Effects of NSAIDs on the Inner Ear: Possible Involvement in Cochlear Protection
Abstract
:1. Introduction
2. Ototoxicity Induced by NSAIDs
3. The Protective Effects of NSAIDs against Cochlear Injury
4. Protective Mechanisms of NSAIDs in Cochlear Injury
5. Conclusions
Acknowledgements
References
- Spangler, R.S. Cyclooxygenase 1 and 2 in rheumatic disease: Implications for nonsteroidal anti-inflammatory drug therapy. Semin. Arthritis. Rheum. 1996, 26, 435–446. [Google Scholar]
- Chandrasekharan, N.V.; Dai, H.; Roos, K.L.; Evanson, N.K.; Tomsik, J.; Elton, T.S.; Simmons, D.L. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression. Proc. Natl. Acad. Sci. USA. 2002, 99, 13926–13931. [Google Scholar]
- Barnett, J.; Chow, J.; Ives, D.; Chiou, M.; Mackenzie, R.; Osen, E.; Nguyen, B.; Tsing, S.; Bach, C.; Freire, J.; Chan, H.; Sigal, E.; Ramesha, C. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim. Biophys. Acta 1994, 1209, 130–139. [Google Scholar]
- Blanco, F.J.; Guitian, R.; Moreno, J.; de Toro, F.J.; Galdo, F. Effect of antiinflammatory drugs on COX-1 and COX-2 activity in human articular chondrocytes. J. Rheumatol. 1999, 26, 1366–1373. [Google Scholar]
- Stanfield, K.M.; Bell, R.R.; Lisowski, A.R.; English, M.L.; Saldeen, S.S.; Khan, K.N. Expression of cyclooxygenase-2 in embryonic and fetal tissues during organogenesis and late pregnancy. Birth Defects Res. A 2003, 67, 54–58. [Google Scholar]
- Burdan, F. Comparison of developmental toxicity of selective and non-selective cyclooxygenase-2 inhibitors in CRL: (WI)WUBR Wistar rats—DFU and piroxicam study. Toxicology 2005, 211, 12–25. [Google Scholar]
- Capdevila, J.H.; Harris, R.C.; Falck, J.R. Microsomal cytochrome P450 and eicosanoid metabolism. Cell. Mol. Life Sci. 2002, 59, 780–789. [Google Scholar]
- Boettcher, F.A.; Salvi, R.J. Salicylate ototoxicity: review and synthesis. Am. J. Otolaryngol. 1991, 12, 33–47. [Google Scholar]
- Brien, J.A. Ototoxicity associated with salicylates: A brief review. Drug Saf. 1993, 9, 143–148. [Google Scholar]
- Cazals, Y. Auditory sensori-neural alterations induced by salicylate. Prog. Neurobiol. 2000, 62, 583–631. [Google Scholar]
- Kujawa, S.G.; Fallon, M.; Bobbin, R.P. Intracochlear salicylate reduces low-intensity acoustic and cochlear microphonic distortion products. Hear. Res. 1992, 64, 73–80. [Google Scholar]
- Ueda, H.; Yamamoto, Y.; Yanagita, N. Effct of aspirin on transiently evoked otoacoustic emissions in guinea pigs. ORL J. Otorhinolaryngol. Relat. Spec. 1996, 58, 61–67. [Google Scholar]
- Gold, A.; Wilpizeski, C.R. Studies in auditory adaptation: II. Some effects of sodium salicylate on evoked auditory potentials in cats. Laryngoscope 1966, 76, 674–685. [Google Scholar] [PubMed]
- Woodford, C.M.; Henderson, D.; Hamernik, R.P. Effects of combinations of sodium salicylate and noise on the auditory threshold. Ann. Otol. Rhinol. Laryngol. 1978, 87, 117–127. [Google Scholar]
- Tabuchi, K.; Tsuji, S.; Hara, A.; Kusakari, J. Effect of calmodulin antagonists on the compound action potential of the cochlea. Hear. Res. 2000, 145, 59–64. [Google Scholar]
- Mammano, F.; Ashmore, J.F. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature 1993, 365, 838–841. [Google Scholar]
- Murugasu, E.; Russell, I.J. Salicylate ototoxicity: The effects on basilar membrane displacement, cochlear microphonics and neural responses in the basal turn of the guinea pig cochlea. Auditory Neurosci. 1995, 1, 139–150. [Google Scholar]
- Puel, J.L.; Bobbin, R.P.; Fallon, M. Salicylate, mefenamate, meclofenamate, and quinine on cochlear potentials. Otolaryngol. Head Neck Surg. 1990, 102, 66–73. [Google Scholar] [PubMed]
- Didier, A.; Miller, J.M.; Nuttall, A.L. The vascular component of sodium salicylate ototoxicity in the guinea pig. Hear. Res. 1993, 69, 199–206. [Google Scholar]
- Dieler, R.; Shehata-Dieler, W.E.; Richter, C.P.; Klinke, R. Effects of endolymphatic and perilymphatic application of salicylate in the pigeon. II: Fine structure of auditory hair cells. Hear. Res. 1994, 74, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Douek, E.E.; Dodson, H.C.; Bannister, L.H. The effects of sodium salicylate on the cochlea of guinea pigs. J. Laryngol. Otol. 1983, 97, 793–799. [Google Scholar]
- Johnsen, N.J.; Elberling, C. Evoked acoustic emissions from the human ear. I. Equipment and response parameters. Scand. Audiol. 1982, 11, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Janssen, T.; Boege, P.; Oestreicher, E.; Arnold, W. Tinnitus and 2f1-f2 distortion product otoacoustic emissions following salicylate overdose. J. Acoust. Soc. Am. 2000, 107, 1790–1792. [Google Scholar]
- Wu, T.; Lv, P.; Yamoah, E.N.; Nuttall, A.L. Effect of Salicylate on KCNQ4 of the Guinea Pig Outer Hair Cell. J. Neurophysiol. 2010. [Epub ahead of print]. [Google Scholar]
- Wei, L.; Ding, D.; Salvi, R. Salicylate-induced degeneration of cochlea spiral ganglion neurons-apoptosis signaling. Neuroscience 2010. [Epub ahead of print]. [Google Scholar]
- Chen, G.D.; Kermany, M.H.; D’Elia, A.; Ralli, M.; Tanaka, C.; Bielefeld, E.C.; Ding, D.; Henderson, D.; Salvi, R. Too much of a good thing: Long-term treatment with salicylate strengthens outer hair cell function but impairs auditory neural activity. Hear. Res. 2010. [Epub ahead of print]. [Google Scholar]
- Miller, B.; Sarantis, M.; Traynelis, S.F.; Attwell, D. Potentiation of NMDA receptor currents by arachidonic acid. Nature 1992, 355, 722–725. [Google Scholar]
- Niedzielski, A.S.; Wenthold, R.J. Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. J. Neurosci. 1995, 15, 2338–2353. [Google Scholar] [PubMed]
- Ruel, J.; Chen, C.; Pujol, R.; Bobbin, R.P.; Puel, J.L. AMPA-preferring glutamate receptors in cochlear physiology of adult guinea pig. J. Physiol. 1999, 518, 667–680. [Google Scholar]
- Ruel, J.; Bobbin, R.P.; Vidal, D.; Pujol, R.; Puel, J.L. The selective AMPA receptor antagonist GYKI 53784 blocks action potential generation and excitotoxicity in the guinea pig cochlea. Neuropharmacology 2000, 39, 1959–1973. [Google Scholar]
- Guitton, M.J.; Caston, J.; Ruel, J.; Johnson, R.M.; Pujol, R.; Puel, J.L. Salicylate induces tinnitus through activation of cochlear NMDA receptors. J. Neurosci. 2003, 23, 3944–3952. [Google Scholar]
- Knipper, M.; Zimmermann, U.; Muller, M. Molecular aspects of tinnitus. Hear. Res. 2009. [Google Scholar] [CrossRef]
- Sun, W.; Lu, J.; Stolzberg, D.; Gray, L.; Deng, A.; Lobarinas, E.; Salvi, R.J. Salicylate increases the gain of the central auditory system. Neuroscience 2009, 159, 325–334. [Google Scholar]
- Norena, A.J.; Moffat, G.; Blanc, J.L.; Pezard, L.; Cazals, Y. Neural changes in the auditory cortex of awake guinea pigs after two tinnitus inducers: Salicylate and acoustic trauma. Neuroscience 2010, 166, 1194–1209. [Google Scholar]
- Eggermont, J.J. Role of auditory cortex in noise- and drug-induced tinnitus. Am. J. Audiol. 2008, 17, S162–S169. [Google Scholar] [CrossRef] [PubMed]
- Kizawa, K.; Kitahara, T.; Horii, A.; Maekawa, C.; Kuramasu, T.; Kawashima, T.; Nishiike, S.; Doi, K.; Inohara, H. Behavioral assessment and identification of a molecular marker in a salicylate-induced tinnitus in rats. Neuroscience 2010, 165, 1323–1332. [Google Scholar]
- Yu, N.; Zhu, M.-L.; Johnson, B.; Liu, Y.-P.; Jones, R.O.; Zhao, H.-B. Prestin up-regulation in chronic salicylate (aspirin) administration: An implication of functional dependence of prestin expression. Cell Mol. Life Sci. 2008, 65, 2407–2418. [Google Scholar] [CrossRef] [PubMed]
- Panford-Walsh, R.; Singer, W.; Ruttiger, L.; Hadjab, S.; Tan, J.; Geisler, H.S.; Zimmermann, U.; Kopschall, I.; Rohbock, K.; Vieljans, A.; Oestreicher, E.; Knipper, M. Midazolam reverses salicylate-induced changes in brain-derived neurotrophic factor and arg3.1 expression: implications for tinnitus perception and auditory plasticity. Mol. Pharmacol. 2008, 74, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Singer, W.; Panford-Walsh, R.; Watermann, D.; Hendrich, O.; Zimmermann, U.; Kopschall, I.; Rohbock, K.; Knipper, M. Salicylate alters the expression of calcium response transcription factor 1 in the cochlea: implications for brain-derived neurotrophic factor transcriptional regulation. Mol. Pharmacol. 2008, 73, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Nam, B.H.; Kim, P.S.; Park, Y.S.; Worrell, L.A.; Park, S.K.; John, E.O.; Jung, T.T.; Duncan, J.; Fletcher, W.H. Effect of corticosteroid on salicylate-induced morphological changes of isolated cochlear outer hair cells. Ann. Otol. Rhinol. Laryngol. 2004, 113, 734–737. [Google Scholar] [PubMed]
- Zhi, M.; Ratnanather, J.T.; Ceyhan, E.; Popel, A.S.; Brownell, W.E. Hypotonic swelling of salicylate-treated cochlear outer hair cells. Hear. Res. 2007, 228, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Shen, W.; He, D.Z.; Long, K.B.; Madison, L.D.; Dallos, P. Prestin is the motor protein of cochlear outer hair cells. Nature 2000, 405, 149–155. [Google Scholar]
- Yang, K.; Huang, Z.W.; Liu, Z.Q.; Xiao, B.K.; Peng, J.H. Long-term administration of salicylate enhances prestin expression in rat cochlea. Int. J. Audiol. 2009, 48, 18–23. [Google Scholar]
- Lamm, K.; Arnold, W. The effect of predonisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear. Hear. Res. 1998, 115, 149–161. [Google Scholar]
- Kopke, R.D.; Weisskopf, P.A.; Boone, J.L.; Jackson, R.L.; Wester, D.C.; Hoffer, M.E.; Lambert, D.C.; Charon, C.C.; Ding, D.L.; McBride, D. Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla. Hear. Res. 2000, 149, 138–146. [Google Scholar]
- Sha, S.H.; Schacht, J. Salicylate attenuates gentamicin-induced ototoxicity. Lab. Invest. 1999, 79, 807–813. [Google Scholar] [PubMed]
- Li, G.; Sha, S.H.; Zotova, E.; Arezzo, J.; Van de Water, T.; Schacht, J. Salicylate protects hearing and kidney function from cisplatin toxicity without compromising its oncolytic action. Lab. Invest. 2002, 82, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Hyppolito, M.A.; de Oliveira, J.A.; Rossato, M. Cisplatin ototoxicity and otoprotection with sodium salicylate. Eur. Arch. Otorhinolaryngol. 2006, 263, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, D.; Jiang, H.Y.; Le Prell, C.G.; Schacht, J.; Miller, J.M. Post-exposure treatment attenuates noise-induced hearing loss. Neuroscience 2005, 134, 633–642. [Google Scholar]
- Stjernschantz, J.; Wentzel, P.; Rask-Andersen, H. Localization of prostanoid receptors and cyclooxygenase enzymes in guinea pig and human cochlea. Hear. Res. 2004, 197, 65–73. [Google Scholar]
- Ziegler, E.A.; Brieger, J.; Heinrich, U.R.; Mann, W.J. Immunohistochemical localization of cyclooxygenase isoforms in the organ of Corti and the spiral ganglion cells of guinea pig cochlea. ORL J. Otorhinolaryngol. Relat. Spec. 2004, 66, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, U.R.; Bringer, J.; Selivanova, O; Feltens, R.; Eimermacher, A.; Schäfer, D.; Mann, W.J. COX-2 expression in the guinea pig cochlea is partly altered by moderate sound exposure. Neurosci. Lett 2006, 39, 121–126. [Google Scholar]
- Previati, M.; Lanzoni, I.; Corbacella, E.; Magosso, S.; Giuffrè, S.; Francioso, F.; Arcelli, D.; Volinia, S.; Barbieri, A.; Hatzopoulos, S.; Capitani, S.; Martini, A. RNA expression induced by cisplatin in an organ of Corti-derived immortalized cell line. Hear. Res. 2004, 196, 8–18. [Google Scholar]
- Hoshino, T.; Tabuchi, K.; Hirose, Y.; Uemaetomari, I.; Murashita, H.; Tobita, T.; Hara, A. The non-steroidal anti-inflammatory drugs protect mouse cochlea against acoustic injury. Tohoku J. Exp. Med. 2008, 216, 53–59. [Google Scholar]
- Tabuchi, K.; Ito, Z.; Tsuji, S.; Wada, T.; Takahashi, K.; Hara, A.; Kusakari, J. The contribution of phospholipase A2 to the cochlear dysfunction induced by transient ischemia. Hear. Res. 2000, 144, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hirose, Y.; Tabuchi, K.; Oikawa, K.; Murashita, H.; Sakai, S.; Hara, A. The effects of the glucocorticoid receptor antagonist RU486 and phospholipase A2 inhibitor quinacrine on acoustic injury of the mouse cochlea. Neurosci. Lett. 2007, 413, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Tabuchi, K.; Oikawa, K.; Uemaetomari, I.; Tsuji, S.; Wada, T.; Hara, A. Glucocorticoids and dehydroepiandrosterone sulfate ameliorate ischemia-induced injury of the cochlea. Hear. Res. 2003, 180, 51–56. [Google Scholar]
- Tabuchi, K.; Murashita, H.; Tobita, T.; Oikawa, K.; Tsuji, S.; Uemaetomari, I.; Hara, A. Dehydroepiandrosterone sulfate reduces acoustic injury of the guinea-pig cochlea. J. Pharmacol. Sci. 2005, 99, 191–194. [Google Scholar]
- Gewert, K.; Sundler, R. Dexamethasone down-regulates the 85 kDa phospholipase A2 in mouse macrophages and suppresses its activation. Biochem. J. 1995, 307, 499–504. [Google Scholar]
- Brune, K. Safety of anti-inflammatory treatment--new ways of thinking. Rheumatology (Oxford) 2004, 43 (Suppl. 1), i16–i20. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.T.; Park, Y.M.; Miller, S.K.; Rozehnal, S.; Woo, H.Y.; Baer, W. Effect of exogenous arachidonic acid metabolites applied on round window membrane on hearing and their levels in the perilymph. Acta Oto-laryngol. 1992, 493, 171–176. [Google Scholar]
- Umemura, K.; Asai, Y.; Uematsu, T.; Nakashima, M. Role of thromboxane A2 in a microcirculation disorder of the rat inner ear. Eur. Arch. Otorhinolaryngol. 1993, 250, 342–344. [Google Scholar]
- Clerici, W.J.; Hensley, K.; DiMartino, D.L.; Butterfield, D.A. Direct detection of ototoxicant-induced reactive oxygen species generation in cochlear explants. Hear. Res. 1996, 98, 116–124. [Google Scholar]
- Choung, Y.H.; Taura, A.; Pak, K.; Choi, S.J.; Masuda, M.; Ryan, A.F. Generation of highly-reactive oxygen species is closely related to hair cell damage in rat organ of Corti treated with gentamicin. Neuroscience 2009, 161, 214–226. [Google Scholar]
- Yamane, H.; Nakai, Y.; Takayama, M.; Konishi, K.; Iguchi, H.; Nakagawa, T.; Shibata, S.; Kato, A.; Sunami, K.; Kawakatsu, C. The emergence of free radicals after acoustic trauma and strial blood flow. Acta Oto-laryngol. 1995, 519, 87–92. [Google Scholar]
- Yamasoba, T.; Nuttall, A.L.; Harris, C.; Raphael, Y.; Miller, J.M. Role of gluthathione in protection against noise-induced hearing loss. Brain Res. 1998, 784, 82–90. [Google Scholar]
- Ohlemiller, K.K.; Wright, J.S.; Dugan, L.L. Early elevation of cochlear reactive oxygen species following noise exposure. Audiol. Neurootol. 1999a, 4, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Murashita, H.; Tabuchi, K.; Hoshino, T.; Tsuji, S.; Hara, A. The effects of tempol, 3-aminobenzamide and nitric oxide synthase inhibitors on acoustic injury of the mouse cochlea. Hear. Res. 2006, 214, 1–6. [Google Scholar]
- Ohlemiller, K.K.; Dugan, L.L. Elevation of reactive oxygen species following ischemia-reperfusion in mouse cochlea observed in vivo. Audiol. Neurootol. 1999, 4, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Tabuchi, K.; Ito, Z.; Wada, T.; Hara, A.; Kusakari, J. The effect of mannitol upon cochlear dysfunction induced by transient local anoxia. Hear. Res. 1998, 126, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Tabuchi, K.; Tsuji, S.; Fujihira, K.; Oikawa, K.; Hara, A.; Kusakari, J. Outer hair cells functionally and structurally deteriorate during reperfusion. Hear. Res. 2002, 173, 153–163. [Google Scholar]
- Staecker, H.; Zheng, Q.Y.; Van De Water, T.R. Oxidative stress in aging in the C57B16/J mouse cochlea. Acta Oto-laryngol. 2001, 121, 666–672. [Google Scholar] [CrossRef]
- Dinis, T.C.; Maderia, V.M.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.K.; Wells, P.G. Evidence for lipoxygenase-catalyzed bioactivation of phenytoin to a teratogenic reactive intermediate: in vivo studies using linoleic acid-dependent soybean lipoxygenase, and in vivo studies using pregnant CD-1 mice. Toxicol. Appl. Pharmacol. 1995, 131, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chernov, M.V.; Stark, G.R. The p53 activation and apoptosis induced by DNA damage are reversibly inhibited by salicylate. Oncogene 1997, 14, 2503–2510. [Google Scholar]
- Yin, M.J.; Yamamoto, Y.; Gaynor, R.B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 1998, 396, 77–80. [Google Scholar]
- Masuda, M.; Nagashima, R.; Kanzaki, S.; Fujioka, M.; Ogita, K.; Ogawa, K. Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation. Brain Res. 2006, 1068, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, V.; Melendez-Zajgla, J.; Ortega, A. Modulation of NF-kappa B, and Bcl-2 in apoptosis induced by cisplatin in HeLa cells. Mutat. Res. 1997, 381, 67–75. [Google Scholar]
- Jiang, H.; Sha, S.H.; Schacht, J. NF-kappaB pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity. J. Neurosci. Res. 2005, 79, 644–651. [Google Scholar] [CrossRef] [PubMed]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hoshino, T.; Tabuchi, K.; Hara, A. Effects of NSAIDs on the Inner Ear: Possible Involvement in Cochlear Protection. Pharmaceuticals 2010, 3, 1286-1295. https://doi.org/10.3390/ph3051286
Hoshino T, Tabuchi K, Hara A. Effects of NSAIDs on the Inner Ear: Possible Involvement in Cochlear Protection. Pharmaceuticals. 2010; 3(5):1286-1295. https://doi.org/10.3390/ph3051286
Chicago/Turabian StyleHoshino, Tomofumi, Keiji Tabuchi, and Akira Hara. 2010. "Effects of NSAIDs on the Inner Ear: Possible Involvement in Cochlear Protection" Pharmaceuticals 3, no. 5: 1286-1295. https://doi.org/10.3390/ph3051286
APA StyleHoshino, T., Tabuchi, K., & Hara, A. (2010). Effects of NSAIDs on the Inner Ear: Possible Involvement in Cochlear Protection. Pharmaceuticals, 3(5), 1286-1295. https://doi.org/10.3390/ph3051286