Changes in the Biomarkers of Oxidative/Nitrosative Stress and Endothelial Dysfunction Are Associated with Cardiovascular Risk in Periodontitis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of CoQ10, Nitrotyrosine and ADMA Concentrations
2.2. PBMC Collection
2.3. Quantitative Studies of Gene Expression in PBMC
2.4. Power and Sample Size Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nabel, E.G. Cardiovascular disease. N. Engl. J. Med. 2003, 349, 60–72. [Google Scholar] [CrossRef]
- Li, C.; Lv, Z.; Shi, Z.; Zhu, Y.; Wu, Y.; Li, L.; Iheozor-Ejiofor, Z. Periodontal therapy for the management of cardiovascular disease in patients with chronic periodontitis. Cochrane Database Syst. Rev. 2017, 11, CD009197. [Google Scholar] [CrossRef] [PubMed]
- Kolltveit, K.M.; Eriksen, H.M. Is the observed association between periodontitis and atherosclerosis causal? Eur. J. Oral Sci. 2001, 109, 2–7. [Google Scholar] [CrossRef]
- Young, J.L.; Libby, P.; Schonbeck, U. Cytokines in the pathogenesis of atherosclerosis. Thromb. Haemost. 2002, 88, 554–567. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Andrukhov, O.; Rausch-Fan, X. Oxidative Stress and Antioxidant System in Periodontitis. Front. Physiol. 2017, 8, 910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, M.; Siddiqui, M.R.; Tran, K.; Reddy, S.P.; Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 2014, 20, 1126–1167. [Google Scholar] [CrossRef] [Green Version]
- Paul, O.; Arora, P.; Mayer, M.; Chatterjee, S. Inflammation in Periodontal Disease: Possible Link to Vascular Disease. Front. Physiol. 2020, 11, 609614. [Google Scholar] [CrossRef]
- Garrido-Maraver, J.; Cordero, M.D.; Oropesa-Avila, M.; Fernandez Vega, A.; de la Mata, M.; Delgado Pavon, A.; de Miguel, M.; Perez Calero, C.; Villanueva Paz, M.; Cotan, D.; et al. Coenzyme q10 therapy. Mol. Syndromol. 2014, 5, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Sobirin, M.A.; Herry, Y.; Sofia, S.N.; Uddin, I.; Rifqi, S.; Tsutsui, H. Effects of coenzyme Q10 supplementation on diastolic function in patients with heart failure with preserved ejection fraction. Drug Discov. Ther. 2019, 13, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Thomson, L. 3-nitrotyrosine modified proteins in atherosclerosis. Dis. Markers 2015, 2015, 708282. [Google Scholar] [CrossRef]
- Li, X.; Sun, X.; Zhang, X.; Mao, Y.; Ji, Y.; Shi, L.; Cai, W.; Wang, P.; Wu, G.; Gan, X.; et al. Enhanced Oxidative Damage and Nrf2 Downregulation Contribute to the Aggravation of Periodontitis by Diabetes Mellitus. Oxid. Med. Cell. Longev. 2018, 2018, 9421019. [Google Scholar] [CrossRef]
- Wells, S.M.; Holian, A. Asymmetric dimethylarginine induces oxidative and nitrosative stress in murine lung epithelial cells. Am. J. Respir. Cell Mol. Biol. 2007, 36, 520–528. [Google Scholar] [CrossRef] [Green Version]
- Isola, G.; Alibrandi, A.; Curro, M.; Matarese, M.; Ricca, S.; Matarese, G.; Ientile, R.; Kocher, T. Evaluation of salivary and serum ADMA levels in patients with periodontal and cardiovascular disease as subclinical marker of cardiovascular risk. J. Periodontol. 2020. [Google Scholar] [CrossRef]
- Naik, E.; Dixit, V.M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production. J. Exp. Med. 2011, 208, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Abderrazak, A.; Syrovets, T.; Couchie, D.; El Hadri, K.; Friguet, B.; Simmet, T.; Rouis, M. NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biol. 2015, 4, 296–307. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, Z.; Cai, L.; Lin, L.; Liu, J.; Cheng, J. NLRP3 Inflammasome and Its Central Role in the Cardiovascular Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 4293206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambardella, J.; Khondkar, W.; Morelli, M.B.; Wang, X.; Santulli, G.; Trimarco, V. Arginine and Endothelial Function. Biomedicines 2020, 8, 277. [Google Scholar] [CrossRef]
- Orru, G.; Storari, M.; Scano, A.; Piras, V.; Taibi, R.; Viscuso, D. Obstructive Sleep Apnea, oxidative stress, inflammation and endothelial dysfunction-An overview of predictive laboratory biomarkers. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6939–6948. [Google Scholar] [PubMed]
- Perez-Torres, I.; Soto, M.E.; Castrejon-Tellez, V.; Rubio-Ruiz, M.E.; Manzano Pech, L.; Guarner-Lans, V. Oxidative, Reductive, and Nitrosative Stress Effects on Epigenetics and on Posttranslational Modification of Enzymes in Cardiometabolic Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 8819719. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Mariscal, F.M.; Arenas-de Larriva, A.P.; Limia-Perez, L.; Romero-Cabrera, J.L.; Yubero-Serrano, E.M.; Lopez-Miranda, J. Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int. J. Mol. Sci. 2020, 21, 7870. [Google Scholar] [CrossRef]
- Zozina, V.I.; Covantev, S.; Goroshko, O.A.; Krasnykh, L.M.; Kukes, V.G. Coenzyme Q10 in Cardiovascular and Metabolic Diseases: Current State of the Problem. Curr. Cardiol. Rev. 2018, 14, 164–174. [Google Scholar] [CrossRef]
- Arenas-Jal, M.; Sune-Negre, J.M.; Garcia-Montoya, E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr. Rev. Food Sci. Food Saf. 2020, 19, 574–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco Mdo, C.; Fortes, Z.B.; Akamine, E.H.; Kawamoto, E.M.; Scavone, C.; de Britto, L.R.; Muscara, M.N.; Teixeira, S.A.; Tostes, R.C.; Carvalho, M.H.; et al. Tetrahydrobiopterin improves endothelial dysfunction and vascular oxidative stress in microvessels of intrauterine undernourished rats. J. Physiol. 2004, 558, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Campolo, N.; Issoglio, F.M.; Estrin, D.A.; Bartesaghi, S.; Radi, R. 3-Nitrotyrosine and related derivatives in proteins: Precursors, radical intermediates and impact in function. Essays Biochem. 2020, 64, 111–133. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daiber, A.; Munzel, T. Increased circulating levels of 3-nitrotyrosine autoantibodies: Marker for or maker of cardiovascular disease? Circulation 2012, 126, 2371–2373. [Google Scholar] [CrossRef] [Green Version]
- Roumeliotis, S.; Mallamaci, F.; Zoccali, C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J. Clin. Med. 2020, 9, 2359. [Google Scholar] [CrossRef]
- Sibal, L.; Agarwal, S.C.; Home, P.D.; Boger, R.H. The Role of Asymmetric Dimethylarginine (ADMA) in Endothelial Dysfunction and Cardiovascular Disease. Curr. Cardiol. Rev. 2010, 6, 82–90. [Google Scholar] [CrossRef]
- Flammer, A.J.; Anderson, T.; Celermajer, D.S.; Creager, M.A.; Deanfield, J.; Ganz, P.; Hamburg, N.M.; Luscher, T.F.; Shechter, M.; Taddei, S.; et al. The assessment of endothelial function: From research into clinical practice. Circulation 2012, 126, 753–767. [Google Scholar] [CrossRef]
- Mason, J.C.; Libby, P. Cardiovascular disease in patients with chronic inflammation: Mechanisms underlying premature cardiovascular events in rheumatologic conditions. Eur. Heart J. 2015, 36, 482–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willerson, J.T.; Ridker, P.M. Inflammation as a cardiovascular risk factor. Circulation 2004, 109, II2–II10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berezin, A.E.; Berezin, A.A. Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. Dis. Markers 2020, 2020, 1215802. [Google Scholar] [CrossRef] [PubMed]
- Poggesi, A.; Pasi, M.; Pescini, F.; Pantoni, L.; Inzitari, D. Circulating biologic markers of endothelial dysfunction in cerebral small vessel disease: A review. J. Cereb. Blood Flow Metab. 2016, 36, 72–94. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, S.; Xiao, Y.; Zhang, W.; Wu, S.; Qin, T.; Yue, Y.; Qian, W.; Li, L. NLRP3 Inflammasome and Inflammatory Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 4063562. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, X.; Liao, N.; Mi, L.; Peng, Y.; Liu, B.; Zhang, S.; Wen, F. Enhanced Expression of NLRP3 Inflammasome-Related Inflammation in Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2018, 59, 978–985. [Google Scholar] [CrossRef]
- Tain, Y.L.; Huang, L.T. Restoration of asymmetric dimethylarginine-nitric oxide balance to prevent the development of hypertension. Int. J. Mol. Sci. 2014, 15, 11773–11782. [Google Scholar] [CrossRef] [Green Version]
Gene | Primer | Sequence 5′ → 3′ |
---|---|---|
β-ACT | forward | TGGTTACAGGAAGTCCCTTGCC |
reverse | ATGCTATCACCTCCCCTGTGTG | |
CASP1 | forward | GAACAAGGAAGAGATGGAGAA |
reverse | TCGGAATAACGGAGTCAATC | |
NLRP3 | forward | GAAGACACCAGGACAATG |
reverse | GTCACCAAGAGGAACATC | |
TNF-α | forward | GTGAGGAGGACGAACATC |
reverse | GAGCCAGAAGAGGTTGAG |
Controls (N = 19) | PT (N = 15) | CHD (N = 15) | PT + CHD (N = 14) | |
---|---|---|---|---|
Age (years) | 58.8 ± 11.6 | 62.8 ± 12.4 | 63.8 ± 9.7 | 68.4 ± 8.8 |
Sex—female, n (%) | 7 (36.8) | 9 (60) | 5 (33.3) | 9 (64.3) |
Body mass index (kg/m2) | 24.6 ± 2.4 | 24.9 ± 2.2 | 25.8 ± 2.1 | 25.5 ± 2.3 |
Fasting glucose (mg/dl) | 112.4 ± 5.5 | 116.7 ± 7.4 | 118.4 ± 7.6 | 121.4 ± 8.5 |
Current smokers, n (%) | 3 (15.8) | 2 (13.3) | 3 (20) | 3 (21.5) |
Comorbidities | ||||
Diabetes, n (%) | - | 3 (20) ** | 3 (20) ** | 2 (14.3) ** |
Previous CVD | ||||
Atrial fibrillation, n (%) | - | - | 4 (26.7) **,§§ | 6 (42.7) **,§§ |
Angina pectoris, n (%) | - | - | 10 (66.7) **,§§ | 11 (78.6) **,§§ |
Stroke, n (%) | - | - | 7 (46.7) **,§§ | 7 (50) **,§§ |
Heart failure, n (%) | - | - | 7 (46.7) **,§§ | 6 (42.7) **,§§ |
Drug treatment of CVD | ||||
Antihypertensive, n (%) | - | - | 13 (86.7) **,§§ | 12 (85.7) **,§§ |
Statins, n (%) | - | - | 9 (60) **,§§ | 7 (50) **,§§ |
Low-dose aspirin, n (%) | - | - | 8 (53.3) **,§§ | 10 (71.4) **,§§ |
Beta blockers, n (%) | - | - | 8 (53.3) **,§§ | 11 (78.6) **,§§ |
hs-CRP (mg/L) | 2.6 ± 0.4 | 3.5 ± 0.6 * | 7.1 ± 1.1 ***,§§§ | 6.7 ± 0.9 ***,§§§ |
VES | 8.1 ± 1.6 | 13.5 ± 2.8 *** | 11.7 ± 4.9 * | 14 ± 3.8 *** |
Total cholesterol (mg/dl) | 183 ± 6.1 | 189 ± 6.7 | 204 ± 6.5 | 201 ± 6.8 * |
Triglycerides (mg/dl) | 184 ± 5.5 | 191 ± 5.9 | 195 ± 6.2 | 196 ± 6.6 |
Controls (N = 19) | PT (N = 15) | CHD (N = 15) | PT + CHD (N = 14) | |
---|---|---|---|---|
N° of teeth | 25 ± 0.9 | 18 ± 1.4 *** | 22 ± 2.3 ***,§§§ | 17 ± 2.4 ***,### |
CAL (mm) | 1.3 ± 0.4 | 3.7 ± 0.3 *** | 2.4 ± 0.5 ***,§§§ | 4.3 ± 0.6 ***,§,### |
PD (mm) | 1.4 ± 0.3 | 4.6 ± 0.5 *** | 2.5 ± 0.5 ***,§§§ | 4.6 ± 0.7 ***,### |
BOP (%) | 9.1 ± 2.3 | 48.4 ± 5.2 *** | 17.2 ± 2.7 ***,§§§ | 53.7 ± 5.7 ***,§§§,### |
PI (%) | 10.4 ± 1.5 | 35.6 ± 1.6 *** | 15.1 ± 1.7 ***,§§§ | 33.0 ± 2.9 ***,### |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferlazzo, N.; Currò, M.; Isola, G.; Maggio, S.; Bertuccio, M.P.; Trovato-Salinaro, A.; Matarese, G.; Alibrandi, A.; Caccamo, D.; Ientile, R. Changes in the Biomarkers of Oxidative/Nitrosative Stress and Endothelial Dysfunction Are Associated with Cardiovascular Risk in Periodontitis Patients. Curr. Issues Mol. Biol. 2021, 43, 704-715. https://doi.org/10.3390/cimb43020051
Ferlazzo N, Currò M, Isola G, Maggio S, Bertuccio MP, Trovato-Salinaro A, Matarese G, Alibrandi A, Caccamo D, Ientile R. Changes in the Biomarkers of Oxidative/Nitrosative Stress and Endothelial Dysfunction Are Associated with Cardiovascular Risk in Periodontitis Patients. Current Issues in Molecular Biology. 2021; 43(2):704-715. https://doi.org/10.3390/cimb43020051
Chicago/Turabian StyleFerlazzo, Nadia, Monica Currò, Gaetano Isola, Silvia Maggio, Maria Paola Bertuccio, Angela Trovato-Salinaro, Giovanni Matarese, Angela Alibrandi, Daniela Caccamo, and Riccardo Ientile. 2021. "Changes in the Biomarkers of Oxidative/Nitrosative Stress and Endothelial Dysfunction Are Associated with Cardiovascular Risk in Periodontitis Patients" Current Issues in Molecular Biology 43, no. 2: 704-715. https://doi.org/10.3390/cimb43020051
APA StyleFerlazzo, N., Currò, M., Isola, G., Maggio, S., Bertuccio, M. P., Trovato-Salinaro, A., Matarese, G., Alibrandi, A., Caccamo, D., & Ientile, R. (2021). Changes in the Biomarkers of Oxidative/Nitrosative Stress and Endothelial Dysfunction Are Associated with Cardiovascular Risk in Periodontitis Patients. Current Issues in Molecular Biology, 43(2), 704-715. https://doi.org/10.3390/cimb43020051