Plasma Globotriaosylsphingosine and α-Galactosidase A Activity as a Combined Screening Biomarker for Fabry Disease in a Large Japanese Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lyso-Gb3 and GLA Screening
2.2. Patient Enrollment
2.3. Sample Collection
2.4. Measurement of Plasma Lyso-Gb3
2.5. Measurement of Plasma GLA Activity
2.6. Genetic Counseling
2.7. Gene Analysis
2.8. Defining FD
2.9. Statistical Analyses
3. Results
3.1. Study Population
3.2. Plasma Lyso-Gb3 Levels
3.3. Plasma GLA Activity
3.4. Classification of FD Probands with Class 1 Variants
3.5. Frequency of Positive Lyso-Gb3 Screens and FD Diagnosis by Clinical Department
3.6. Prosaposin (PSAP) Analysis for Probands with Late-Onset Biopsy-Proven FD
3.7. Comparison of Lyso-Gb3 Screening and GLA Analysis between Cohorts
3.8. Differences in Plasma Lyso-Gb3 Levels and GLA Activity between Cohorts
3.9. ROC Curve Analysis for Plasma Lyso-Gb3 Levels, GLA Activity, and GLA/lyso-Gb3 Ratio
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brady, R.O.; Gal, A.E.; Bradley, R.M.; Martensson, E.; Warshaw, A.L.; Laster, L. Enzymatic defect in Fabry’s disease ceramidetrihexosidase deficiency. N. Engl. J. Med. 1967, 276, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Schiffmann, R.; Hughes, D.A.; Linthorst, G.E.; Ortiz, A.; Svarstad, E.; Warnock, D.G.; West, M.L.; Wanner, C. Conference Participants: Screening, diagnosis, and management of patients with Fabry disease: Conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int. 2017, 91, 284–293. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Ferreira, S. Multiple phenotypic domains of Fabry disease and their relevance for establishing genotype-phenotype correlations. Appl. Clin. Genet. 2019, 12, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Aerts, J.M.; Groener, J.E.; Kuiper, S.; Donker-Koopman, W.E.; Strijland, A.; Ottenhoff, R.; van Roomen, C.; Mirzaian, M.; Wijburg, F.A.; Linthorst, G.E.; et al. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc. Natl. Acad. Sci. USA 2008, 26, 2812–2817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowak, A.; Mechtler, T.; Kasper, D.C.; Desnick, R.J. Correlation of lyso-Gb3 levels in dried blood spots and sera from patients with classic and later-onset Fabry disease. Mol. Genet. Metab. 2017, 121, 320–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stiles, A.R.; Zhang, H.; Dai, J.; McCaw, P.; Beasley, J.; Rehder, C.; Koeberl, D.D.; McDonald, M.; Bali, D.S.; Young, S.P. A comprehensive testing algorithm for the diagnosis of Fabry disease in males and females. Mol. Genet. Metab. 2020, 130, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H.; Miyata, K.; Mikame, M.; Taguchi, A.; Guili, C.; Shimura, M.; Murayama, K.; Inoue, T.; Yamamoto, S.; Sugimura, K.; et al. Effectiveness of plasma lyso-Gb3 as a biomarker for selecting high-risk patients with Fabry disease from multispecialty clinics for genetic analysis. Genet. Med. 2019, 21, 44–52. [Google Scholar] [CrossRef]
- Gal, A.; Hughes, D.A.; Winchester, B. Toward a consensus in the laboratory diagnostics of Fabry disease—Recommendations of a European expert group. J. Inherit. Metab. Dis. 2011, 34, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Caudron, E.; Prognon, P.; Germain, D.P. Enzymatic diagnosis of Fabry disease using a fluorometric assay on dried blood spots: An alternative methodology. Eur. J. Med. Genet. 2015, 58, 681–684. [Google Scholar] [CrossRef]
- Ferreira, S.; Auray-Blais, C.; Boutin, M.; Lavoie, P.; Nunes, J.P.; Martins, E.; Garman, S.; Oliveira, J.P. Variations in the GLA gene correlate with globotriaosylceramide and globotriaosylsphingosine analog levels in urine and plasma. Clin. Chim. Acta 2015, 447, 96–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smid, B.E.; van der Tol, L.; Cecchi, F.; Elliott, P.M.; Hughes, D.A.; Linthorst, G.E.; Timmermans, J.; Weidemann, F.; West, M.L.; Biegstraaten, M.; et al. Uncertain diagnosis of Fabry disease: Consensus recommendation on diagnosis in adults with left ventricular hypertrophy and genetic variants of unknown significance. Int. J. Cardiol. 2014, 177, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Kase, R.; Bierfreund, U.; Klein, A.; Kolter, T.; Itoh, K.; Suzuki, M.; Hashimoto, Y.; Sandhoff, K.; Sakuraba, H. Only sphingolipid activator protein B (SAP-B or saposin B) stimulates the degradation of globotriaosylceramide by recombinant human lysosomal α-galactosidase in a detergent-free liposomal system. FEBS Lett. 1996, 393, 74–76. [Google Scholar] [CrossRef] [Green Version]
- Motta, M.; Tatti, M.; Furlan, F.; Celato, A.; Di Fruscio, G.; Polo, G.; Manara, R.; Nigro, V.; Tartaglia, M.; Burlina, A.; et al. Clinical, biochemical and molecular characterization of prosaposin deficiency. Clin. Genet. 2016, 90, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Kuchař, L.; Ledvinová, J.; Hřebíček, M.; Myšková, H.; Dvořáková, L.; Berná, L.; Chrastina, P.; Asfaw, B.; Elleder, M.; Petermöller, M.; et al. Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): Report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am. J. Med. Genet. Part A 2009, 149A, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Germain, D.P.; Oliveira, J.P.; Bichet, D.G.; Yoo, H.W.; Hopkin, R.J.; Lemay, R.; Politei, J.; Wanner, C.; Wilcox, W.R.; Warnock, D.G. Use of a rare disease registry for establishing phenotypic classification of previously unassigned GLA variants: A consensus classification system by a multispecialty Fabry disease genotype–phenotype workgroup. J. Med. Genet. 2020, 57, 542–551. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, H.; Takata, T.; Tsubata, Y.; Tazawa, R.; Goto, K.; Tohyama, J.; Narita, I.; Yoshioka, H.; Ishii, S. Screening of male dialysis patients for Fabry disease by plasma globotriaosylsphingosine. Clin. J. Am. Soc. Nephrol. 2013, 8, 629–636. [Google Scholar] [CrossRef] [Green Version]
- Hulková, H.; Cervenková, M.; Ledvinová, J.; Tochácková, M.; Hrebícek, M.; Poupetová, H.; Befekadu, A.; Berná, L.; Paton, B.C.; Harzer, K.; et al. A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. Hum. Mol. Genet. 2001, 10, 927–940. [Google Scholar] [CrossRef] [Green Version]
- den Dunnen, J.T.; Dalgleish, R.; Maglott, D.R.; Hart, R.K.; Greenblatt, M.S.; McGowan-Jordan, J.; Roux, A.F.; Smith, T.; Antonarakis, S.E.; Taschner, P.E. HGVS recommendations for the description of sequence variants: 2016 update. Hum. Mutat. 2016, 37, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Koskenvuo, J.W.; Engblom, E.; Kantola, I.M.; Hartiala, J.J.; Saraste, A.; Kiviniemi, T.O.; Mononen, I.; Saraste, M. Echocardiography in Fabry disease: Diagnostic value of endocardial border binary appearance. Clin. Physiol. Funct. Imaging 2009, 29, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Shabbeer, J.; Yasuda, M.; Luca, E.; Desnick, R.J. Fabry disease: 45 novel mutations in the alpha-galactosidase A gene causing the classical phenotype. Mol. Genet. Metab. 2002, 76, 23–30. [Google Scholar] [CrossRef]
- Varela, P.; Mastroianni Kirsztajn, G.; Motta, F.L.; Martin, R.P.; Turaça, L.T.; Ferrer, H.L.F.; Gomes, C.P.; Nicolicht, P.; Mara Marins, M.; Pessoa, J.G.; et al. Correlation between GLA variants and alpha-Galactosidase A profile in dried blood spot: An observational study in Brazilian patients. Orphanet J. Rare Dis. 2020, 15, 30. [Google Scholar] [CrossRef] [Green Version]
- Eng, C.M.; Niehaus, D.J.; Enriquez, A.L.; Burgert, T.S.; Ludman, M.D.; Desnick, R.J. Fabry disease: Twenty-three mutations including sense and antisense CpG alterations and identification of a deletional hot-spot in the alpha-galactosidase A gene. Hum. Mol. Genet. 1994, 3, 1795–1799. [Google Scholar] [CrossRef] [PubMed]
- Fukutomi, M.; Tanaka, N.; Uchinoumi, H.; Kanemoto, M.; Nakao, F.; Yamada, J.; Kamei, T.; Takenaka, T.; Fujii, T. Japanese patients with Fabry disease predominantly showing cardiac and neurological manifestation with novel missense mutation: R220P. J. Cardiol. 2013, 62, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Redonnet-Vernhet, I.; van Amstel, J.K.P.; Jansen, R.P.; Wevers, R.A.; Salvayre, R.; Levade, T. Uneven X inactivation in a female monozygotic twin pair with Fabry disease and discordant expression of a novel mutation in the alpha-galactosidase A gene. J. Med. Genet. 1996, 33, 682–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eng, C.M.; Ashley, G.A.; Burgert, T.S.; Enriquez, A.L.; D’Souza, M.; Desnick, R.J. Fabry disease: Thirty-five mutations in the alpha-galactosidase A gene in patients with classic and variant phenotypes. Mol. Med. 1997, 3, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakuraba, H.; Oshima, A.; Fukuhara, Y.; Shimmoto, M.; Nagao, Y.; Bishop, D.F.; Desnick, R.J.; Suzuki, Y. Identification of point mutations in the alpha-galactosidase A gene in classical and atypical hemizygotes with Fabry disease. Am. J. Hum. Genet. 1990, 47, 784–789. [Google Scholar] [PubMed]
- Shimotori, M.; Maruyama, H.; Nakamura, G.; Suyama, T.; Sakamoto, F.; Itoh, M.; Miyabayashi, S.; Ohnishi, T.; Sakai, N.; Wataya-Kaneda, M.; et al. Novel mutations of the GLA gene in Japanese patients with Fabry disease and their functional characterization by active site specific chaperone. Hum. Mutat. 2008, 29, 331. [Google Scholar] [CrossRef]
- Sakuraba, H.; Tsukimura, T.; Togawa, T.; Tanaka, T.; Ohtsuka, T.; Sato, A.; Shiga, T.; Saito, S.; Ohno, K. Fabry disease in a Japanese population-molecular and biochemical characteristics. Mol. Genet. Metab. Rep. 2018, 17, 73–79. [Google Scholar] [CrossRef]
- Wakakuri, H.; Nakamura, S.; Utsumi, K.; Shimizu, W.; Yasutake, M. Novel α-galactosidase A mutation (K391E) in a young woman with severe cardiac and renal manifestations of Fabry disease. Int. Heart J. 2016, 57, 637–639. [Google Scholar] [CrossRef] [Green Version]
- Rozenfeld, P.A.; Tarabuso, A.; Ebner, R.; Ramallo, G.; Fossati, C.A. A successful approach for the detection of Fabry patients in Argentina. Clin. Genet. 2006, 69, 344–348. [Google Scholar] [CrossRef]
- Sahashi, K.; Masuda, A.; Matsuura, T.; Shinmi, J.; Zhang, Z.; Takeshima, Y.; Matsuo, M.; Sobue, G.; Ohno, K. In Vitro and in silico analysis reveals an efficient algorithm to predict the splicing consequences of mutations at the 5’ splice sites. Nucleic Acids Res. 2007, 35, 5995–6003. [Google Scholar] [CrossRef]
- Nakai, K.; Sakamoto, H. Construction of a novel database containing aberrant splicing mutations of mammalian genes. Gene 1994, 141, 171–177. [Google Scholar] [CrossRef]
- Burset, M.; Seledtsov, I.A.; Solovyev, V.V. Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res. 2000, 28, 4364–4375. [Google Scholar] [CrossRef]
- Baydakova, G.V.; Ilyushkina, A.A.; Moiseev, S.; Bychkov, I.O.; Nikitina, N.V.; Buruleva, T.A.; Zakharova, E.Y. α-Galactosidase A/lysoGb3 ratio as a potential marker for Fabry disease in females. Clin. Chim. Acta 2020, 501, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.H.; Lee, N.C.; Chiang, S.C.; Desnick, R.J.; Hwu, W.L. Fabry disease: Incidence of the common later-onset α-galactosidase A IVS4+919G→A mutation in Taiwanese newborns—Superiority of DNA-based to enzyme-based newborn screening for common mutations. Mol. Med. 2012, 18, 780–784. [Google Scholar] [CrossRef]
- Johnstone, B.; Kaiser, A.; Injeyan, M.C.; Sappleton, K.; Chitayat, D.; Stephens, D.; Shuman, C. The relationship between burnout and occupational stress in genetic counselors. J. Genet. Counsel. 2016, 25, 731–741. [Google Scholar] [CrossRef] [Green Version]
- Abramowicz, A.; Gos, M. Splicing mutations in human genetic disorders: Examples, detection, and confirmation. J. Appl. Genet. 2018, 59, 253–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varela, P.; Caldas, M.M.; Pesquero, J.B. Novel GLA mutation promotes intron inclusion leading to Fabry disease. Front. Genet. 2019, 10, 783. [Google Scholar] [CrossRef] [Green Version]
- Ishii, S.; Nakao, S.; Minamikawa-Tachino, R.; Desnick, R.J.; Fan, J.Q. Alternative splicing in the α-galactosidase A gene: Increased exon inclusion results in the Fabry cardiac phenotype. Am. J. Hum. Genet. 2002, 70, 994–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolfs, A.; Böttcher, T.; Zschiesche, M.; Morris, P.; Winchester, B.; Bauer, P.; Walter, U.; Mix, E.; Löhr, M.; Harzer, K.; et al. Prevalence of Fabry disease in patients with cryptogenic stroke: A prospective study. Lancet 2005, 366, 1794–1796. [Google Scholar] [CrossRef]
- Fancellu, L.; Borsini, W.; Romani, I.; Pirisi, A.; Deiana, G.A.; Sechi, E.; Doneddu, P.E.; Rassu, A.L.; Demurtas, R.; Scarabotto, A.; et al. Exploratory screening for Fabry’s disease in young adults with cerebrovascular disorders in northern Sardinia. BMC Neurol. 2015, 15, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, S.; Reguenga, C.; Oliveira, J.P. The modulatory effects of the polymorphisms in GLA 5’-untranslated region upon gene expression are cell-type specific. JIMD Rep. 2015, 23, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanthier, S.; Saposnik, G.; Lebovic, G.; Pope, K.; Selchen, D.; Moore, D.F.; Canadian Fabry Stroke Screening Initiative Study Group. Prevalence of Fabry disease and outcomes in young Canadian patients with cryptogenic ischemic cerebrovascular events. Stroke 2017, 48, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, N.; Hosomi, N.; Matsushima, H.; Nakamori, M.; Yagita, Y.; Yamawaki, T.; Torii, T.; Kitamura, T.; Sueda, Y.; Shimomura, R.; et al. Screening for Fabry disease in Japanese patients with young-onset stroke by measuring α-galactosidase A and globotriaosylsphingosine. J. Stroke Cerebrovasc. Dis. 2018, 27, 3563–3569. [Google Scholar] [CrossRef]
- Rolfs, A.; Fazekas, F.; Grittner, U.; Dichgans, M.; Martus, P.; Holzhausen, M.; Böttcher, T.; Heuschmann, P.U.; Tatlisumak, T.; Tanislav, C.; et al. Acute cerebrovascular disease in the young: The stroke in young Fabry patients study. Stroke 2013, 44, 340–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptista, M.V.; Ferreira, S.; Pinho-e-Melo, T.; Carvalho, M.; Cruz, V.T.; Carmona, C.; Silva, F.A.; Tuna, A.; Rodrigues, M.; Ferreira, C.; et al. Mutations of the GLA gene in young patients with stroke: The PORTYSTROKE study—Screening genetic conditions in Portuguese young stroke patients. Stroke 2010, 41, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Lukas, J.; Giese, A.K.; Markoff, A.; Grittner, U.; Kolodny, E.; Mascher, H.; Lackner, K.J.; Meyer, W.; Wree, P.; Saviouk, V.; et al. Functional characterisation of alpha-galactosidase a mutations as a basis for a new classification system in Fabry disease. PLoS Genet. 2013, 9, e1003632. [Google Scholar] [CrossRef] [Green Version]
- De Brabander, I.; Yperzeele, L.; Ceuterick-De Groote, C.; Brouns, R.; Baker, R.; Belachew, S.; Delbecq, J.; De Keulenaer, G.; Dethy, S.; Eyskens, F.; et al. Phenotypical characterization of α-galactosidase A gene mutations identified in a large Fabry disease screening program in stroke in the young. Clin. Neurol. Neurosurg. 2013, 115, 1088–1093. [Google Scholar] [CrossRef]
Cardiology | Nephrology | Neurology | Pediatrics | Total | |
---|---|---|---|---|---|
Males | (n = 1006) | (n = 1771) | (n = 624) | (n = 38) | (n = 3439) |
Median (IQR) age (years) | 64 (51–71) | 66 (56–74) | 54 (47–71) | 11 (9–13) | 64 (51–73) |
Clinics (n) | 59 | 47 | 43 | 13 | 162 |
Females | (n = 451) | (n = 1249) | (n = 492) | (n = 60) | (n = 2252) |
Median (IQR) age (years) | 67 (53–75) | 69 (61–77) | 66 (47–81) | 12 (9–14) | 68 (54–77) |
Clinics (n) | 74 | 57 | 57 | 26 | 214 |
Patient No. | Lyso-Gb3 Levels (ng/mL) | GLA Activity (nmol/h/mL) | GLA Variants | Age (Years) | Early-Onset Classic Manifestations | Manifestations | ||||
---|---|---|---|---|---|---|---|---|---|---|
DNA | Protein | Heart | Kidneys | CNS | ||||||
Males; Classic type | ||||||||||
Pediatrics | 1 1 | 190.2 | 0.4 | c.(202C>T) | p.Leu68Phe | 13 | Acroparesthesia Hypohidrosis | None | None | None |
2 1 | 172.2 | 0.3 | c.(254G>T) | p.Gly85Val | 9 | Acroparesthesia Hypohidrosis | None | None | None | |
3 | 230.1 | 0.3 | c.(658C>T) | p.Arg220* | 9 | Acroparesthesia Hypohidrosis | None | None | None | |
4 | 177.4 | 0.3 | c.1133G>T | p.Cys378Phe | 9 | Acroparesthesia Hypohidrosis | None | None | None | |
Males; Late-onset type | ||||||||||
Cardiology | 5 1 | 3.6 | 2.7 | c.(335G>A) | p.Arg112His | 61 | None | LVH | G5DA1 | None |
6 | 14.2 | 1.5 | c.547+4A>G r.486_547del | p.Gly163Leufs*2 | 74 | None | Arrhythmia LVH | G3a | None | |
7 1 | 15.6 | 1.1 | c.(902G>A) | p.Arg301Gln | 55 | None | LVH | None | None | |
8 1 | 14.5 | 1.0 | c.(935A>G) | p.Gln312Arg | 77 | None | LVH | None | None | |
Nephrology | 9 | 14.7 | 1.9 | c.44C>G | p.(Ala15Gly) | 66 | None | Arrhythmia LVH | G3A2 | None |
10 1 | 4.1 | 0.6 | c.(335G>A) | p.Arg112His | 42 | None | None | G2A3 | None | |
11 1 | 4.0 | 1.3 | c.1171A>G | p.(Lys391Glu) | 75 | None | None | G5DA2 | Stroke | |
Females; Classic type | ||||||||||
Cardiology | 12 | 29.5 | 1.9 | c.(281G>A) | p.Cys94Tyr | 71 | None | Arrhythmia LVH | G3a | Stroke |
13 1 | 21.8 | 3.2 | c.559_560del | p.(Met187Valfs*6) | 65 | Acroparesthesia Gastrointestinal symptoms | LVH | None | Stroke | |
14 1 | 24.2 | 1.6 | c.(659G>C) | p.Arg220Pro | 65 | Angiokeratoma Cornea verticillata | LVH | G3bA1 | Stroke | |
15 1 | 4.0 | 8.0 | c.691G>A | p.Asp231Asn | 63 | None | Arrhythmia Heart failure | None | None | |
Nephrology | 16 | 19.9 | 1.9 | c.334C>T | p.(Arg112Cys) | 44 | None | LVH | G2A3 | None |
17 1 | 15.0 | 2.6 | c.1244T>C | p.(Leu415Pro) | 32 | Acroparesthesia | LVH | G1A3 | None | |
Neurology | 18 1 | 135.0 | 0.8 | c.[788A>G];[0] | p.(Asn263Ser) | 27 | Acroparesthesia Hypohidrosis Angiokeratoma | Arrhythmia | G1A3 | None |
Females; Late-onset type | ||||||||||
Nephrology | 19 | 15.8 | 2.2 | c.1163T>A | p.(Leu388His) | 59 | None | LVH | G3aA3 | None |
20 1 | 3.3 | 2.6 | c.1208T>C | p.(Leu403Ser) | 53 | None | LVH | G5A3 | None |
Cardiology | Nephrology | Neurology | Pediatrics | Total | ||
---|---|---|---|---|---|---|
Males | Lyso-Gb3-positive patients, n/N (%) | 4/1006 (0.4) | 6/1771 (0.3) | 0/624 (0) | 4/38 (10.5) | 14/3439 (0.4) |
GLA variant, n/N (%) | 4/1006 (0.4) | 3/1771 (0.2) | 0/624 (0) | 4/38 (10.5) | 11/3439 (0.3) | |
Classic type, n | 0 | 0 | 0 | 4 | 4 | |
Late-onset type, n | 4 | 3 | 0 | 0 | 7 | |
Females | Lyso-Gb3-positive patients, n/N (%) | 10/451 (2.2) | 8/1249 (0.6) | 1/492 (0.2) | 0/60 (0) | 19/2252 (0.8) |
GLA variant, n/N (%) | 4/451 (0.9) | 4/1249 (0.3) | 1/492 (0.2) | 0/60 (0) | 9/2252 (0.4) | |
Classic type, n | 4 | 2 | 1 | 0 | 7 | |
Late-onset type, n | 0 | 2 | 0 | 0 | 2 |
Department | Patient No. | Lyso-Gb3 Levels (ng/mL) | GLA Activity (nmol/h/mL) | GLA Class 1 Variants | Age (years) | Early-Onset Classic Manifestations | Manifestations | ||
---|---|---|---|---|---|---|---|---|---|
Heart | Kidneys | CNS | |||||||
Male | |||||||||
Nephrology | 1 | 3.2 | 8.4 | None | 75 | None | None | G2A1 Lamellar body | None |
Females | |||||||||
Cardiology | 2 1 | 8.4 | 8.5 | None | 59 | None | Arrhythmia LVH Lamellar body | G5A3 Lamellar body | None |
3 1 | 18.5 | 10.9 | None | 67 | None | Arrhythmia LVH Lamellar body | None | None | |
Nephrology | 4 1 | 7.8 | 4.7 | None | 69 | None | Arrhythmia | G3aA3 Lamellar body | None |
5 | 5.6 | 5.9 | None | 66 | None | None | G3aA3 Lamellar body | None |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruyama, H.; Taguchi, A.; Mikame, M.; Izawa, A.; Morito, N.; Izaki, K.; Seto, T.; Onishi, A.; Sugiyama, H.; Sakai, N.; et al. Plasma Globotriaosylsphingosine and α-Galactosidase A Activity as a Combined Screening Biomarker for Fabry Disease in a Large Japanese Cohort. Curr. Issues Mol. Biol. 2021, 43, 389-404. https://doi.org/10.3390/cimb43010032
Maruyama H, Taguchi A, Mikame M, Izawa A, Morito N, Izaki K, Seto T, Onishi A, Sugiyama H, Sakai N, et al. Plasma Globotriaosylsphingosine and α-Galactosidase A Activity as a Combined Screening Biomarker for Fabry Disease in a Large Japanese Cohort. Current Issues in Molecular Biology. 2021; 43(1):389-404. https://doi.org/10.3390/cimb43010032
Chicago/Turabian StyleMaruyama, Hiroki, Atsumi Taguchi, Mariko Mikame, Atsushi Izawa, Naoki Morito, Kazufumi Izaki, Toshiyuki Seto, Akifumi Onishi, Hitoshi Sugiyama, Norio Sakai, and et al. 2021. "Plasma Globotriaosylsphingosine and α-Galactosidase A Activity as a Combined Screening Biomarker for Fabry Disease in a Large Japanese Cohort" Current Issues in Molecular Biology 43, no. 1: 389-404. https://doi.org/10.3390/cimb43010032
APA StyleMaruyama, H., Taguchi, A., Mikame, M., Izawa, A., Morito, N., Izaki, K., Seto, T., Onishi, A., Sugiyama, H., Sakai, N., Yamabe, K., Yokoyama, Y., Yamashita, S., Satoh, H., Toyoda, S., Hosojima, M., Ito, Y., Tazawa, R., & Ishii, S. (2021). Plasma Globotriaosylsphingosine and α-Galactosidase A Activity as a Combined Screening Biomarker for Fabry Disease in a Large Japanese Cohort. Current Issues in Molecular Biology, 43(1), 389-404. https://doi.org/10.3390/cimb43010032