PROTACs and Glues: Striking Perspectives for Engineering Cancer Therapy À La Carte
Abstract
1. General Principles
1.1. Definition of Degraders and Glues
1.2. PROTACs Versus Glues
2. Degraders and Glues in the Context of Personalized Cancer Therapy
2.1. Current Status of Personalized Therapy
2.2. Perspectives Offered by PROTACs and Glues
3. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric Molecules That Target Proteins to the Skp1-Cullin-F Box Complex for Ubiquitination and Degradation. Proc. Natl. Acad. Sci. USA 2001, 98, 8554–8559. [Google Scholar] [CrossRef] [PubMed]
- Bard, J.A.M.; Goodall, E.A.; Greene, E.R.; Jonsson, E.; Dong, K.C. Martin Structure and Function of the 26s Proteasome. Annu. Rev. Biochem. 2018, 87, 697–724. [Google Scholar] [CrossRef]
- London, N. Covalent Proximity Inducers. Chem. Rev. 2025, 125, 326–368. [Google Scholar] [CrossRef]
- Tsai, J.M.; Nowak, R.P.; Ebert, B.L.; Fischer, E.S. Targeted Protein Degradation: From Mechanisms to Clinic. Nat. Rev. Mol. Cell Biol. 2024, 25, 740–757. [Google Scholar] [CrossRef]
- Békés, M.; Langley, D.R.; Crews, C.M. Protac Targeted Protein Degraders: The Past Is Prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef]
- Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y. Handa Identification of a Primary Target of Thalidomide Teratogenicity. Science 2010, 327, 1345–1350. [Google Scholar] [CrossRef]
- Oleinikovas, V.; Gainza, P.; Ryckmans, T.; Fasching, B.; Thomä, N.H. From Thalidomide to Rational Molecular Glue Design for Targeted Protein Degradation. Annu. Rev. Pharmacol. Toxicol. 2024, 64, 291–312. [Google Scholar] [CrossRef]
- Holstein, S.A.; McCarthy, P.L. Immunomodulatory Drugs in Multiple Myeloma: Mechanisms of Action and Clinical Experience. Drugs 2017, 77, 505–520. [Google Scholar] [CrossRef]
- Matyskiela, M.E.; Lu, G.; Ito, T.; Pagarigan, B.; Lu, C.C.; Miller, K.; Fang, W.; Wang, N.Y.; Nguyen, D.; Houston, J.; et al. A Novel Cereblon Modulator Recruits GSPT1 to the CRL4(CRBN) Ubiquitin Ligase. Nature 2016, 535, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Sasso, J.M.; Tenchov, R.; Wang, D.; Johnson, L.S.; Wang, X.; Zhou, Q.A. Molecular Glues: The Adhesive Connecting Targeted Protein Degradation to the Clinic. Biochemistry 2023, 62, 601–623. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hu, M.; Yang, Y.; Du, C.; Zhou, H.; Liu, C.; Chen, Y.; Fan, L.; Ma, H.; Gong, Y.; et al. An Overview of PROTACs: A Promising Drug Discovery Paradigm. Mol. Biomed. 2022, 3, 46. [Google Scholar] [CrossRef]
- Pike, A.; Williamson, B.; Harlfinger, S.; Martin, S.; McGinnity, D.F. Optimising Proteolysis-Targeting Chimeras (Protacs) for Oral Drug Delivery: A Drug Metabolism and Pharmacokinetics Perspective. Drug Discov. Today 2020, 25, 1793–1800. [Google Scholar] [CrossRef]
- Verma, R.; Mohl, D.; Deshaies, R.J. Harnessing the Power of Proteolysis for Targeted Protein Inactivation. Mol. Cell 2020, 77, 446–460. [Google Scholar] [CrossRef]
- Zhang, L.; Riley-Gillis, B.; Vijay, P.; Shen, Y. Acquired Resistance to Bet-Protacs (Proteolysis-Targeting Chimeras) Caused by Genomic Alterations in Core Components of E3 Ligase Complexes. Mol. Cancer Ther. 2019, 18, 1302–1311. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Sun, X.; Rao, Y. Protac Technology: Opportunities and Challenges. ACS Med. Chem. Lett. 2020, 11, 237–240. [Google Scholar] [CrossRef]
- Heo, Y.; Kim, W.-J.; Cho, Y.-J.; Jung, J.-W.; Kim, N.-S.; Choi, I.-Y. Advances in Cancer Genomics and Precision Oncology. Genes Genom. 2025, 47, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Andre, F.T.; Kamal, M.; Mosele, F.; Arnedos, M.; Dalenc, F.; Sablin, M.P.; Campone, M.; Bonnefoi, H.; Lefeuvre-Plesse, C.; Jacot, W.; et al. Genomics to Select Treatment for Patients with Metastatic Breast Cancer. Nature 2022, 610, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Tourneau, L.; Delord, J.P.; Gonçalves, A.; Gavoille, C.; Dubot, C.; Isambert, N.; Campone, M.; Trédan, O.; Massiani, M.A.; Mauborgne, C.; et al. Molecularly Targeted Therapy Based on Tumour Molecular Profiling Versus Conventional Therapy for Advanced Cancer (Shiva): A Multicentre, Open-Label, Proof-of-Concept, Randomised, Controlled Phase 2 Trial. Lancet Oncol. 2015, 16, 1324–1334. [Google Scholar] [CrossRef]
- Heath, E.; Dyson, G.; Ribeiro, J.R.; Xiu, J.; Poorman, K.; Mamdani, H.; Al-Hallak, M.N.; Shields, A.F.; Elayoubi, J.A.; Winer, I.S.; et al. Health Disparities among Patients with Cancer Who Received Molecular Testing for Biomarker-Directed Therapy. Cancer Res. Commun. 2024, 4, 2598–2609. [Google Scholar] [CrossRef]
- Weinberg, R.A. It Took a Long, Long Time: Ras and the Race to Cure Cancer. Cell 2024, 187, 1574–1577. [Google Scholar] [CrossRef]
- Oren, M.; Prives, C. P53: A Tale of Complexity and Context. Cell 2024, 187, 1569–1573. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhu, G.; Zeng, H.; Fan, Y.; Guo, F.; Xu, D.; Wang, B.; Chen, D.; Ge, G. Emerging Pharmacotherapeutic Strategies to Overcome Undruggable Proteins in Cancer. Int. J. Biol. Sci. 2023, 19, 3360–3382. [Google Scholar] [CrossRef]
- Choi, Y.H.; Chang, J.-E. Targeted Therapy for Cancers: From Ongoing Clinical Trials to Fda-Approved Drugs. Int. J. Mol. Sci. 2023, 24, 13618. [Google Scholar] [CrossRef]
- Rathkopf, D.E.; Patel, M.R.; Choudhury, A.D.; Rasco, D.; Lakhani, N.; Hawley, J.E.; Srinivas, S.; Aparicio, A.; Narayan, V.; Runcie, K.D.; et al. Safety and Clinical Activity of Bms-986365 (Cc-94676), a Dual Androgen Receptor Ligand-Directed Degrader and Antagonist, in Heavily Pretreated Patients with Metastatic Castration-Resistant Prostate Cancer. Ann. Oncol. 2025, 36, 76–88. [Google Scholar] [CrossRef]
- Hamilton, E.P.; Ma, C.; De Laurentiis, M.; Iwata, H.; Hurvitz, S.A.; Wander, S.A.; Danso, M.; Lu, D.R.; Smith, J.P.; Liu, Y.; et al. Veritac-2: A Phase Iii Study of Vepdegestrant, a Protac Er Degrader, Versus Fulvestrant in Er+/Her2- Advanced Breast Cancer. Future Oncol. 2024, 20, 2447–2455. [Google Scholar] [CrossRef]
- Xinyi, L.; Pu, W.; Zheng, Q.; Ai, M.; Chen, S.; Peng, Y. Proteolysis-Targeting Chimeras (Protacs) in Cancer Therapy. Mol. Cancer 2022, 21, 99. [Google Scholar] [CrossRef]
- Albanese, K.I.; Barbe, S.; Tagami, S.; Woolfson, D.N.; Schiex, T. Computational Protein Design. Nat. Rev. Methods Primers 2025, 5, 13. [Google Scholar] [CrossRef]
- Liu, F.; Cai, Q.; Deng, L.; Ouyang, Q.; Zhang, X.H.; Zheng, J. Invasion and Metastasis in Cancer: Molecular Insights and Therapeutic Targets. Signal Transduct. Target. Ther. 2025, 10, 57. [Google Scholar] [CrossRef]
- Jia, X.; Tang, B.; Ma, C.; Fang, X.; Jin, X.; Niu, Z.; Han, X. In Silico Modeling of Targeted Protein Degradation. Eur. J. Med. Chem. 2025, 289, 117432. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate Structure Prediction of Biomolecular Interactions with Alphafold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Maneiro, M.; De Vita, E.; Conole, D.; Kounde, C.S.; Zhang, Q.; Tate, E.W. Protacs, Molecular Glues and Bifunctionals from Bench to Bedside: Unlocking the Clinical Potential of Catalytic Drugs. Prog. Med. Chem. 2021, 60, 67–190. [Google Scholar]
- Petzold, G.; Gainza, P.; Annunziato, S.; Lamberto, I.; Trenh, P.; McAllister, L.; Demarco, B.; Schwander, L.; Bunker, R.D.; Zlotosch, M.; et al. Mining the Crbn Target Space Redefines Rules for Molecular Glue-Induced Neosubstrate Recognition. Science 2025, 389, eadt6736. [Google Scholar] [CrossRef]
- Gou, X.; Tan, S.K.; Mann, S.I.; Yang, H.; Zhong, X.; Gazgalis, D.; Valdiviezo, J.; Jo, H.; Wu, Y.; Diolaiti, M.E.; et al. De Novo Design of Drug-Binding Proteins with Predictable Binding Energy and Specificity. Science 2024, 384, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Marchand, A.; Buckley, S.; Schneuing, A.; Pacesa, M.; Elia, M.; Gainza, P.; Elizarova, E.; Neeser, R.M.; Lee, P.-W.; Reymond, L.; et al. Targeting Protein–Ligand Neosurfaces with a Generalizable Deep Learning Tool. Nature 2025, 639, 522–531. [Google Scholar] [CrossRef]
- Gainza, P.; Wehrle, S.; Van Hall-Beauvais, A.; Marchand, A.; Scheck, A.; Harteveld, Z.; Buckley, S.; Ni, D.; Tan, S.; Sverrisson, F.; et al. De Novo Design of Protein Interactions with Learned Surface Fingerprints. Nature 2023, 617, 176–184. [Google Scholar] [CrossRef]
- Ren, F.; Ding, X.; Zheng, M.; Korzinkin, M.; Cai, X.; Zhu, W.; Mantsyzov, A.; Aliper, A.; Aladinskiy, V.; Cao, Z.; et al. Alphafold Accelerates Artificial Intelligence Powered Drug Discovery: Efficient Discovery of a Novel Cdk20 Small Molecule Inhibitor. Chem. Sci. 2023, 14, 1443–1452. [Google Scholar] [CrossRef]
- Kamya, P.; Ozerov, I.V.; Pun, F.W.; Tretina, K.; Fokina, T.; Chen, S.; Naumov, V.; Long, X.; Lin, S.; Korzinkin, M.; et al. Pandaomics: An Ai-Driven Platform for Therapeutic Target and Biomarker Discovery. J. Chem. Inf. Model. 2024, 64, 3961–3969. [Google Scholar] [CrossRef]
- Ivanenkov, Y.A.; Polykovskiy, D.; Bezrukov, D.; Zagribelnyy, B.; Aladinskiy, V.; Kamya, P.; Aliper, A.; Ren, F.; Zhavoronkov, A. Chemistry42: An Ai-Driven Platform for Molecular Design and Optimization. J. Chem. Inf. Model. 2023, 63, 695–701. [Google Scholar] [CrossRef]
- Shen, C.; Song, J.; Hsieh, C.Y.; Cao, D.; Kang, Y.; Ye, W.; Wu, Z.; Wang, J.; Zhang, O.; Zhang, X.; et al. Drugflow: An Ai-Driven One-Stop Platform for Innovative Drug Discovery. J. Chem. Inf. Model. 2024, 64, 5381–5391. [Google Scholar] [CrossRef]
- El-Deiry, W.S.; Bresson, C.; Wunder, F.; Carneiro, B.A.; Dizon, D.S.; Warner, J.L.; Graff, S.L.; Azzoli, C.G.; Wong, E.T.; Cheng, L.; et al. Worldwide Innovative Network (Win) Consortium in Personalized Cancer Medicine: Bringing Next-Generation Precision Oncology to Patients. Oncotarget 2025, 16, 140–162. [Google Scholar] [CrossRef]
- Westphalen, C.; Benedikt, C.; Bielo, L.B.; Aftimos, P.; Beltran, H.; Benary, M.; Chakravarty, D.; Collienne, M.; Dienstmann, R.; El Helali, A.; et al. Esmo Precision Oncology Working Group Recommendations on the Structure and Quality Indicators for Molecular Tumour Boards in Clinical Practice. Ann. Oncol. 2025, 36, 614–625. [Google Scholar] [CrossRef]
- Casolino, R.; Beer, P.A.; Chakravarty, D.; Davis, M.B.; Malapelle, U.; Mazzarella, L.; Normanno, N.; Pauli, C.; Subbiah, V.; Turnbull, C.; et al. Interpreting and Integrating Genomic Tests Results in Clinical Cancer Care: Overview and Practical Guidance. CA Cancer J. Clin. 2024, 74, 264–285. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, B.; Zhang, J.; Huang, R.; Wang, Z.; Xu, H.; Huang, B. Does Delayed Initiation of Adjuvant Chemotherapy Following the Curative Resection Affect the Survival Outcome of Gastric Cancer Patients: A Systematic Review and Meta-Analysis. Eur. J. Surg. Oncol. 2020, 46, 1103–1110. [Google Scholar] [CrossRef]
- Turner, M.C.; Farrow, N.E.; Rhodin, K.E.; Sun, Z.; Adam, M.A.; Mantyh, C.R.; Migaly, J. Delay in Adjuvant Chemotherapy and Survival Advantage in Stage Iii Colon Cancer. J. Am. Coll. Surg. 2018, 226, 670–678. [Google Scholar] [CrossRef]
- Jiao, D.; Liu, A.; Wu, K. Tumor Organoids: Applications in Cancer Modeling and Potentials in Precision Medicine. J. Hematol. Oncol. 2022, 15, 58. [Google Scholar] [CrossRef]
- Fritsch, E.F.; Ott, P.A. Personalized Cancer Vaccines Directed against Tumor Mutations: Building Evidence from Mice to Humans. Cancer Res. 2024, 84, 953–955. [Google Scholar] [CrossRef]
- Le Tourneau, C.; Rolland, F.; Capitain, O.; Cassier, P.A.; Fumet, J.D.; Salas, S.; Daste, A.; Manso, L.; Bermejo-Perez, M.-J.; Casado, A.; et al. Randomized Phase Ii Trial Evaluating the Combination of Tg4001, an Hpv16 Therapeutic Vaccine, and Avelumab (Ave) in Patients (Pts) with Immunotherapy-Naïve Recurrent and/or Metastatic (R/M) Hpv16-Positive Cervical or Anogenital Cancer. J. Clin. Oncol. 2025, 43 (Suppl. 16), 2638. [Google Scholar] [CrossRef]
- Sellars, M.L.C.; Wu, C.J.; Fritsch, E.F. Cancer Vaccines: Building a Bridge over Troubled Waters. Cell 2022, 185, 2770–2788. [Google Scholar] [CrossRef]
- Maalej, K.M.; Merhi, M.; Inchakalody, V.P.; Mestiri, S.; Alam, M.; Maccalli, C.; Cherif, H.; Uddin, S.; Steinhoff, M.; Marincola, F.M.; et al. Car-Cell Therapy in the Era of Solid Tumor Treatment: Current Challenges and Emerging Therapeutic Advances. Mol. Cancer 2023, 22, 20. [Google Scholar] [CrossRef]
- Hunter, T.L.; Bao, Y.; Zhang, Y.; Matsuda, D.; Riener, R.; Wang, A.; Li, J.J.; Soldevila, F.; Chu, D.S.H.; Nguyen, D.P.; et al. In Vivo Car T Cell Generation to Treat Cancer and Autoimmune Disease. Science 2025, 388, 1311–1317. [Google Scholar] [CrossRef]
- Arnold, C. Autoimmune Disease Is the Next Frontier for Car T Cell Therapy. Nat. Med. 2024, 30, 6–9. [Google Scholar] [CrossRef]
- Campone, M.; De Laurentiis, M.; Jhaveri, K.; Hu, X.; Ladoire, S.; Patsouris, A.; Zamagni, C.; Cui, J.; Cazzaniga, M.; Cil, T.; et al. Vepdegestrant, a Protac Estrogen Receptor Degrader, in Advanced Breast Cancer. N. Engl. J. Med. 2025, 393, 556–568. [Google Scholar] [CrossRef]
- Antonarelli, G.; Perez-Garcia, J.M.; Gion, M.; Rugo, H.; Schmid, P.; Bardia, A.; Hurvitz, S.; Harbeck, N.; Tolaney, S.M.; Curigliano, G.; et al. Redefining Clinical Trial Strategic Design to Support Drug Approval in Medical Oncology. Ann. Oncol. 2025, 36, 645–650. [Google Scholar] [CrossRef]
- Hinterndorfer, M.; Spiteri, V.A.; Ciulli, A.; Winter, G.E. Targeted Protein Degradation for Cancer Therapy. Nat. Rev. Cancer 2025, 25, 493–516. [Google Scholar] [CrossRef]
- Kang, C.; Xu, W. Leveraging Structural and Computational Biology for Molecular Glue Discovery; ACS Publications: Washington, DC, USA, 2025. [Google Scholar]
- Oualikene-Gonin, W.; Jaulent, M.C.; Thierry, J.P.; Oliveira-Martins, S.; Belgodere, L.; Maison, P.; Ankri, J.; Scientific Advisory Board of ANSM. Artificial Intelligence Integration in the Drug Lifecycle and in Regulatory Science: Policy Implications, Challenges and Opportunities. Front. Pharmacol. 2024, 15, 1437167. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Oncology. Cancer Drug Discovery at Warp Speed: Can Ai Deliver? Lancet Oncol. 2025, 26, 981. [Google Scholar] [CrossRef]
Criteria | PROTACs | Glues |
---|---|---|
Conception | Complex | Less predictable |
Mechanism of action | Bifunctional | Monofunctional |
Size | High (>800 Da) | Low (Inf 500 Da) |
Modularity | High | Low |
Targeting capacity | Large | Restricted |
Conception | Complex | Less predictable |
Pharmacokinetics properties | Unfavorable | Favorable |
Oral absorption | Erratic | Satisfactory |
CNS penetration | Low | High |
Prolonged action | High capacity | Low capacity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrero, J.-M.; Gal, J.; Mograbi, B.; Milano, G. PROTACs and Glues: Striking Perspectives for Engineering Cancer Therapy À La Carte. Pharmaceuticals 2025, 18, 1397. https://doi.org/10.3390/ph18091397
Ferrero J-M, Gal J, Mograbi B, Milano G. PROTACs and Glues: Striking Perspectives for Engineering Cancer Therapy À La Carte. Pharmaceuticals. 2025; 18(9):1397. https://doi.org/10.3390/ph18091397
Chicago/Turabian StyleFerrero, Jean-Marc, Jocelyn Gal, Baharia Mograbi, and Gérard Milano. 2025. "PROTACs and Glues: Striking Perspectives for Engineering Cancer Therapy À La Carte" Pharmaceuticals 18, no. 9: 1397. https://doi.org/10.3390/ph18091397
APA StyleFerrero, J.-M., Gal, J., Mograbi, B., & Milano, G. (2025). PROTACs and Glues: Striking Perspectives for Engineering Cancer Therapy À La Carte. Pharmaceuticals, 18(9), 1397. https://doi.org/10.3390/ph18091397