Non-Steroidal Anti-Inflammatory Drugs, Variation in Inflammatory Genes, and Aggressive Prostate Cancer
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Subjects
2.2. NSAID Use
2.3. SNP Selection
2.4. Genotyping
2.5. Statistical Analysis
3. Results and Discussion
Cases (n = 499) | Controls (n = 535) | |||
---|---|---|---|---|
Age (years), mean (SD) | 65.9 | (8.4) | 65.9 | (8.5) |
Race, N (%) | ||||
Caucasian | 407 | (81.6) | 431 | (80.6) |
African-American | 92 | (18.4) | 104 | (19.4) |
Education, N (%) | ||||
<12 years | 49 | (9.8) | 51 | (9.5) |
12 years or high school | 112 | (22.4) | 78 | (14.6) |
Some college | 105 | (21.0) | 95 | (17.8) |
≥ College graduate | 233 | (46.7) | 311 | (58.1) |
Family history of prostate cancer1,2, N (%) | ||||
Negative | 384 | (77.0) | 475 | (89.0) |
Positive | 115 | (23.1) | 59 | (11.0) |
Smoking, N (%) | ||||
Never | 200 | (40.1) | 217 | (40.6) |
Former | 58 | (11.6) | 48 | (9.0) |
Current | 241 | (48.3) | 270 | (50.5) |
Body mass index (kg/m2) mean (SD) | 26.3 | (3.9) | 26.4 | (3.7) |
Serum PSA value3 (ng/ml) , N (%) | ||||
≤4.0 | 26 | (5.2) | 493 | (92.2) |
>4.0 & <10.0 | 250 | (50.1) | 35 | (6.5) |
≥10.0 | 223 | (44.7) | 6 | (1.1) |
Clinical stage2, N (%) | ||||
T1 | 309 | (64.6) | ||
T2a & Tb | 128 | (26.8) | ||
T2c | 15 | (3.1) | ||
T3 & T4 | 26 | (5.4) | ||
Total Gleason Grade, N (%) | ||||
<7 | 75 | (15.0) | ||
7, 3+4 | 218 | (43.7) | ||
≥7, 4+3 | 206 | (41.3) |
NSAID Use Among Cases | NSAID Use Among Controls | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Yes (n = 272) | No (n = 227) | P-value3 | Yes (n = 340) | No (n = 195) | P-value3 | |||||
Age (years), mean (SD) | 66.6 | (8.1) | 66.3 | (8.6) | 0.07 | 67.2 | (8.1) | 66.4 | (9.2) | |
Race, N % | <0.01 | <0.01 | ||||||||
Caucasian | 241 | (88.6) | 166 | (73.1) | 290 | (85.3) | 141 | (72.3) | ||
African-American | 31 | (11.4) | 61 | (26.9) | 50 | (14.7) | 54 | (27.7) | ||
Education, N (%) | <0.01 | 0.07 | ||||||||
<12 years | 26 | (9.6) | 23 | (10.1) | 24 | (7.1) | 27 | (13.9) | ||
12 years or high school | 44 | (16.2) | 68 | (30.0) | 53 | (15.6) | 25 | (12.8) | ||
Some college | 54 | (19.9) | 51 | (22.5) | 60 | (17.7) | 35 | (18.0) | ||
≥College graduate | 148 | (54.4) | 85 | (37.4) | 203 | (59.7) | 108 | (55.4) | ||
Smoking, N (%) | 0.08 | 0.96 | ||||||||
Never | 109 | (40.1) | 91 | (40.1) | 139 | (40.1) | 78 | (40.0) | ||
Former | 24 | (8.8) | 34 | (15.0) | 31 | (9.1) | 17 | (8.7) | ||
Current | 139 | (51.1) | 102 | (44.9) | 170 | (50.0) | 100 | (51.3) | ||
Family history of prostate cancer1, 2, N (%) | 0.32 | 0.32 | ||||||||
Negative | 214 | (78.7) | 170 | (74.9) | 305 | (89.7) | 170 | (87.2) | ||
Positive | 58 | (21.3) | 57 | (25.1) | 35 | (10.3) | 24 | (12.3) | ||
Body mass index (kg/m2), mean (SD) | 27.1 | (4.1) | 25.8 | (3.3) | 0.02 | 26.9 | (3.7) | 26.8 | (3.8) | |
Serum PSA value (ng/ml) 2, N (%) | 0.11 | 0.51 | ||||||||
≤4.0 | 16 | (5.9) | 10 | (4.4) | 314 | (92.4) | 179 | (91.8) | ||
>4.0 & <10.0 | 146 | (53.7) | 104 | (45.8) | 23 | (6.8) | 12 | (6.2) | ||
≥10.0 | 110 | (40.4) | 113 | (49.8) | 3 | (0.9) | 3 | (1.5) | ||
Clinical stage2, N (%) | 0.30 | |||||||||
T1 | 167 | (61.4) | 142 | (62.6) | ||||||
T2a & Tb | 76 | (27.9) | 52 | (22.9) | ||||||
T2c | 6 | (2.2) | 9 | (4.0) | ||||||
T3 & T4 | 15 | (5.5) | 11 | (4.9) | ||||||
Total Gleason Grade, N (%) | 0.68 | |||||||||
<7 | 39 | (14.3) | 36 | (15.9) | ||||||
7, 3+4 | 116 | (42.7) | 102 | (44.9) | ||||||
≥7, 4+3 | 117 | (43.0) | 89 | (39.2) |
Medication | Exposed Cases (n) | Exposed Controls (n) | OR1 | 95% CI1 | P-value |
---|---|---|---|---|---|
NSAID2 | 272 | 340 | 0.67 | 0.52-0.86 | 0.002 |
Aspirin3 | 238 | 302 | 0.66 | 0.51-0.86 | 0.002 |
Ibuprofen4 | 73 | 75 | 0.83 | 0.56-1.21 | 0.310 |
Medication (pills per year) | Quintiles | P-Trend | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Median | 0.2 | 1.0 | 3.0 | 6.0 | 15.5 | |
Cases (N) | 57 | 58 | 62 | 35 | 55 | |
Controls (N) | 65 | 61 | 63 | 68 | 83 | |
OR (95% CI)1 | 1.00 | 0.85 (0.57–1.27) | 0.88 (0.60–1.30) | 0.46 (0.29–0.71) | 0.58 (0.39–0.85) | <0.01 |
Aspirin | ||||||
Median | 0.3 | 1.0 | 3.0 | 5.3 | 15.0 | |
Cases (N) | 48 | 54 | 47 | 32 | 52 | |
Controls (N) | 57 | 55 | 56 | 58 | 76 | |
OR (95% CI)1 | 1.00 | 0.88 (0.58–1.33) | 0.75 (0.49–1.15) | 0.49 (0.31–0.78) | 0.60 (0.40–0.90) | <0.01 |
SNP Association2 | NSAID Association2 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP1 | Gene | Chromosome | Genotype | Cases (n) | Controls (n) | OR | 95% CI | p-value | OR | 95% CI | p-value | |||||
rs689470 | COX-2 | 1 | GG | 413 | 455 | 1.00 | referent | 0.76 | 0.57–1.00 | 0.05 | ||||||
AG | 58 | 65 | 1.25 | 0.78–2.01 | 0.36 | 0.29 | 0.13–0.65 | 0.002 | ||||||||
AA | 26 | 14 | 2.82 | 1.31–6.07 | 0.008 | 0.42 | 0.11–1.66 | 0.22 | ||||||||
p-interaction3 = 0.06 | ||||||||||||||||
GG | 273 | 280 | 1.00 | referent | 0.83 | 0.59–1.17 | 0.29 | |||||||||
rs5030728 | TLR4 | 9 | AG | 192 | 204 | 0.95 | 0.73–1.24 | 0.72 | 0.57 | 0.37–0.87 | 0.01 | |||||
AA | 33 | 50 | 0.66 | 0.41–1.06 | 0.09 | 0.29 | 0.11–0.73 | 0.009 | ||||||||
p-interaction = 0.07 | ||||||||||||||||
AA | 118 | 120 | 1.00 | referent | 0.51 | 0.30–0.86 | 0.01 | |||||||||
rs4803455 | TGF-β1 | 19 | AC | 216 | 248 | 0.88 | 0.64–1.21 | 0.43 | 0.64 | 0.44–0.94 | 0.02 | |||||
CC | 108 | 144 | 0.76 | 0.53–1.09 | 0.13 | 0.95 | 0.56–1.61 | 0.85 | ||||||||
p-interaction = 0.06 | ||||||||||||||||
AA | 388 | 388 | 1.00 | referent | 0.64 | 0.48–0.86 | 0.003 | |||||||||
rs919766 | IL-12β | 5 | AC+CC | 105 | 145 | 0.73 | 0.54–0.97 | 0.03 | 0.81 | 0.48–1.38 | 0.44 | |||||
p-interaction = 0.46 | ||||||||||||||||
GG | 416 | 462 | 1.00 | referent | 0.75 | 0.57–0.98 | 0.04 | |||||||||
rs11986822 | MSR1 | 8 | AG+AA | 29 | 50 | 0.64 | 0.40–1.04 | 0.07 | 0.15 | 0.05–0.44 | 0.0006 | |||||
p-interaction = 0.01 | ||||||||||||||||
AA | 418 | 435 | 1.00 | referent | 0.79 | 0.60–1.04 | 0.10 | |||||||||
rs10503574 | MSR1 | 8 | AC+CC | 72 | 97 | 0.77 | 0.54–1.09 | 0.14 | 0.31 | 0.15–0.62 | 0.0009 | |||||
p-interaction<0.01 |
4. Conclusions
Acknowledgements
References
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar]
- Cuzick, J.; Otto, F.; Baron, J.A.; Brown, P.H.; Burn, J.; Greenwald, P.; Jankowski, J.; La Vecchia, C.; Meyskens, F.; Senn, H.J.; Thun, M. Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: An international consensus statement. Lancet Oncol. 2009, 10, 501–507. [Google Scholar]
- Findings from the aspirin component of the ongoing physicians' health study. N. Engl. J. Med. 1988, 318, 262–264.
- Ridker, P.M.; Cook, N.R.; Lee, I.M.; Gordon, D.; Gaziano, J.M.; Manson, J.E.; Hennekens, C.H.; Buring, J.E. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N. Engl. J. Med. 2005, 352, 1293–1304. [Google Scholar]
- Chan, A.T.; Giovannucci, E.L.; Meyerhardt, J.A.; Schernhammer, E.S.; Curhan, G.C.; Fuchs, C.S. Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA 2005, 294, 914–923. [Google Scholar]
- Liu, X.H.; Kirschenbaum, A.; Yao, S.; Lee, R.; Holland, J.F.; Levine, A.C. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J. Urol. 2000, 164, 820–825. [Google Scholar]
- Patel, M.I.; Subbaramaiah, K.; Du, B.; Chang, M.; Yang, P.; Newman, R.A.; Cordon-Cardo, C.; Thaler, H.T.; Dannenberg, A.J. Celecoxib inhibits prostate cancer growth: Evidence of a cyclooxygenase-2-independent mechanism. Clin. Cancer Res. 2005, 11, 1999–2007. [Google Scholar]
- Shigemura, K.; Shirakawa, T.; Wada, Y.; Kamidono, S.; Fujisawa, M.; Gotoh, A. Antitumor effects of etodolac, a selective cyclooxygenase-ii inhibitor, against human prostate cancer cell lines in vitro and in vivo. Urology 2005, 66, 1239–1244. [Google Scholar]
- Kamijo, T.; Sato, T.; Nagatomi, Y.; Kitamura, T. Induction of apoptosis by cyclooxygenase-2 inhibitors in prostate cancer cell lines. Int. J. Urol. 2001, 8, S35–S39. [Google Scholar]
- Cheng, I.; Liu, X.; Plummer, S.J.; Krumroy, L.M.; Casey, G.; Witte, J.S. Cox2 genetic variation, nsaids, and advanced prostate cancer risk. Br. J. Cancer 2007, 97, 557–561. [Google Scholar]
- Dasgupta, K.; Di Cesar, D.; Ghosn, J.; Rajan, R.; Mahmud, S.; Rahme, E. Association between nonsteroidal anti-inflammatory drugs and prostate cancer occurrence. Cancer J. 2006, 12, 130–135. [Google Scholar]
- Garcia Rodriguez, L.A.; Gonzalez-Perez, A. Inverse association between nonsteroidal anti-inflammatory drugs and prostate cancer. Cancer Epidemiol. Biomarkers Prev. 2004, 13, 649–653. [Google Scholar]
- Habel, L.A.; Zhao, W.; Stanford, J.L. Daily aspirin use and prostate cancer risk in a large, multiracial cohort in the us. Cancer Causes Control 2002, 13, 427–434. [Google Scholar]
- Jacobs, E.J.; Rodriguez, C.; Mondul, A.M.; Connell, C.J.; Henley, S.J.; Calle, E.E.; Thun, M.J. A large cohort study of aspirin and other nonsteroidal anti-inflammatory drugs and prostate cancer incidence. J. Natl. Cancer Inst. 2005, 97, 975–980. [Google Scholar]
- Liu, X.; Plummer, S.J.; Nock, N.L.; Casey, G.; Witte, J.S. Nonsteroidal antiinflammatory drugs and decreased risk of advanced prostate cancer: Modification by lymphotoxin alpha. Am. J. Epidemiol. 2006, 164, 984–989. [Google Scholar]
- Mahmud, S.; Franco, E.; Aprikian, A. Prostate cancer and use of nonsteroidal anti-inflammatory drugs: Systematic review and meta-analysis. Br. J. Cancer 2004, 90, 93–99. [Google Scholar]
- Mahmud, S.M.; Tanguay, S.; Begin, L.R.; Franco, E.L.; Aprikian, A.G. Non-steroidal anti-inflammatory drug use and prostate cancer in a high-risk population. Eur. J. Cancer Prev. 2006, 15, 158–164. [Google Scholar]
- Norrish, A.E.; Jackson, R.T.; McRae, C.U. Non-steroidal anti-inflammatory drugs and prostate cancer progression. Int. J. Cancer 1998, 77, 511–515. [Google Scholar]
- Perron, L.; Bairati, I.; Moore, L.; Meyer, F. Dosage, duration and timing of nonsteroidal antiinflammatory drug use and risk of prostate cancer. Int. J. Cancer 2003, 106, 409–415. [Google Scholar]
- Platz, E.A.; Rohrmann, S.; Pearson, J.D.; Corrada, M.M.; Watson, D.J.; De Marzo, A.M.; Landis, P.K.; Metter, E.J.; Carter, H.B. Nonsteroidal anti-inflammatory drugs and risk of prostate cancer in the baltimore longitudinal study of aging. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 390–396. [Google Scholar]
- Roberts, R.O.; Jacobson, D.J.; Girman, C.J.; Rhodes, T.; Lieber, M.M.; Jacobsen, S.J. A population-based study of daily nonsteroidal anti-inflammatory drug use and prostate cancer. Mayo Clin. Proc. 2002, 77, 219–225. [Google Scholar]
- Bosetti, C.; Talamini, R.; Negri, E.; Franceschi, S.; Montella, M.; La Vecchia, C. Aspirin and the risk of prostate cancer. Eur. J. Cancer Prev. 2006, 15, 43–45. [Google Scholar]
- Daniels, N.A.; Chen, Y.H.; Bent, S. Antibiotic and anti-inflammatory use and the risk of prostate cancer. BMC Res. Notes 2009, 2, 57. [Google Scholar]
- Irani, J.; Ravery, V.; Pariente, J.L.; Chartier-Kastler, E.; Lechevallier, E.; Soulie, M.; Chautard, D.; Coloby, P.; Fontaine, E.; Bladou, F.; Desgrandchamps, F.; Haillot, O. Effect of nonsteroidal anti-inflammatory agents and finasteride on prostate cancer risk. J. Urol. 2002, 168, 1985–1988. [Google Scholar]
- Leitzmann, M.F.; Stampfer, M.J.; Ma, J.; Chan, J.M.; Colditz, G.A.; Willett, W.C.; Giovannucci, E. Aspirin use in relation to risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 2002, 11, 1108–1111. [Google Scholar]
- Menezes, R.J.; Swede, H.; Niles, R.; Moysich, K.B. Regular use of aspirin and prostate cancer risk (united states). Cancer Causes Control 2006, 17, 251–256. [Google Scholar]
- Neugut, A.I.; Rosenberg, D.J.; Ahsan, H.; Jacobson, J.S.; Wahid, N.; Hagan, M.; Rahman, M.I.; Khan, Z.R.; Chen, L.; Pablos-Mendez, A.; Shea, S. Association between coronary heart disease and cancers of the breast, prostate, and colon. Cancer Epidemiol. Biomarkers Prev. 1998, 7, 869–873. [Google Scholar] [PubMed]
- Paganini-Hill, A.; Chao, A.; Ross, R.K.; Henderson, B.E. Aspirin use and chronic diseases: A cohort study of the elderly. BMJ 1989, 299, 1247–1250. [Google Scholar]
- Stock, D.C.; Groome, P.A.; Siemens, D.R.; Rohland, S.L.; Song, Z. Effects of non-selective non-steroidal anti-inflammatory drugs on the aggressiveness of prostate cancer. Prostate 2008, 68, 1655–1665. [Google Scholar]
- Langman, M.J.; Cheng, K.K.; Gilman, E.A.; Lancashire, R.J. Effect of anti-inflammatory drugs on overall risk of common cancer: Case-control study in general practice research database. BMJ 2000, 320, 1642–1646. [Google Scholar]
- Sorensen, H.T.; Friis, S.; Norgard, B.; Mellemkjaer, L.; Blot, W.J.; McLaughlin, J.K.; Ekbom, A.; Baron, J.A. Risk of cancer in a large cohort of nonaspirin nsaid users: A population-based study. Br. J. Cancer 2003, 88, 1687–1692. [Google Scholar]
- Johansson, J.E.; Holmberg, L.; Johansson, S.; Bergstrom, R.; Adami, H.O. Fifteen-year survival in prostate cancer. A prospective, population-based study in sweden. JAMA 1997, 277, 467–471. [Google Scholar] [PubMed]
- Masferrer, J.L.; Leahy, K.M.; Koki, A.T.; Zweifel, B.S.; Settle, S.L.; Woerner, B.M.; Edwards, D.A.; Flickinger, A.G.; Moore, R.J.; Seibert, K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res. 2000, 60, 1306–1311. [Google Scholar]
- Zha, S.; Gage, W.R.; Sauvageot, J.; Saria, E.A.; Putzi, M.J.; Ewing, C.M.; Faith, D.A.; Nelson, W.G.; De Marzo, A.M.; Isaacs, W.B. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res. 2001, 61, 8617–8623. [Google Scholar]
- Algotar, A.M.; Thompson, P.A.; Ranger-Moore, J.; Stratton, M.S.; Hsu, C.H.; Ahmann, F.R.; Nagle, R.B.; Stratton, S.P. Effect of aspirin, other nsaids, and statins on psa and psa velocity. Prostate 2010, 70, 883–888. [Google Scholar]
- Chang, S.L.; Harshman, L.C.; Presti, J.C., Jr. Impact of common medications on serum total prostate-specific antigen levels: Analysis of the national health and nutrition examination survey. J. Clin. Oncol 2010. [Google Scholar]
- Fowke, J.H.; Motley, S.S.; Smith, J.A., Jr.; Cookson, M.S.; Concepcion, R.; Chang, S.S.; Byerly, S. Association of nonsteroidal anti-inflammatory drugs, prostate specific antigen and prostate volume. J. Urol. 2009, 181, 2064–2070. [Google Scholar] [PubMed]
- Singer, E.A.; Palapattu, G.S.; van Wijngaarden, E. Prostate-specific antigen levels in relation to consumption of nonsteroidal anti-inflammatory drugs and acetaminophen: Results from the 2001-2002 national health and nutrition examination survey. Cancer 2008, 113, 2053–2057. [Google Scholar]
- De Marzo, A.M.; Platz, E.A.; Sutcliffe, S.; Xu, J.; Gronberg, H.; Drake, C.G.; Nakai, Y.; Isaacs, W.B.; Nelson, W.G. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer 2007, 7, 256–269. [Google Scholar]
- Gupta, S.; Srivastava, M.; Ahmad, N.; Bostwick, D.G.; Mukhtar, H. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 2000, 42, 73–78. [Google Scholar]
- Kirschenbaum, A.; Klausner, A.P.; Lee, R.; Unger, P.; Yao, S.; Liu, X.H.; Levine, A.C. Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 2000, 56, 671–676. [Google Scholar]
- Madaan, S.; Abel, P.D.; Chaudhary, K.S.; Hewitt, R.; Stott, M.A.; Stamp, G.W.; Lalani, E.N. Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: Implications for prevention and treatment. BJU Int. 2000, 86, 736–741. [Google Scholar]
- Rubio, J.; Ramos, D.; Lopez-Guerrero, J.A.; Iborra, I.; Collado, A.; Solsona, E.; Almenar, S.; Llombart-Bosch, A. Immunohistochemical expression of ki-67 antigen, cox-2 and bax/bcl-2 in prostate cancer; prognostic value in biopsies and radical prostatectomy specimens. Eur. Urol. 2005, 48, 745–751. [Google Scholar]
- Yoshimura, R.; Sano, H.; Masuda, C.; Kawamura, M.; Tsubouchi, Y.; Chargui, J.; Yoshimura, N.; Hla, T.; Wada, S. Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 2000, 89, 589–596. [Google Scholar]
- Wang, W.; Bergh, A.; Damber, J.E. Cyclooxygenase-2 expression correlates with local chronic inflammation and tumor neovascularization in human prostate cancer. Clin. Cancer Res. 2005, 11, 3250–3256. [Google Scholar]
- Cohen, B.L.; Gomez, P.; Omori, Y.; Duncan, R.C.; Civantos, F.; Soloway, M.S.; Lokeshwar, V.B.; Lokeshwar, B.L. Cyclooxygenase-2 (cox-2) expression is an independent predictor of prostate cancer recurrence. Int. J. Cancer 2006, 119, 1082–1087. [Google Scholar]
- Gatti, G.; Quintar, A.A.; Andreani, V.; Nicola, J.P.; Maldonado, C.A.; Masini-Repiso, A.M.; Rivero, V.E.; Maccioni, M. Expression of toll-like receptor 4 in the prostate gland and its association with the severity of prostate cancer. Prostate 2009, 69, 1387–1397. [Google Scholar]
- Zheng, S.L.; Augustsson-Balter, K.; Chang, B.; Hedelin, M.; Li, L.; Adami, H.O.; Bensen, J.; Li, G.; Johnasson, J.E.; Turner, A.R.; Adams, T.S.; Meyers, D.A.; Isaacs, W.B.; Xu, J.; Gronberg, H. Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: Results from the cancer prostate in sweden study. Cancer Res. 2004, 64, 2918–2922. [Google Scholar]
- Wei, B.B.; Xi, B.; Wang, R.; Bai, J.M.; Chang, J.K.; Zhang, Y.Y.; Yoneda, R.; Su, J.T.; Hua, L.X. Tgfbeta1 t29c polymorphism and cancer risk: A meta-analysis based on 40 case-control studies. Cancer Genet. Cytogenet. 2010, 196, 68–75. [Google Scholar]
- Lodge, P.A.; Jones, L.A.; Bader, R.A.; Murphy, G.P.; Salgaller, M.L. Dendritic cell-based immunotherapy of prostate cancer: Immune monitoring of a phase ii clinical trial. Cancer Res. 2000, 60, 829–833. [Google Scholar]
- Melero, I.; Duarte, M.; Ruiz, J.; Sangro, B.; Galofre, J.; Mazzolini, G.; Bustos, M.; Qian, C.; Prieto, J. Intratumoral injection of bone-marrow derived dendritic cells engineered to produce interleukin-12 induces complete regression of established murine transplantable colon adenocarcinomas. Gene Ther. 1999, 6, 1779–1784. [Google Scholar]
- Nair, S.K.; Snyder, D.; Rouse, B.T.; Gilboa, E. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int. J. Cancer 1997, 70, 706–715. [Google Scholar]
- Wang, H.; Yang, G.; Timme, T.L.; Fujita, T.; Naruishi, K.; Frolov, A.; Brenner, M.K.; Kadmon, D.; Thompson, T.C. Il-12 gene-modified bone marrow cell therapy suppresses the development of experimental metastatic prostate cancer. Cancer Gene Ther. 2007, 14, 819–827. [Google Scholar]
- Xu, J.; Zheng, S.L.; Komiya, A.; Mychaleckyj, J.C.; Isaacs, S.D.; Hu, J.J.; Sterling, D.; Lange, E.M.; Hawkins, G.A.; Turner, A.; Ewing, C.M.; Faith, D.A.; Johnson, J.R.; Suzuki, H.; Bujnovszky, P.; Wiley, K.E.; DeMarzo, A.M.; Bova, G.S.; Chang, B.; Hall, M.C.; McCullough, D.L.; Partin, A.W.; Kassabian, V.S.; Carpten, J.D.; Bailey-Wilson, J.E.; Trent, J.M.; Ohar, J.; Bleecker, E.R.; Walsh, P.C.; Isaacs, W.B.; Meyers, D.A. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat. Genet. 2002, 32, 321–325. [Google Scholar]
- Hsu, A.L.; Ching, T.T.; Wang, D.S.; Song, X.; Rangnekar, V.M.; Chen, C.S. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking akt activation in human prostate cancer cells independently of bcl-2. J. Biol. Chem. 2000, 275, 11397–11403. [Google Scholar]
- Liu, X.H.; Yao, S.; Kirschenbaum, A.; Levine, A.C. Ns398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in lncap cells. Cancer Res. 1998, 58, 4245–4249. [Google Scholar] [PubMed]
- Watanabe, T.; Higuchi, K.; Kobata, A.; Nishio, H.; Tanigawa, T.; Shiba, M.; Tominaga, K.; Fujiwara, Y.; Oshitani, N.; Asahara, T.; Nomoto, K.; Takeuchi, K.; Arakawa, T. Non-steroidal anti-inflammatory drug-induced small intestinal damage is toll-like receptor 4 dependent. Gut 2008, 57, 181–187. [Google Scholar]
- Piazuelo, E.; Jimenez, P.; Lanas, A. Cox-2 inhibition in esophagitis, barrett's esophagus and esophageal cancer. Curr. Pharm. Des. 2003, 9, 2267–2280. [Google Scholar]
- Alloza, I.; Baxter, A.; Chen, Q.; Matthiesen, R.; Vandenbroeck, K. Celecoxib inhibits interleukin-12 alphabeta and beta2 folding and secretion by a novel cox2-independent mechanism involving chaperones of the endoplasmic reticulum. Mol. Pharmacol. 2006, 69, 1579–1587. [Google Scholar]
- Ferrandina, G.; Ranelletti, F.O.; Legge, F.; Salutari, V.; Martinelli, E.; Fattorossi, A.; Lorusso, D.; Zannoni, G.; Vellone, V.; Paglia, A.; Scambia, G. Celecoxib up-regulates the expression of the zeta chain of t cell receptor complex in tumor-infiltrating lymphocytes in human cervical cancer. Clin. Cancer. Res 2006, 12, 2055–2060. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Reese, A.C.; Hardin, J.; Cheng, I.; Casey, G.; Witte, J.S. Non-Steroidal Anti-Inflammatory Drugs, Variation in Inflammatory Genes, and Aggressive Prostate Cancer. Pharmaceuticals 2010, 3, 3127-3142. https://doi.org/10.3390/ph3103127
Reese AC, Hardin J, Cheng I, Casey G, Witte JS. Non-Steroidal Anti-Inflammatory Drugs, Variation in Inflammatory Genes, and Aggressive Prostate Cancer. Pharmaceuticals. 2010; 3(10):3127-3142. https://doi.org/10.3390/ph3103127
Chicago/Turabian StyleReese, Adam C., Jill Hardin, Iona Cheng, Graham Casey, and John S. Witte. 2010. "Non-Steroidal Anti-Inflammatory Drugs, Variation in Inflammatory Genes, and Aggressive Prostate Cancer" Pharmaceuticals 3, no. 10: 3127-3142. https://doi.org/10.3390/ph3103127
APA StyleReese, A. C., Hardin, J., Cheng, I., Casey, G., & Witte, J. S. (2010). Non-Steroidal Anti-Inflammatory Drugs, Variation in Inflammatory Genes, and Aggressive Prostate Cancer. Pharmaceuticals, 3(10), 3127-3142. https://doi.org/10.3390/ph3103127