Combating Combination of Hypertension and Diabetes in Different Rat Models
Abstract
:1. Introduction
- 1)
- Zucker rats, which develop moderate hypertension only while becoming obese. This is an ideal model of progressive nephropathy.
- 2)
- Goto-Kakizaki rats, in which hyperglycemia is not associated with overt proteinuria or progressive nephropathy. This salt-sensitive strain will develop hypertension when fed a high salt diet or given Na-retaining agents.
- 3)
- SHROB rats – Koletsky rats, which are obese, hyperinsulinemic and hypertriglyceridemic, and exhibit proteinuria. Despite extreme pathology, hypertension is not exacerbated compared to SHR.
- 4)
- SHR/NDmcr-cp rats – a substrain of the SHR/N-cp rat, which has a genetic background from the SHR and carries nonsense mutation of leptin receptor derived from the obese Koletsky rat.
- 5)
- Cohen Rosenthal diabetic hypertensive nonobese rat model, a result of cross-breeding SHR and Cohen diabetic rats (CDR).
Animal model | Treatment | Main results | Reference |
---|---|---|---|
Zucker fatty rats | Pharmacological | ||
ARB derivativesR-147176 |
| Izuhara et al., 2008 [72] | |
Nateglinide insulinotropic agent + Telmisartan |
| Kajioka et al.,2007 [26] | |
Losartan |
| Crary et al., 1995 [19] | |
Losartan |
| Pourdjabbar et al., 2005 [21] | |
Irbesartan |
| Janiak et al., 2006 [22] | |
Olmesartan |
| Mizuno et al., 2006 [23] | |
Candesartan versus perindopril |
| Sebekova et al., 2009 [24] | |
Losartan and Ramipril; Vasopeptidase inhibitor AVE7688. |
| Portero-Otín et al., 2008 [32] | |
Lovastatin, a cholesterol synthesis inhibitor |
| O'Donnell et al., 1993 [29] | |
Enalapril + HMG-CoA reductase inhibitor – statin |
| Oltman et al., 2008 [31] | |
Non- pharmacological | |||
Various combinations of essential oils |
| Talpur et al.,2005 [34] | |
Stevia rebaudianabertoni (SrB) |
| Jeppesen et al., 2006 [46] | |
Quercetin, a flavonoid abundant in fruits and vegetables |
| Perez-Vizcaino et al., 2009 [36] | |
Goto-Kakizaki rats | Pharmacological | ||
Omapatrilat and Enalapril |
| Cheng et al., 2005 [39] | |
Non- pharmacological | |||
Diterpene glycoside stevioside (SVS) and soy bean protein |
| Jeppesen et al., 2006 [46] | |
Lupin and soy protein |
| Pilvi et al., 2006 [47] | |
Cereal fiber barley |
| Li et al., 2004 [48] | |
SHR/ND mcr-cp rats | Pharmacological | ||
TelmisartanAmlodipineMoxonidine, selective I imidazdin receptor agonist |
| Kagota et al., 2007 [62] | |
Telmisartan |
| Kagota et al., 2009 [63] | |
Caloric restriction Olmesartan NifedipinePioglitazoneCobalt |
| As reviewed in Miyata et al., 2008 [64]; and Miyata & van Ypersele de Strihou, 2009 [85] | |
Cobalt |
| Ohtomo et al., 2008 [66] | |
Valsartan |
| Tominaga et al., 2009 [60] | |
Hydralazine and Olmesartan |
| Nangaku et al., 2003 [69] | |
Olmesartan (among others) + Hydralazine |
| Watanabe et al., 2009 [70] | |
R-147176 + Olmesartan |
| Yasui et al., 2007 [75] | |
Non- pharmacological (Natural) | |||
Fiber-supplemented diet |
| Yasui et al., 2007 [73] | |
SHROB rats | |||
Captopril and S-allylmercaptocapto-pril (CPSSA) = pharmacological and nonpharm-acological approach |
| Ernsberger et al., 2007 [58] | |
CRDH rats | Pharmacological | ||
Omapatrilat |
| Hofman & Rosenthal, 2004 [78] | |
Lercanidipine |
| Amenta et al., 2003 [79] | |
Lercanidipine |
| Rosenthal et al., 2007 [80] | |
Telmisartan and Valsartan |
| Younis et al., in press [82] | |
CPSSA |
| Younis et al., in press [83] |
2. Animal Models
2.1. Zucker Rats
2.1.1. Nonpharmacological Approach – Natural Treatments
2.2. Goto-kakizaki Rats
2.2.1. Nonpharmacological Approach
2.3. Koletsky-SHROB Rats
2.4. SHR/NDmer-cp Rats
Natural Approach
2.5. CRDH Rats
3. Discussion
References
- Huang, B.; Wu, P.; Popov, K.M.; Harris, R.A. Starvation and Diabetes Reduce the Amount of Pyruvate Dehydrogenase Phosphatase in Rat Heart and Kidney. Diabetes 2003, 52, 1371–1376. [Google Scholar] [CrossRef]
- Shimoni, Y.; Ewart, H.S.; Severson, D. Type I and II Models of Diabetes Produce Different Modifications of K+ currents in Rat Heart: Role of Insulin. J. Physiol. 1998, 507, 485–496. [Google Scholar] [CrossRef]
- Wienen, W.; Richard, S.; Champeroux, P.; Audeval-Gerard, C. Comparative antiHypertensive and renoprotective Effects of Telmisartan and Lisinopril after Long-term Treatment in Hypertensive Diabetic Rats. J. Renin Angiotensin Aldosterone Syst. 2001, 2, 31–36. [Google Scholar] [CrossRef]
- Silva, K.C.; Rosales, M.A.; Biswas, S.K.; Lopes de Faria, J.B.; Lopes de Faria, J.M. Diabetic Retinal Neurodegeneration is Associated with Mitochondrial Oxidative Stress and is Improved by an Angiotensin Receptor Blocker in a Model Combining Hypertension and Diabetes. Diabetes 2009, 58, 1382–1390. [Google Scholar] [CrossRef]
- Annapurna, A; Reddy, C.S.; Akondi, R.B.; Rao, S.R. Cardioprotective Actions of Two Bioflavonoids, Quercetin and Rutin, in Experimental Myocardial Infarction in Both Normal and Streptozotocin-induced Type I Diabetic Rats. J. Pharm. Pharmacol. 2009, 61, 1365–1374. [Google Scholar] [CrossRef]
- Emre, M.; Kavak, S.; Unlugenc, H. The Effects of Telmisartan on Mechanical Responses of Left Ventricular Papillary Muscle in Rats with Streptozotocin-induced Diabetes Mellitus. Acta Diabetol. 2009. [Google Scholar]
- Körner, A.; Jaremko, G.; Eklöf, A.C.; Aperia, A. Rapid development of glomerulosclerosis in diabetic Dahl salt-sensitive rats. Diabetologia 1997, 40, 367–373. [Google Scholar] [CrossRef]
- Bolton, C.W.; Payne, M.A.; McDonald, W.G.; Blanner, P.M.; Chott, R.C.; Ghosh, S.; Arhancet, G.B.; Staten, N.R.; Gulve, E.A.; Sullivan, P.M.; Hromockyj, A.E.; Colca, J.R. Thiazolidinediones inhibit the progression of established hypertension in the Dahl salt-sensitive rat. Diab. Vasc. Dis. Res. 2007, 4, 117–123. [Google Scholar] [CrossRef]
- Galvan, A.Q.; Haffner, S.M.; Ferrannini, E. Diabetes and Hypertension: The Scope of the Problem. Blood Press. 1996, 1, 7–9. [Google Scholar]
- Sowers, J.R. Treatment of Hypertension in Patients with Diabetes. Arch. Intern. Med. 2004, 164, 1850–1857. [Google Scholar] [CrossRef]
- Sampanis, C.; Zamboulis, C. Arterial Hypertension in Diabetes Mellitus: From Theory to Clinical Practice. Hippokratia 2008, 12, 74–80. [Google Scholar] [PubMed]
- Alonso-Galicia, M.; Brands, M.W.; Zappe, D.H.; Hall, J.E. Hypertension in Obese Zucker Rats. Role of Angiotensin II and Adrenergic Activity. Hypertension 1996, 28, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Osmond, J.M.; Mintz, J.D.; Dalton, B.; Stepp, D.W. Obesity increases blood pressure, cerebral vascular remodeling, and severity of stroke in the Zucker rat. Hypertension 2009, 53, 381–386. [Google Scholar] [CrossRef]
- McCaleb, M.L.; Sredy, J. Metabolic Abnormalities of the Hyperglycemic Obese Zucker Rat. Metabolism 1992, 41, 522–525. [Google Scholar] [CrossRef]
- Van Zwieten, P.A.; Kam, K.L.; Pijl, A.J. Hypertensive Diabetic Rats in Pharmacological Studies. Pharmacol. Res. 1996, 33, 95–105. [Google Scholar] [CrossRef]
- Izuhara, Y.; Nangaku, M.; Inagi, R.; Tominaga, N.; Aizawa, T.; Kurokawa, K.; van Ypersele de Strihou, C.; Miyata, T. Renoprotective properties of Angiotensin Receptor Blockers Beyond Blood Pressure Lowering. J. Am. Soc. Nephrol. 2005, 16, 3631–3641. [Google Scholar] [CrossRef]
- Izuhara, Y.; Nangaku, M.; Takizawa, S.; Takahashi, S.; Shao, J.; Oishi, H.; Kobayashi, H.; van Ypersele de Strihou, C.; Miyata, T. A Novel Class of Advanced Glycation Inhibitors Ameliorates Renal and Cardiovascular Damage in Experimental Rat Models. Nephrol. Dial. Transplant. 2008, 23, 497–509. [Google Scholar] [PubMed]
- Joshi, D.; Gupta, R.; Dubey, A.; Shiwalkar, A.; Pathak, P.; Gupta, R.C.; Chauthaiwale, V.; Dutt, C. TRC4186, a Novel AGE-breaker, Improves Diabetic Cardiomyopathy and Nephropathy in Ob-ZSF1 Model of Type 2 Diabetes. J. Cardiovasc. Pharmacol. 2009, 54, 72–81. [Google Scholar] [CrossRef]
- Crary, G.S.; Swan, S.K.; O'Donnell, M.P.; Kasiske, B.L.; Katz, S.A.; Keane, W.F. The Angiotensin II Receptor Antagonist Losartan Reduces Blood Pressure but not Renal Injury in Obese Zucker Rats. J. Am. Soc. Nephrol. 1995, 6, 1295–1299. [Google Scholar] [PubMed]
- Suzaki, Y.; Ozawa, Y.; Kobori, H. Intrarenal Oxidative Stress and Augmented Angiotensinogen are Precedent to Renal Injury in Zucker Diabetic Fatty Rats. Int. J. Biol. Sci. 2006, 1, 40–46. [Google Scholar]
- Pourdjabbar, A.; Parker, T.G.; Desjardins, J.F.; Nguyen, Q.T.; Tsoporis, J.N.; Lapointe, N.; Rouleau, J.L. Losartan and Acute Myocardial Infarction in Insulin-resistant Zucker Fatty Rats: Reduced Ventricular Arrhythmias and Improved Survival. Can. J. Physiol. Pharmacol. 2005, 83, 989–998. [Google Scholar] [CrossRef]
- Janiak, P.; Bidouard, J.P.; Cadrouvele, C.; Poirier, B.; Gouraud, L.; Grataloup, Y.; Pierre, F.; Bruneval, P.; O'Connor, S.E.; Herbert, J.M. Long-term Blockade of Angiotensin AT1 Receptors Increases Survival of Obese Zucker Rats. Eur. J. Pharmacol. 2006, 534, 271–279. [Google Scholar] [CrossRef]
- Mizuno, M.; Sada, T.; Kato, M.; Fukushima, Y.; Terashima, H.; Koike, H. The Effect of Angiotensin II Receptor Blockade on an End-stage Renal failure Model of Type 2 Diabetes. J. Cardiovasc. Pharmacol. 2006, 48, 135–142. [Google Scholar] [CrossRef]
- Sebekova, K.; Lill, M.; Boor, P.; Heidland, A.; Amann, K. Functional and Partial Morphological Regression of Established Renal Injury in the Obese Zucker Rat by Blockade of the Renin-Angiotensin System. Am. J. Nephrol. 2009, 29, 164–170. [Google Scholar] [CrossRef]
- Derosa, G.; Cicero, A.F.; Ciccarelli, L.; Fogari, R. A randomized, Double-blind, Controlled, Parallel-group Comparison of Perindopril and Candesartan in Hypertensive Patients with Type 2 Diabetes Mellitus. Clin. Ther. 2003, 25, 2006–2021. [Google Scholar] [CrossRef]
- Kajioka, T.; Miura, K.; Kitahara, Y.; Yamagishi, S. Potential Utility of Combination Therapy with Nateglinide and Telmisartan for Metabolic Derangements in Zucker Fatty Rats. Horm. Metab. Res. 2007, 39, 889–893. [Google Scholar] [CrossRef]
- Rosenthal, T.; Gavras, I. History of Fixed Combination. In: Abstracts of the 2nd International Conference on Fixed Combination in the Treatment of Hypertension, Dyslipidemia and Diabetes Mellitus - An Ideal Approach for Improving Compliance and Combating Cardiovascular Disease. December 10–12, 2009, Valencia, Spain. Am. J. Hypertens. 2009, 22 (Suppl 1), 1–16, (Abstract). [Google Scholar] [PubMed]
- Wihler, C.; Schäfer, S.; Schmid, K.; Deemer, E.K.; Münch, G.; Bleich, M. Renal Accumulation and Clearance of Advanced Glycation End-products in Type 2 Diabetic Nephropathy: Effect of Angiotensin-converting Enzyme and Vasopeptidase Inhibition. Diabetologia 2005, 48, 1645–1653. [Google Scholar] [CrossRef]
- O'Donnell, M.P.; Kasiske, B.L.; Kim, Y.; Schmitz, P.G.; Keane, W.F. Lovastatin Retards the Progression of Established Glomerular Disease in Obese Zucker Rats. Am. J. Kidney Dis. 1993, 22, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Kuklinska, A.M.; Mroczko, B.; Musial, W.J.; Sawicki, R.; Kozieradzka, A.; Usowicz-Szarynska, M.; Kaminski, K.; Knapp, M.; Szmitkowski, M. Influence of Atorvastatin on Blood Pressure Control in Treated Hypertensive, Normolipemic Patients - An Open, Pilot Study. Blood Press 2010. [Epub ahead of print]. [Google Scholar]
- Oltman, C.L.; Kleinschmidt, T.L.; Davidson, E.P.; Coppey, L.J.; Lund, D.D.; Yorek, M.A. Treatment of Cardiovascular Dysfunction Associated with the Metabolic Syndrome and Type 2 Diabetes. Vasc. Pharmacol. 2008, 48, 47–53. [Google Scholar] [CrossRef]
- Portero-Otín, M.; Pamplona, R.; Boada, J.; Jové, M.; Gonzalo, H.; Buleon, M.; Linz, W.; Schäfer, S.; Tack, I.; Girolami, J.P. Inhibition of Renin Angiotensin System Decreases Renal Protein Oxidative Damage in Diabetic Rats. Biochem. Biophys. Res. Commun. 2008, 368, 528–535. [Google Scholar] [CrossRef]
- Schäfer, S.; Linz, W.; Bube, A.; Gerl, M.; Huber, J.; Kürzel, G.U.; Bleich, M.; Schmidts, H.L.; Busch, A.E.; Rütten, H. Vasopeptidase Inhibition prevents Nephropathy in Zucker Diabetic Fatty Rats. Cardiovasc. Res. 2003, 60, 447–454. [Google Scholar] [CrossRef]
- Talpur, N.; Echard, B.; Ingram, C.; Bagchi, D.; Preuss, H. Effects of a Novel Formulation of Essential Oils on Glucose-insulin Metabolism in Diabetic and Hypertensive Rats: A Pilot Study. Diabetes Obes. Metab. 2005, 7, 193–199. [Google Scholar] [CrossRef]
- Dyrskog, S.E.; Jeppesen, P.B.; Colombo, M.; Abudula, R.; Hermansen, K. Preventive Effects of Soy-based Diet Supplemented with Stevioside on the Development of the Metabolic Syndrome and Type 2 Diabetes in Zucker Diabetic Fatty Rats. Metabolism 2005, 54, 1181–1188. [Google Scholar] [CrossRef]
- Perez-Vizcaino, F.; Duarte, J.; Jimenez, R.; Santos-Buelga, C.; Osuna, A. AntiHypertensive Effects of the Flavonoid Quercetin. Pharmacol. Rep. 2009, 61, 67–75. [Google Scholar] [PubMed]
- Janssen, U.; Vassiliadou, A.; Riley, S.G.; Phillips, A.O.; Floege, J. The Quest for a Model of Type II Diabetes with Nephropathy: The Goto Kakizaki Rat. J. Nephrol. 2004, 17, 769–773. [Google Scholar] [PubMed]
- Janssen, U.; Riley, S.G.; Vassiliadou, A.; Floege, J.; Phillips, A.O. Hypertension Superimposed on Type II Diabetes in Goto Kakizaki Rats Induces Progressive Nephropathy. Kidney Int. 2003, 63, 2162–2170. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Grönholm, T.; Louhelainen, M.; Finckenberg, P.; Merasto, S.; Tikkanen, I.; Mervaala, E.M. Vascular and Renal Effects of Vasopeptidase Inhibition and Angiotensin-converting Enzyme Blockade in Spontaneously Diabetic Goto-Kakizaki Rats. J. Hypertens. 2005, 23, 1757–1770. [Google Scholar] [CrossRef]
- Olearczyk, J.J.; Quigley, J.E.; Mitchell, B.C.; Yamamoto, T.; Kim, I.H.; Newman, J.W.; Luria, A.; Hammock, B.D.; Imig, J.D. Administration of a Substituted Adamantyl Urea Inhibitor of Soluble Epoxide Hydrolase Protects the Kidney from Damage in Hypertensive Goto-Kakizaki Rats. Clin. Sci. (Lond.) 2009, 116, 61–70. [Google Scholar] [CrossRef]
- Cheng, Z.J.; Vaskonen, T.; Tikkanen, I.; Nurminen, K.; Ruskoaho, H.; Vapaatalo, H.; Muller, D.; Park, J.K.; Luft, F.C.; Mervaala, E.M. Endothelial Dysfunction and Salt-sensitive Hypertension in Spontaneously Diabetic Goto-Kakizaki Rats. Hypertension 2001, 37, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Brondum, E.; Kold-Petersen, H.; Nilsson, H. Increased Contractility to Noradrenaline and Normal Endothelial Function in Mesenteric Small Arteries from the Goto-Kakizaki Rat Model of Type 2 Diabetes. J. Physiol. Sci. 2008, 58, 333–339. [Google Scholar] [CrossRef]
- Ehses, J.A.; Lacraz, G.; Giroix, M.H.; Schmidlin, F.; Coulaud, J.; Kassis, N.; Irminger, J.C.; Kergoat, M.; Portha, B.; Homo-Delarche, F.; Donath, M.Y. IL-1 Antagonism Reduces Hyperglycemia and Tissue Inflammation in the Type 2 Diabetic GK rat. Proc. Natl. Acad. Sci. USA 2009, 106, 13998–14003. [Google Scholar] [CrossRef]
- Jeppesen, P.B.; Gregersen, S.; Rolfsen, S.E.; Jepsen, M.; Colombo, M.; Agger, A.; Xiao, J.; Kruhoffer, M.; Orntoft, T.; Hermansen, K. Anti-hyperglycemic and Blood Pressure-reducing Effects of Stevioside in the Diabetic Goto-Kakizaki (GK) Rat. Metabolism 2003, 52, 372–378. [Google Scholar] [CrossRef]
- Mélis, M.S. Influence of calcium on the blood pressure and renal effects of stevioside. Braz. J. Med. Biol. Res. 1992, 25, 943–949. [Google Scholar] [PubMed]
- Jeppesen, P.B.; Dyrskog, S.E.; Agger, A.; Gregersen, S.; Colombo, M.; Xiao, J.; Hermansen, K. Can stevioside in Combination with a Soy-based Dietary Supplement be a New Useful Treatment of Type 2 Diabetes? An In Vivo Study in the Diabetic Goto-kakizaki Rat . Rev. Diabet. Stud. 2006, 3, 189–199. [Google Scholar] [CrossRef]
- Pilvi, T.K.; Jauhiainen, T.; Cheng, Z.J.; Mervaala, E.M.; Vapaatalo, H.; Korpela, R. Lupin Protein Attenuates the Development of Hypertension and Normalises the Vascular Function of NaCl-loaded Goto-Kakizaki Rats. J. Physiol. Pharmacol. 2006, 57, 167–176. [Google Scholar] [PubMed]
- Li, J.; Wang, J.; Kaneko, T.; Qin, L.Q.; Sato, A. Effects of Fiber Intake on the Blood Pressure, Lipids, and Heart Rate in Goto Kakizaki Rats. Nutrition 2004, 20, 1003–1007. [Google Scholar] [CrossRef]
- Koletsky, S. Animal Model: Obese Hypertensive Rat. Am. J. Pathol. 1975, 81, 463–466. [Google Scholar] [PubMed]
- Koletsky, S. Pathologic Findings and Laboratory Data in a New Strain of Obese Hypertensive Rats. Am. J. Pathol. 1975, 80, 129–142. [Google Scholar] [PubMed]
- Koletsky, R.J.; Ernsberger, P. Obese SHR (Koletsky Rat): A Model for the interactions between obesity and hypertension. In Genetic Hypertension; Sassard, J., Ed.; John Libbey: London, UK, 1992. [Google Scholar]
- Koletsky, R.J.; Boccia, J.; Ernsberger, P. Acceleration of Renal Disease in Obese SHR by Exacerbation of Hypertension. Clin. Exp. Pharmacol. Physiol. Suppl. 1995, 22, S254–S256. [Google Scholar] [CrossRef]
- Koletsky, R.J.; Velliquette, R.A.; Ernsberger, P. The SHROB (Koletsky) Rat as a Model for Metabolic Syndrome. In Animal Models of Diabetes: Frontiers in Research; Shafrir, E., Ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Ernsberger, P.; Koletsky, R.J.; Kline, D.D.; Bedol, D.M.; Friedman, J.E. The SHROB Model of Syndrome X: Effects of Excess Dietary Sucrose. Ann. N. Y. Acad. Sci. 1999, 892, 315–318. [Google Scholar] [CrossRef]
- Ernsberger, P.; Koletsky, R.J.; Friedman, J.E. Molecular Pathology in the Obese Spontaneous Hypertensive Koletsky Rat: A Model of Syndrome X. Ann. N. Y. Acad. Sci. 1999, 892, 272–288. [Google Scholar] [CrossRef]
- Friedman, J.E.; Ishizuka, T.; Liu, S.; Farrell, C.J.; Koletsky, R.J.; Bedol, D. Ernsberger, P. Anti-hyperglycemic Activity of Moxonidine: Metabolic and Molecular Effects in Obese Spontaneously Hypertensive Rats. Blood Press. 1998, 3, 32–39. [Google Scholar] [PubMed]
- Ernsberger, P.; Ishizuka, T.; Liu, S.; Farrell, C.J.; Bedol, D.; Koletsky, R.J.; Friedman, J.E. Mechanisms of Antihyperglycemic Effects of Moxonidine in the Obese Spontaneously Hypertensive Koletsky Rat (SHROB). J. Pharmacol. Exp. Ther. 1999, 288, 139–147. [Google Scholar] [PubMed]
- Ernsberger, P.; Johnson, J.L.; Rosenthal, T.; Mirelman, D.; Koletsky, R.J. Therapeutic Actions of Allylmercaptocaptopril and Captopril in a Rat Model of Metabolic Syndrome. Am. J. Hypertens. 2007, 20, 866–874. [Google Scholar] [CrossRef]
- Hiraoka-Yamamoto, J.; Nara, Y.; Yasui, N.; Onobayashi, Y.; Tsuchikura, S.; Ikeda, K. Establishment of a New Animal Model of Metabolic Syndrome: SHRSP Fatty (fa/fa) Rats. Clin. Exp. Pharmacol. Physiol. 2004, 31, 107–109. [Google Scholar] [CrossRef]
- Tominaga, N.; Robert, A.; Izuhara, Y.; Ohtomo, S.; Dan, T.; Chihara, K.; Kurokawa, K.; Van Ypersele de Strihou, C.; Miyata, T. Very High Doses of Valsartan Provide Renoprotection Independently of Blood Pressure in a Type 2 Diabetic Nephropathy Rat Model. Nephrology (Carlton) 2009, 14, 581–587. [Google Scholar] [CrossRef]
- Nagase, M.; Yoshida, S.; Shibata, S.; Nagase, T.; Gotoda, T.; Ando, K.; Fujita, T. Enhanced Aldosterone Signaling in the Early Nephropathy of Rats with Metabolic Syndrome: Possible Contribution of Fat-derived Factors. J. Am. Soc. Nephrol. 2006, 17, 3438–3446. [Google Scholar] [CrossRef]
- Kagota, S.; Tada, Y.; Kubota, Y.; Nejime, N.; Yamaguchi, Y.; Nakamura, K.; Kunitomo, M.; Shinozuka, K. Peroxynitrite is Involved in the Dysfunction of Vasorelaxation in SHR/NDmcr-cp Rats, Spontaneously Hypertensive Obese Rats. J. Cardiovasc. Pharmacol. 2007, 50, 677–685. [Google Scholar] [CrossRef]
- Kagota, S.; Tada, Y.; Nejime, N.; Nakamura, K.; Kunitomo, M.; Shinozuka, K. Chronic Production of Peroxynitrite in the Vascular Wall Impairs Vasorelaxation Function in SHR/NDmcr-cp Rats, an Animal Model of Metabolic Syndrome. Kidney Int. 2009, 109, 556–564. [Google Scholar]
- Miyata, T.; Dan, T. Inhibition of Advanced Glycation End Products (AGEs): An Implicit Goal in Clinical Medicine for the Treatment of Diabetic Nephropathy? Diabetes Res. Clin. Pract. 2008, 82, S25–S29. [Google Scholar] [CrossRef]
- Nangaku, M.; Izuhara, Y.; Usuda, N.; Inagi, R.; Shibata, T.; Sugiyama, S.; Kurokawa, K.; van Ypersele de Strihou, C.; Miyata, T. In a Type 2 Diabetic Nephropathy Rat Model, the Improvement of Obesity by a Low Calorie Diet Reduces Oxidative/Carbonyl Stress and Prevents Diabetic Nephropathy. Nephrol. Dial. Transplant. 2005, 20, 2662–2669. [Google Scholar] [CrossRef]
- Ohtomo, S.; Nangaku, M.; Izuhara, Y.; Takizawa, S.; Strihou, C.Y.; Miyata, T. Cobalt Ameliorates Renal Injury in an Obese, Hypertensive Type 2 Diabetes Rat Model. Nephrol. Dial. Transplant. 2008, 23, 1166–1172. [Google Scholar] [CrossRef]
- Sofuoglu, S.C.; Kavcar, P. An exposure and risk assessment for fluoride and trace metals in black tea. J. Hazard Mater. 2008, 158, 392–400. [Google Scholar] [CrossRef]
- Waheed, S.; Siddique, N. Evaluation of dietary status with respect to trace element intake from dry fruits consumed in Pakistan: a study using instrumental neutron activation analysis. Int. J. Food Sci. Nutr. 2009, 60, 333–343. [Google Scholar] [CrossRef]
- Nangaku, M.; Miyata, T.; Sada, T.; Mizuno, M.; Inagi, R.; Ueda, Y.; Ishikawa, N.; Yuzawa, H.; Koike, H.; van Ypersele de Strihou, C.; Kurokawa, K. Anti-Hypertensive Agents Inhibit In Vivo the Formation of Advanced Glycation End Products and Improve Renal damage in a Type 2 Diabetic Nephropathy Rat Model. J. Am. Soc. Nephrol. 2003, 14, 1212–1222. [Google Scholar] [CrossRef]
- Watanabe, D.; Tanabe, A.; Naruse, M.; Morikawa, S.; Ezaki, T.; Takano, K. Renoprotective Effects of an Angiotensin II Receptor Blocker in Experimental Model Rats with Hypertension and Metabolic Disorders. Hypertens. Res. 2009, 32, 807–815. [Google Scholar] [CrossRef]
- Izuhara, Y.; Sada, T.; Yanagisawa, H.; Koike, H.; Ohtomo, S.; Dan, T.; Ito, S.; Nangaku, M.; van Ypersele de Strihou, C.; Miyata, T. A Novel Sartan Derivative with Very Low Angiotensin II Type 1 Receptor Affinity Protects the Kidney in Type 2 Diabetic Rats. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1767–1773. [Google Scholar] [CrossRef]
- Izuhara, Y.; Takahashi, S.; Nangaku, M.; Takizawa, S.; Ishida, H.; Kurokawa, K.; van Ypersele de Strihou, C.; Hirayama, N.; Miyata, T. Inhibition of Plasminogen Activator Inhibitor-1: Its Mechanism and Effectiveness on Coagulation and Fibrosis. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 672–677. [Google Scholar] [CrossRef]
- Ma, L.J.; Mao, S.L.; Taylor, K.L.; Kanjanabuch, T.; Guan, Y.; Zhang, Y.; Brown, N.J.; Swift, L.L.; McGuinness, O.P.; Wasserman, D.H.; Vaughan, D.E.; Fogo, A.B. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 2004, 53, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, S.B.; Aguiniga, E.; Ren, Y.; Kim, J.; Wong, J.; Govindarajan, N.; Noda, M.; Wang, W.; Kawano, Y.; Collins, A.; Hsueh, W.A. Plasminogen activator inhibitor-1 deficiency retards diabetic nephropathy. Kidney Int. 2005, 67, 1297–1307. [Google Scholar] [CrossRef]
- Yasui, N.; Hiraoka-Yamamoto, J.; Kitamori, K. Effects of Dietary Fibre on SHR/NDmcr-cp (fak/fak) rat, a Model of Metabolic Syndrome. Clin. Exp. Pharmacol. Physiol. 2007, 34, S43–S44. [Google Scholar] [CrossRef]
- Cohen, A.M.; Rosenmann, E.; Rosenthal, T. The Cohen Diabetic (non-insulin-dependent) Hypertensive Rat Model. Description of the Model and Pathologic Findings. Am. J. Hypertens. 1993, 6, 989–995. [Google Scholar] [PubMed]
- Friedman, J.; Peleg, E.; Kagan, T.; Shnizer, S.; Rosenthal, T. Oxidative Stress in Hypertensive, Diabetic, and Diabetic Hypertensive Rats. Am. J. Hypertens. 2003, 16, 1049–1052. [Google Scholar] [CrossRef]
- Hofman, C.; Rosenthal, T. The Effects of Omapatrilat on the Cohen-Rosenthal Diabetic Hypertensive Rat. Proceedings of the Fourteenth Meeting on Hypertension 2004, 48, (Abstract). [Google Scholar]
- Amenta, F.; Peleg, E.; Tomassoni, D.; Sabbatini, M.; Rosenthal, T. Effect of Treatment with Lercanidipine on Heart of Cohen-Rosenthal Diabetic Hypertensive Rats. Hypertension 2003, 41, 1330–1335. [Google Scholar] [CrossRef]
- Rosenthal, T.; Rosenmann, E.; Tomassoni, D.; Amenta, F. Effect of lercanidipine on kidney microanatomy in Cohen-Rosenthal Diabetic Hypertensive Rats. J. Cardiovasc. Pharmacol. Ther. 2007, 12, 145–152. [Google Scholar] [CrossRef]
- Younis, F.; Kariv, N.; Nachman, R.; Zangen, S.; Rosenthal, T. Telmisartan in the Treatment of Cohen-Rosenthal Diabetic Hypertensive Rats: The Benefit of PPAR-gamma Agonism. Clin. Exp. Hypertens. 2007, 29, 419–426. [Google Scholar] [CrossRef]
- Younis, F.; Stern, N.; Limor, R.; Oron, Y.; Zanger, S.; Rosenthal, T. Telmisartan Ameliorates Hyperglycemia and Metabolic profile in non-Obese Cohen Rosenthal Diabetic Hypertensive Rats, via PPAR-γ activation. Metabolism 2010, in press. [Google Scholar]
- Younis, F.; Mirelman, D.; Rabinkov, A.; Rosenthal, T. S-allyl-mercapto-captopril in the Treatment of the Cohen Rosenthal Diabetic Hypertensive Rat. J. Cardiometab. Syndrome 2010, in press. [Google Scholar]
- Takizawa, S.; Dan, T.; Uesugi, T.; Nagata, E.; Takagi, S.; van Ypersele de Strihou, C.; Miyata, T. A Sartan Derivative with a Very Low Angiotensin II Receptor Affinity Ameliorates Ischemic Cerebral Damage. J. Cereb. Blood Flow Metab. 2009, 29, 1665–1672. [Google Scholar] [CrossRef]
- Miyata, T.; van Ypersele de Strihou, C. Translation of Basic Science into Clinical Medicine: Novel Targets for Diabetic Nephropathy. Nephrol. Dialysis Transplant. 2009, 24, 1373–1377. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rosenthal, T.; Younis, F.; Alter, A. Combating Combination of Hypertension and Diabetes in Different Rat Models. Pharmaceuticals 2010, 3, 916-939. https://doi.org/10.3390/ph3040916
Rosenthal T, Younis F, Alter A. Combating Combination of Hypertension and Diabetes in Different Rat Models. Pharmaceuticals. 2010; 3(4):916-939. https://doi.org/10.3390/ph3040916
Chicago/Turabian StyleRosenthal, Talma, Firas Younis, and Ariela Alter. 2010. "Combating Combination of Hypertension and Diabetes in Different Rat Models" Pharmaceuticals 3, no. 4: 916-939. https://doi.org/10.3390/ph3040916