; Yen, R.W.; Perez, S.M.; Bedell, H.W.; Povsic, T.J.; Reichert, W.M.; Truskey, G.A. Human Vascular Microphysiological System for in vitro Drug Screening. Sci. Rep. 2016, 6, 21579. [Google Scholar] [CrossRef]
- Kim, S.; Kim, W.; Lim, S.; Jeon, J.S. Vasculature-On-A-Chip for In Vitro Disease Models. Bioengineering 2017, 4, 8. [Google Scholar] [CrossRef]
- Hoganson, D.M.; Finkelstein, E.B.; Owens, G.E.; Hsiao, J.C.; Eng, K.Y.; Kulig, K.M.; Kim, E.S.; Kniazeva, T.; Pomerantseva, I.; Neville, C.M.; et al. A bilayer small diameter in vitro vascular model for evaluation of drug induced vascular injury. Biomicrofluidics 2016, 10, 054116. [Google Scholar] [CrossRef]
- Haderspeck, J.C.; Chuchuy, J.; Kustermann, S.; Liebau, S.; Loskill, P. Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling. Expert. Opin. Drug Discov. 2019, 14, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Arik, Y.B.; Buijsman, W.; Loessberg-Zahl, J.; Cuartas-Velez, C.; Veenstra, C.; Logtenberg, S.; Grobbink, A.M.; Bergveld, P.; Gagliardi, G.; den Hollander, A.I.; et al. Microfluidic organ-on-a-chip model of the outer blood-retinal barrier with clinically relevant read-outs for tissue permeability and vascular structure. Lab. A Chip 2021, 21, 272–283. [Google Scholar] [CrossRef]
- Maoz, B.M.; Herland, A.; FitzGerald, E.A.; Grevesse, T.; Vidoudez, C.; Pacheco, A.R.; Sheehy, S.P.; Park, T.E.; Dauth, S.; Mannix, R.; et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 2018, 36, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Maurissen, T.L.; Pavlou, G.; Bichsel, C.; Villasenor, R.; Kamm, R.D.; Ragelle, H. Microphysiological Neurovascular Barriers to Model the Inner Retinal Microvasculature. J. Pers. Med. 2022, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.T.; Gard, A.L.; Gaibler, R.; Mulhern, T.J.; Strelnikov, R.; Azizgolshani, H.; Cain, B.P.; Isenberg, B.C.; Haroutunian, N.J.; Raustad, N.E.; et al. A high-throughput microfluidic bilayer co-culture platform to study endothelial-pericyte interactions. Sci. Rep. 2021, 11, 12225. [Google Scholar] [CrossRef]
- Leverant, A.; Oprysk, L.; Dabrowski, A.; Kyker-Snowman, K.; Vazquez, M. Three-Dimensionally Printed Microsystems to Facilitate Flow-Based Study of Cells from Neurovascular Barriers of the Retina. Micromachines 2024, 15, 1103. [Google Scholar] [CrossRef] [PubMed]
- Ragelle, H.; Goncalves, A.; Kustermann, S.; Antonetti, D.A.; Jayagopal, A. Organ-On-A-Chip Technologies for Advanced Blood-Retinal Barrier Models. J. Ocul. Pharmacol. Ther. 2020, 36, 30–41. [Google Scholar] [CrossRef]
- Yeste, J.; García-Ramírez, M.; Illa, X.; Guimerà, A.; Hernández, C.; Simó, R.; Villa, R. A compartmentalized microfluidic chip with crisscross microgrooves and electrophysiological electrodes for modeling the blood-retinal barrier. Lab. A Chip 2017, 18, 95–105. [Google Scholar] [CrossRef]
- Maurissen, T.L.; Spielmann, A.J. Modeling early pathophysiological phenotypes of diabetic retinopathy in a human inner blood-retinal barrier-on-a-chip. Nat. Commun. 2024, 15, 1372. [Google Scholar] [CrossRef]
- Tega, Y.; Kubo, Y.; Miura, H.; Ri, K.; Tomise, A.; Akanuma, S.I.; Hosoya, K.I. Carrier-Mediated Process of Putrescine Elimination at the Rat Blood-Retinal Barrier. Int. J. Mol. Sci. 2023, 24, 9003. [Google Scholar] [CrossRef]
- Tun, T.; Kang, Y.S. Effects of simvastatin on CAT-1-mediated arginine transport and NO level under high glucose conditions in conditionally immortalized rat inner blood-retinal barrier cell lines (TR-iBRB). Microvasc. Res. 2017, 111, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, M.; Murakami, K.; Martin, P.M.; Hosoya, K.; Ganapathy, V. Retinal transfer of nicotinate by H+ -monocarboxylate transporter at the inner blood-retinal barrier. Microvasc. Res. 2011, 82, 385–390. [Google Scholar] [CrossRef]
- Shinozaki, Y.; Akanuma, S.I. Comprehensive Evidence of Carrier-Mediated Distribution of Amantadine to the Retina across the Blood-Retinal Barrier in Rats. Pharmaceutics 2021, 13, 1339. [Google Scholar] [CrossRef]
- Ohkura, Y.; Akanuma, S.; Tachikawa, M.; Hosoya, K. Blood-to-retina transport of biotin via Na+-dependent multivitamin transporter (SMVT) at the inner blood-retinal barrier. Exp. Eye Res. 2010, 91, 387–392. [Google Scholar] [CrossRef]
- Yoneyama, D.; Shinozaki, Y.; Lu, W.L.; Tomi, M.; Tachikawa, M.; Hosoya, K. Involvement of system A in the retina-to-blood transport of l-proline across the inner blood-retinal barrier. Exp. Eye Res. 2010, 90, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, M.; Akanuma, S.; Tachikawa, M.; Hosoya, K. Characteristics of glycine transport across the inner blood-retinal barrier. Neurochem. Int. 2009, 55, 789–795. [Google Scholar] [CrossRef]
- Hosoya, K.; Fujita, K.; Tachikawa, M. Involvement of reduced folate carrier 1 in the inner blood-retinal barrier transport of methyltetrahydrofolate. Drug Metab. Pharmacokinet. 2008, 23, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Nagase, K.; Tomi, M.; Tachikawa, M.; Hosoya, K. Functional and molecular characterization of adenosine transport at the rat inner blood-retinal barrier. Biochim. Biophys. Acta 2006, 1758, 13–19. [Google Scholar] [CrossRef]
- Nakashima, T.; Tomi, M.; Katayama, K.; Tachikawa, M.; Watanabe, M.; Terasaki, T.; Hosoya, K. Blood-to-retina transport of creatine via creatine transporter (CRT) at the rat inner blood-retinal barrier. J. Neurochem. 2004, 89, 1454–1461. [Google Scholar] [CrossRef]
- Gyawali, A.; Kim, M.H.; Kang, Y.S. A novel organic cation transporter involved in paeonol transport across the inner blood-retinal barrier and changes in uptake in high glucose conditions. Exp. Eye Res. 2021, 202, 108387. [Google Scholar] [CrossRef]
- Tega, Y.; Kubo, Y.; Yuzurihara, C.; Akanuma, S.; Hosoya, K. Carrier-Mediated Transport of Nicotine Across the Inner Blood-Retinal Barrier: Involvement of a Novel Organic Cation Transporter Driven by an Outward H(+) Gradient. J. Pharm. Sci. 2015, 104, 3069–3075. [Google Scholar] [CrossRef]
- Tachikawa, M.; Takeda, Y.; Tomi, M.; Hosoya, K. Involvement of OCTN2 in the transport of acetyl-L-carnitine across the inner blood-retinal barrier. Investig. Ophthalmol. Vis. Sci. 2010, 51, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Kubo, Y.; Obata, A.; Akanuma, S.; Hosoya, K. Impact of Cationic Amino Acid Transporter 1 on Blood-Retinal Barrier Transport of L-Ornithine. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5925–5932. [Google Scholar] [CrossRef] [PubMed]
- Kubo, Y.; Kusagawa, Y.; Tachikawa, M.; Akanuma, S.; Hosoya, K. Involvement of a novel organic cation transporter in verapamil transport across the inner blood-retinal barrier. Pharm. Res. 2013, 30, 847–856. [Google Scholar] [CrossRef]
- Hosoya, K.; Minamizono, A.; Katayama, K.; Terasaki, T.; Tomi, M. Vitamin C transport in oxidized form across the rat blood-retinal barrier. Investig. Ophthalmol. Vis. Sci. 2004, 45, 1232–1239. [Google Scholar] [CrossRef]
- Hosoya, K.; Kondo, T.; Tomi, M.; Takanaga, H.; Ohtsuki, S.; Terasaki, T. MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: A possible route for delivery of monocarboxylic acid drugs to the retina. Pharm. Res. 2001, 18, 1669–1676. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.; Humphries, P. Size-selective and in vitro assessment of inner blood retina barrier permeability. Methods Mol. Biol. 2011, 763, 355–367. [Google Scholar] [CrossRef]
- Sharma, D.; Kaur, G.; Bisen, S.; Sharma, A.; Ibrahim, A.S.; Singh, N.K. IL-33 via PKCmu/PRKD1 Mediated alpha-Catenin Phosphorylation Regulates Endothelial Cell-Barrier Integrity and Ischemia-Induced Vascular Leakage. Cells 2023, 12, 703. [Google Scholar] [CrossRef]
- Phuong, T.T.T.; Redmon, S.N.; Yarishkin, O.; Winter, J.M.; Li, D.Y.; Krizaj, D. Calcium influx through TRPV4 channels modulates the adherens contacts between retinal microvascular endothelial cells. J. Physiol. 2017, 595, 6869–6885. [Google Scholar] [CrossRef] [PubMed]
- Brankin, B.; Campbell, M.; Canning, P.; Gardiner, T.A.; Stitt, A.W. Endostatin modulates VEGF-mediated barrier dysfunction in the retinal microvascular endothelium. Exp. Eye Res. 2005, 81, 22–31. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Qin, Y.J.; Xiao, K.; Zhong, Z.; Zhao, Y.; Yu, T.; Sun, X.F. LECT2 Ameliorates Blood-Retinal Barrier Impairment Secondary to Diabetes Via Activation of the Tie2/Akt/mTOR Signaling Pathway. Investig. Ophthalmol. Vis. Sci. 2022, 63, 7. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, C.; Meng, Z.; Gan, L.; Guo, R.; Liu, J.; Bond Lau, W.; Xie, D.; Zhao, J.; Lopez, B.L.; et al. C1q/TNF-Related Protein 3 Prevents Diabetic Retinopathy via AMPK-Dependent Stabilization of Blood-Retinal Barrier Tight Junctions. Cells 2022, 11, 779. [Google Scholar] [CrossRef]
- Mesquida, M.; Drawnel, F.; Lait, P.J.; Copland, D.A.; Stimpson, M.L.; Llorenc, V.; Sainz de la Maza, M.; Adan, A.; Widmer, G.; Strassburger, P.; et al. Modelling Macular Edema: The Effect of IL-6 and IL-6R Blockade on Human Blood-Retinal Barrier Integrity In Vitro. Transl. Vis. Sci. Technol. 2019, 8, 32. [Google Scholar] [CrossRef]
- Tomi, M.; Terayama, T.; Isobe, T.; Egami, F.; Morito, A.; Kurachi, M.; Ohtsuki, S.; Kang, Y.S.; Terasaki, T.; Hosoya, K. Function and regulation of taurine transport at the inner blood-retinal barrier. Microvasc. Res. 2007, 73, 100–106. [Google Scholar] [CrossRef]
- Tomi, M.; Tajima, A.; Tachikawa, M.; Hosoya, K. Function of taurine transporter (Slc6a6/TauT) as a GABA transporting protein and its relevance to GABA transport in rat retinal capillary endothelial cells. Biochim. Biophys. Acta 2008, 1778, 2138–2142. [Google Scholar] [CrossRef]
- Tomi, M.; Hosoya, K.; Takanaga, H.; Ohtsuki, S.; Terasaki, T. Induction of xCT gene expression and L-cystine transport activity by diethyl maleate at the inner blood-retinal barrier. Investig. Ophthalmol. Vis. Sci. 2002, 43, 774–779. [Google Scholar]
- Bharti, K.; den Hollander, A.I.; Lakkaraju, A.; Sinha, D.; Williams, D.S.; Finnemann, S.C.; Bowes-Rickman, C.; Malek, G.; D’Amore, P.A. Cell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration. Exp. Eye Res. 2022, 222, 109170. [Google Scholar] [CrossRef] [PubMed]
- Dessalles, C.A.; Leclech, C.; Castagnino, A.; Barakat, A.I. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun. Biol. 2021, 4, 764. [Google Scholar] [CrossRef]
- Yang, T.; Guo, L.; Fang, Y.; Liang, M.; Zheng, Y.; Pan, M.; Meng, C.; Liu, G. Pericytes of Indirect Contact Coculture Decrease Integrity of Inner Blood-Retina Barrier Model In Vitro by Upgrading MMP-2/9 Activity. Dis. Markers 2021, 2021, 7124835. [Google Scholar] [CrossRef]
- Abukawa, H.; Tomi, M.; Kiyokawa, J.; Hori, S.; Kondo, T.; Terasaki, T.; Hosoya, K. Modulation of retinal capillary endothelial cells by Müller glial cell-derived factors. Mol. Vis. 2009, 15, 451–457. [Google Scholar] [PubMed]
- Sánchez-Palencia, D.M.; Bigger-Allen, A.; Saint-Geniez, M.; Arboleda-Velásquez, J.F.; D’Amore, P.A. Coculture Assays for Endothelial Cells-Mural Cells Interactions. Methods Mol. Biol. 2016, 1464, 35–47. [Google Scholar] [CrossRef]
- Bryan, B.A.; D’Amore, P.A. Pericyte isolation and use in endothelial/pericyte coculture models. Methods Enzymol. 2008, 443, 315–331. [Google Scholar] [CrossRef]
- Tarallo, S.; Beltramo, E.; Berrone, E.; Porta, M. Human pericyte-endothelial cell interactions in co-culture models mimicking the diabetic retinal microvascular environment. Acta Diabetol. 2012, 49 (Suppl. 1), S141–S151. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, C.; Liu, D.; Yang, Q.; Tang, L.; Wang, T.; Tian, H.; Lu, L.; Xu, J.Y.; Gao, F.; et al. Erythropoietin protects the inner blood-retinal barrier by inhibiting microglia phagocytosis via Src/Akt/cofilin signalling in experimental diabetic retinopathy. Diabetologia 2021, 64, 211–225. [Google Scholar] [CrossRef]
- Yuan, C.; Mo, Y.; Yang, J.; Zhang, M.; Xie, X. Influences of advanced glycosylation end products on the inner blood-retinal barrier in a co-culture cell model in vitro. Open Life Sci. 2020, 15, 619–628. [Google Scholar] [CrossRef]
- Castro, N.; Pena, J.S.; Cliver, R.; Berthiaume, F.; Vazquez, M. Estradiol impacts Muller glia and endothelial cell responses in hyperglycemic microenvironments with advanced glycation end products. Exp. Eye Res. 2025, 251, 110185. [Google Scholar] [CrossRef]
- Beltramo, E.; Mazzeo, A.; Lopatina, T.; Trento, M.; Porta, M. Thiamine transporter 2 is involved in high glucose-induced damage and altered thiamine availability in cell models of diabetic retinopathy. Diabetes Vasc. Dis. Res. 2020, 17, 1479164119878427. [Google Scholar] [CrossRef]
- Sun, P.; Xu, N.; Li, Y.; Han, Y. Destruction of the blood-retina barrier in diabetic retinopathy depends on angiotensin-converting enzyme-mediated TGF-beta1/Smad signaling pathway activation. Int. Immunopharmacol. 2020, 85, 106686. [Google Scholar] [CrossRef] [PubMed]
- Gao, V.; Briano, J.A.; Komer, L.E.; Burré, J. Functional and Pathological Effects of α-Synuclein on Synaptic SNARE Complexes. J. Mol. Biol. 2023, 435, 167714. [Google Scholar] [CrossRef]
- Lavekar, S.S.; Hughes, J.M.; Gomes, C.; Huang, K.C.; Harkin, J.; Canfield, S.G.; Meyer, J.S. Exploring dysfunctional barrier phenotypes associated with glaucoma using a human pluripotent stem cell-based model of the neurovascular unit. Fluids Barriers CNS 2024, 21, 90. [Google Scholar] [CrossRef]
- Pena, J.S.; Berthiaume, F.; Vazquez, M. Muller Glia Co-Regulate Barrier Permeability with Endothelial Cells in an Vitro Model of Hyperglycemia. Int. J. Mol. Sci. 2024, 25, 12271. [Google Scholar] [CrossRef] [PubMed]
- Guidry, C. Isolation and characterization of porcine Muller cells. Myofibroblastic dedifferentiation in culture. Investig. Ophthalmol. Vis. Sci. 1996, 37, 740–752. [Google Scholar]
- Price, G.M.; Wong, K.H.; Truslow, J.G.; Leung, A.D.; Acharya, C.; Tien, J. Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 2010, 31, 6182–6189. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, J.D.; Dufresne, E.R.; Schwartz, M.A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 2014, 15, 802–812. [Google Scholar] [CrossRef]
- Dudek, S.M.; Garcia, J.G. Cytoskeletal regulation of pulmonary vascular permeability. J. Appl. Physiol. 2001, 91, 1487–1500. [Google Scholar] [CrossRef]
- Abbott, N.J. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J. Inherit. Metab. Dis. 2013, 36, 437–449. [Google Scholar] [CrossRef]
- Campisi, M.; Shin, Y.; Osaki, T.; Hajal, C.; Chiono, V.; Kamm, R.D. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 2018, 180, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32, 3233–3243. [Google Scholar] [CrossRef]
- Fathi, M.; Ross, C.T.; Hosseinzadeh, Z. Functional 3-Dimensional Retinal Organoids: Technological Progress and Existing Challenges. Front. Neurosci. 2021, 15, 668857. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.; Lin, Y.Y.; Gerecht, S. The next generation of endothelial differentiation: Tissue-specific ECs. Cell Stem Cell 2021, 28, 1188–1204. [Google Scholar] [CrossRef] [PubMed]
- Holm, A.; Heumann, T.; Augustin, H.G. Microvascular Mural Cell Organotypic Heterogeneity and Functional Plasticity. Trends Cell Biol. 2018, 28, 302–316. [Google Scholar] [CrossRef]
- Hiler, D.; Chen, X.; Hazen, J.; Kupriyanov, S.; Carroll, P.A.; Qu, C.; Xu, B.; Johnson, D.; Griffiths, L.; Frase, S.; et al. Quantification of Retinogenesis in 3D Cultures Reveals Epigenetic Memory and Higher Efficiency in iPSCs Derived from Rod Photoreceptors. Cell Stem Cell 2015, 17, 101–115. [Google Scholar] [CrossRef]
- Kosyakova, N.; Kao, D.D.; Figetakis, M.; Lopez-Giraldez, F.; Spindler, S.; Graham, M.; James, K.J.; Won Shin, J.; Liu, X.; Tietjen, G.T.; et al. Differential functional roles of fibroblasts and pericytes in the formation of tissue-engineered microvascular networks in vitro. NPJ Regen. Med. 2020, 5, 1. [Google Scholar] [CrossRef]
- Zhong, X.; Gutierrez, C.; Xue, T.; Hampton, C.; Vergara, M.N.; Cao, L.H.; Peters, A.; Park, T.S.; Zambidis, E.T.; Meyer, J.S.; et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 2014, 5, 4047. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, F. Retinal Organoids: A Next-Generation Platform for High-Throughput Drug Discovery. Stem Cell Rev. Rep. 2024, 20, 495–508. [Google Scholar] [CrossRef]
- Pamies, D.; Leist, M.; Coecke, S.; Bowe, G.; Allen, D.G.; Gstraunthaler, G.; Bal-Price, A.; Pistollato, F.; de Vries, R.B.M.; Hogberg, H.T.; et al. Guidance document on Good Cell and Tissue Culture Practice 2.0 (GCCP 2.0). Altex 2022, 39, 30–70. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.C.; Costa, E.C.; Filipe, H.A.L.; Saraiva, S.M.; Jacinto, T.; Miguel, S.P.; Ribeiro, M.P.; Coutinho, P. Animal-derived products in science and current alternatives. Biomater. Adv. 2023, 151, 213428. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, L.; Ramsden, D.; Leite, S.B.; Beken, S.; Bonzo, J.A.; Brown, P.; Candarlioglu, P.L.; Chan, T.S.; Chen, E.; Choi, C.K.; et al. Considerations from an International Regulatory and Pharmaceutical Industry (IQ MPS Affiliate) Workshop on the Standardization of Complex In Vitro Models in Drug Development. Adv. Biol. 2024, 8, 2300131. [Google Scholar] [CrossRef]
- Papamichail, L.; Koch, L.S.; Veerman, D.; Broersen, K.; van der Meer, A.D. Organoids-on-a-chip: Microfluidic technology enables culture of organoids with enhanced tissue function and potential for disease modeling. Front. Bioeng. Biotechnol. 2025, 13, 1515340. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, X.; Cai, Z.; Tu, M.; Wang, Y.; Ouyang, Q.; Yan, X.; Jing, G.; Yang, G. Transformation gap from research findings to large-scale commercialized products in microfluidic field. Mater. Today Bio 2024, 29, 101373. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Studts, J.; Wang, G. In-line product quality monitoring during biopharmaceutical manufacturing using computational Raman spectroscopy. mAbs 2023, 15, 2220149. [Google Scholar] [CrossRef] [PubMed]
Study | Cell Type Used | Origin | Transporters/Trait Studied | Key Assays Performed | Notes/Disease Relevance |
---|---|---|---|---|---|
[76] | TR-iBRB2 | Rat | Putrescine transport | Putrescine uptake | Mechanism of regulating retinal polyamine concentrations |
[89] | TR-iBRB2 | Rat | CAT1 (L-ornithine) | L-ornithine uptake | Hyperornithinemia and retinal degeneration |
[90] | TR-iBRB2 | Rat | Organic cation transporter | Verapamil uptake | Pharmacokinetics of cationic drugs |
[88] | TR-iBRB2 | Rat | OCTN2 (L-carnitine) | Acetyl-L-carnitine and L-carnitine uptake | Nutrient transport enhancement |
[91] | TR-iBRB2 | Rat | GLUT1 (dehydroascorbic acid) | Dehydroascorbic acid and ascorbic acid uptake | Oxidative stress model |
[77] | TR-iBRB2 | Rat | L-arginine transport under simvastatin/high glucose | L-arginine uptake | Diabetic condition modeling |
[78] | TR-iBRB2 | Rat | MCT (nicotinate) | Nicotinate uptake | Design of a suitable nicotinate dosage regimen |
[79] | TR-iBRB2 | Rat | Carrier-mediated transport systems (amantadine) | Transport assays | Application for retinal diseases such as glaucoma |
[80] | TR-iBRB2 | Rat | SMVT (Biotin) | Biotin uptake | Vitamin transport |
[81] | TR-iBRB2 | Rat | ATA2 system A transporter | Proline uptake | Amino acid neuroprotection |
[82] | TR-iBRB2 | Rat | GlyT1 | Glycine uptake | Neurotransmission regulation |
[83] | TR-iBRB2 | Rat | RFC1 (MTF) | Folate uptake | Folate deficiency modeling |
[84] | TR-iBRB2 | Rat | ENT2 (adenosine) | Nucleoside uptake | Purinergic signaling |
[92] | TR-iBRB2 | Rat | MCT1 (lactic acid) | L-lactic acid uptake | Retinal metabolic acidosis |
[85] | TR-iBRB2 | Rat | CRT (creatine) | Creatine uptake | Energy homeostasis |
[86] | TR-iBRB2 | Rat | Organic cation/glucose-sensitive transporter | Paeonol uptake | Anti-inflammatory drug testing CNS delivery mechanisms |
[87] | HRMECs | Rat | H+-gradient transporter (nicotine) | Nicotine uptake | CNS delivery mechanisms |
[93] | BRMECs | Bovine | Junctional proteins | RT-PCR, Western blot, immunostaining | Molecular barrier integrity evaluation |
[94] | HRMECs | Human | Adherens junctions | FITC-dextran flux assay, ESIC Immunocytochemistry | IL-33 role in endothelial permeability and iBRB integrity |
[95] | HRMECs | Human | TRPV4 channel | Ca2+ imaging, impedance sensing, electrophysiology assessment | TRPV4 contribution to iBRB |
[54] | HRMECs | Human | Transcytosis (clathrin-mediated, caveolae-mediated) | TEER, Transcytosis assay (Cy3-tagged transferrin, HRP) | Molecular regulators of EC permeability |
[96] | HRMECs | Human | VEGF signaling modulation (endostatin) | TEER, permeability | Inflammation-induced barrier breakdown restoration |
[97] | HRMECs | Human | Transendothelial permeability | FITC–dextran flux assay | Pathogenesis of Diabetic Retinopathy |
[98] | HRMECs | Human | Vascular permeability | FITC-dextran flux assay xCELLigence electrical conductivity assays | Development of Diabetic Retinopathy |
[99] | HRMECs | Human | Transendothelial permeability | TEER FITC-dextran flux assay Immunocytochemistry | Modeling of macular oedema |
[83] | TR-iBRB2 | Rat | RFC (MTF) | Folate uptake | Folate-related metabolic disorders |
[100] | TR-iBRB2 | Rat | TAUT | Taurine uptake | Neuroprotection function |
[101] | TR-iBRB2 | Rat | TAUT, GABA | GABA uptake | GABA transport properties |
[82] | TR-iBRB2 | Rat | GlyT1/system A | Glycine uptake | Neurotransmission and neuromodulation in the retina |
[81] | TR-iBRB2 | Rat | System A | L-proline uptake | concentration of small neutral amino acids |
[102] | TR-iBRB2 | Rat | L-cystine transporter, system x(-)(c) | L-cystine uptake | L-cystine transport mechanism |
Study | Cell Types Used | Transwell Setup | TEER Values & Comparison | Assays Performed | Pathological Conditions | In Vivo Comparison | Limitations |
---|---|---|---|---|---|---|---|
[106] | TR-iBRB2, TR-MUL5 | TR-iBRB2 cells on the upper side of a rat tail collagen type I-coated cell culture insert (pore size: 3.0 μm) cultured with TR-MUL5 seeded on the backside membrane | Not measured | Gene expression (microarray, RT-qPCR), ALP activity | Direct and paracrine signaling | PAI-1/Id2 modulation supported known angiogenic control | Lacked barrier assays |
[107] | hRMECs, BRPCs | hRMECs on transwell membranes cultured individually with BRPCs on the bottom side of the filter or on the bottom of the well | Not stated | Proliferation, apoptosis, cord formation | EC–mural cell interaction | Demonstrated vessel formation and Notch signaling | Method-oriented; no quantitative barrier validation |
[108] | ECs, Bovine, Pericytes | Direct, indirect and 3D collagen co-culture | Not stated | Migration, proliferation, tube formation | Pericyte recruitment mechanisms | Modeled mural cell support role | Qualitative; lacked disease modeling |
[109] | hRPs, hRECs | hRECs on PET transwell membranes (1 µm pore size) cultured individually or with hRPs on the bottom side of the membrane | Not stated | IHC for TJ proteins | High glucose | Limited to endothelial–pericyte interaction | |
[110] | HRMECs, BV2 & primary rat microglia | HRMECs on the bottom side of fibronectin coated membrane cultured with BV2 cells seeded on the apical side of the transwell membrane. | Not stated | Confocal imaging phagocytosis assay | Diabetic retinopathy | Mimicked microglial engulfment observed in vivo | Limited to microglia–endothelial interaction |
[111] | Rat RMEC, rat RMGC | RMEC on gelatin coated insert co-cultured with RMGC on the bottom side of the insert | TEER dropped dose-dependently with AGEs | TEER, VEGF/PEDF concentration (ELISA) | AGE-induced BRB dysfunction | VEGF/PEDF modulation consistent with in vivo DR | Rat models; limited temporal scale |
[112] | HUVECs, rat Müller glia, rat astrocytes | HUVECs on collagen IV/fibronectin membrane (0.4 μm pore size) cultured individually or with rat Müller glia on the bottom side of the insert’s membrane (combo culture). Conditioned media (CM) of the individual cell type cultures were taken | Combo cultures had lowest TEER under hyperglycemia | TEER, ROS production | Hyperglycemia with AGEs | In vitro responses mirrored known in vivo phenotypes | Used HUVECs instead of retinal ECs; limited chronic modeling |
[113] | HMEC, HRPs, MIO-M1 | HMEC on transwell insert cultured with HRP on the bottom side of the insert and MIO-M1 on the bottom of the well | TEER values not provided | Permeability, transporter expression, viability | Diabetic retinopathy, thiamine deficiency | Inferred transporter dynamics mirrored in vivo | Non-retinal HMEC; cell lines used |
[53] | Primary BRECs, BRPCs, rat astrocytes | BRECs on collagen IV coated polycarbonate insert (pore size: 0.4 mm) cultured alone or with BRPCs/rat astrocytes on the bottom side of the insert or on the bottom of the well (a total of 5 setups) | BRECs + BRPCs + Rat astrocytes > BRECs + Rat astrocytes > BRECs * the highest TEER values in triple co-cultures with astrocytes at the bottom side of the filter and BRPCs at the bottom of the well | TEER, permeability (FITC-dextran), transporter expression | VEGF-induced DME | VEGF effects on GLUT1, P-gp consistent with in vivo | Mixed species |
[105] | Rat RECs and RMPs | RECs on polyethylene terephthalate membrane (pore size: 0.4 μm), cultured alone or with RMPs on the bottom side of the membrane (direct contact-DC) or with RMPs on the bottom of the well (indirect contact-IDC) | RECs + RMPs (DC) > RECs > RECs + RMPs (IDC) | TEER, MMP assays, FITC-Na permeability WB of TJ proteins | Loss of direct contacts of pericytes with ECs in diabetic retinopathy | Reflected MMP-2/9 effect in vivo | Rat origin; only pericyte influence explored |
[35] | bEnd.3, QMMuC01, BV2 | bEnd.3 on insert (pore size: 0.4 μm), cultured alone or with QMMuC-1 on the bottom side of the insert and BV2 on the bottom of the well | bEnd.3 + QMMuC-1 + BV2 = * bEnd.3 + QMMuC-1 > bEnd.3 * normoxic conditions | TEER, EB assay, FITC-Na permeability IHC and RT-PCR for TJ proteins | Hypoxia-induced BRB breakdown | Modeled hypoxia-mediated VEGF upregulation | Immortalized cell lines; mouse origin; lacks pericytes |
[114] | Rat RCECs, rat RMCs | RCECs on collagen IV/fibronectin-coated transwell polycarbonate filter (pore size: 0.4 μm) cultured alone or with RMCs on the bottom side of the filter | RMCs + RCECs > RCECs | TEER, TGF-β/Smad activation | Diabetic conditions, high glucose, ACE | Supported known pathways of barrier breakdown | Rat origin; moderate model duration low TEER values |
[115] | Immortalized HRECs, HRPs, primary HRAs | HRECs on collagen IV coated insert (pore size: 0.4 μm) cultured alone or with HRPs on the bottom side of the insert’s membrane and HRAs on the bottom of the well | HRECs + HRPs + HRAs > HRECs | TEER, Na-F permeability, IHC for TJ proteins | Ebola virus exposure | Confirmed breakdown mechanism in vivo | Immortalized cells, limited chronic modeling, low TEER values |
[116] | Human iPSC-derived MVECs, astrocytes, RGCs | MVECs on collagen IV/fibronectin-coated insert, cultured alone or with astrocytes and RGCs on the bottom of the well | MVEC + astrocytes + RGCs > MVEC | TEER, Na-F permeability (Na-F), P-gp function (Rhodamine 123) IHC for TJ proteins | Glaucoma-associated barrier dysfunction | Recapitulated key barrier traits similar to primary models | Brain-like MVECs used; lacks direct cell–cell contact |
[117] | rRMECs rMG | rMG, rRMECs on collagen IV/fibronectin coated polyester (PET) membrane with a 10 μm thickness and 0.4 μm pore size individually or in COMBOs (rRMECs on the top and rMG on the bottom side of the insert’s membrane) | COMBOs > rRMECs > rMG | TEER, TNF-α challenge, anti-VEGF-A treatment | Hyperglycemia, inflammation, anti-VEGF-A response | TEER patterns upon treatment match in vivo data | Rat origin; required validation in long-term and 3D studies |
Study/Platform | Cell Types | Strategy | Readouts | Disease Model | High Throughput/Screening Potential |
---|---|---|---|---|---|
[73] (OrganoPlate) | hTERT-hRMVECs | Gel-based (collagen I); no membrane | Fluorescent dextran permeability; automated imaging; leakage score; apparent permeability | Retinal barrier leakage (e.g., VEGFA) | Moderate to high (automated imaging) |
[71] (PREDICT96) | hMVECs + pericytes | Bilayer with microporous membrane | FITC-dextran permeability; cytokine profiling (Luminex); qPCR; image-based screening | Barrier disruption & inflammation | High (96-well format, automation ready) |
[74] (Microgroove-TEER chip) | HRECs + ARPE-19 + SH-SY5Y | Microgroove-separated compartments | TEER (integrated electrodes); fluorescent tracer permeability; ZO-1 immunostaining; confocal imaging | iBRB mimic; neurovascular interface | Moderate (multi-modal but complex setup) |
[72] (3D-printed gLL) | Rat RECs + rat RNCs (r28) | Channel-based PDMS device (FDM/SLA molds) | Cell viability (live/dead); morphology (CSI); bead-tracked flow validation | Shear stress effects; retinal cells | Low (proof-of-concept, not scalable) |
[75] (Tri-culture fibrin MVN) | Primary HRMVECs + pericytes + astrocytes | Fibrin gel-based 3D vascular network | Confocal imaging; TRITC-dextran permeability; perfusability; RNA-seq; Luminex; apoptosis (caspase-3/7, LDH-Glo CytotoxicityAssay) | Diabetic retinopathy (NPDR model) | Moderate (complex but highly informative) |
Strategy | Advantages | Limitations |
---|---|---|
Single-cell cultures (e.g., retinal endothelial cells) | - Clear simple readouts (TEER, permeability assays) - High reproducibility - Cost-effective and scalable for drug screening | - Lack of physiological complexity - Absence of pericytes, astrocytes and ECM - Limited translational relevance |
Static co-culture models (e.g., Transwell systems with endothelial cells plus pericytes/glial cells) | - Better mimics cell–cell interactions - More accurate barrier properties (compared to single-cell systems) - Well-established and widely used in drug permeability assays | - 2D and static, lacking shear stress and flow - Limited ability to recapitulate 3D tissue organization - Moderate reproducibility across laboratories |
Microphysiological systems (MPs) (organ-on-chip, 3D models) | - Closely mimic in vivo microenvironment - Incorporate flow, shear stress and ECM - Potential real-time monitoring (TEER, imaging) - High translational potential for drug testing and disease modeling | - Technically complex and costly - Reproducibility issues between devices and laboratories - Distinct design configurations are required depending on the application (no standardized setup can yet accommodate all drug development needs) - Standardization and quality control still under development |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apostolidi, A.; Stergiopoulos, G.; Bellou, S.; Markou, M.; Fotsis, T.; Murphy, C.; Bagli, E. Advances in Modeling the Inner Blood–Retinal Barrier: From Static Tissue Cell Cultures to Microphysiological Systems. Pharmaceuticals 2025, 18, 1374. https://doi.org/10.3390/ph18091374
Apostolidi A, Stergiopoulos G, Bellou S, Markou M, Fotsis T, Murphy C, Bagli E. Advances in Modeling the Inner Blood–Retinal Barrier: From Static Tissue Cell Cultures to Microphysiological Systems. Pharmaceuticals. 2025; 18(9):1374. https://doi.org/10.3390/ph18091374
Chicago/Turabian StyleApostolidi, Aikaterini, Georgios Stergiopoulos, Sofia Bellou, Maria Markou, Theodore Fotsis, Carol Murphy, and Eleni Bagli. 2025. "Advances in Modeling the Inner Blood–Retinal Barrier: From Static Tissue Cell Cultures to Microphysiological Systems" Pharmaceuticals 18, no. 9: 1374. https://doi.org/10.3390/ph18091374
APA StyleApostolidi, A., Stergiopoulos, G., Bellou, S., Markou, M., Fotsis, T., Murphy, C., & Bagli, E. (2025). Advances in Modeling the Inner Blood–Retinal Barrier: From Static Tissue Cell Cultures to Microphysiological Systems. Pharmaceuticals, 18(9), 1374. https://doi.org/10.3390/ph18091374