Assessment and Clinical Utility of a Non-Next-Generation Sequencing-Based Non-Invasive Prenatal Testing Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study Population and Clinical Evaluation
2.3. Sample Collection and Preparation
2.4. Test Method
2.5. Data Analysis and Sample Classification
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carothers, A.D.; Hecht, C.A.; Hook, E. International variation in reported livebirth prevalence rates of Down syndrome, adjusted for maternal age. J. Med. Genet. 1999, 36, 386–393. [Google Scholar]
- Huete-García, A.; Otaola-Barranquero, M. Demographic Assessment of Down Syndrome: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 352. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.M.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 1997, 350, 485–487. [Google Scholar] [CrossRef]
- Dondorp, W.; de Wert, G.; Bombard, Y.; Bianchi, D.; Bergmann, C.; Borry, P.; Chitty, L.; Fellmann, F.; Forzano, F.; Hall, A.; et al. Non-invasive prenatal testing for aneuploidy and beyond: Challenges of responsible innovation in prenatal screening. Eur. J. Hum. Genet. 2015, 23, 1592, Erratum in 2015, 23, 1438–1450. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.M.; Accurti, V.; Santacruz, B.; Plana, M.N.; Nicolaides, K.H. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: Updated meta-analysis. Ultrasound Obstet. Gynecol. 2017, 50, 302–314, Update in 2019, 53, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Ayres, A.C.; Whitty, J.A.; Ellwood, D.A. A cost-effectiveness analysis comparing different strategies to implement noninvasive prenatal testing into a Down syndrome screening program. Aust. N. Z. J. Obstet. Gynaecol. 2014, 54, 412–417. [Google Scholar] [CrossRef]
- Dahl, F.; Ericsson, O.; Karlberg, O.; Karlsson, F.; Howell, M.; Persson, F.; Roos, F.; Stenberg, J.; Ahola, T.; Alftren, I.; et al. Imaging single DNA molecules for high precision NIPT. Sci. Rep. 2018, 8, 4549. [Google Scholar] [CrossRef]
- Ericsson, O.; Ahola, T.; Dahl, F.; Karlsson, F.; Persson, F.; Karlberg, O.; Roos, F.; Alftren, I.; Andersson, B.; Barkenas, E.; et al. Clinical validation of a novel automated cell-free DNA screening assay for trisomies 21, 13, and 18 in maternal plasma. Prenat. Diagn. 2019, 39, 1011–1015. [Google Scholar] [CrossRef]
- Persson, F.; Prensky, L. Variability of “Reported Fetal Fraction” in Noninvasive Prenatal Screening (NIPS). Clin. Chem. 2021, 67, 863–866. [Google Scholar] [CrossRef]
- Huang, T.; Gibbons, C.; Rashid, S.; Priston, M.K.; Bedford, H.M.; Mak-Tam, E.; Meschino, W.S. Prenatal screening for trisomy 21: A comparative performance and cost analysis of different screening strategies. BMC Pregnancy Childbirth 2020, 20, 713. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics; Committee on Genetics; Society for Maternal-Fetal Medicine. Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin, Number 226. Obstet. Gynecol. 2020, 136, e48–e69. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, F.; Ahola, T.; Dahlberg, J.; Prensky, L.; Moilanen, H.; Spalding, H. Evaluation of repeat testing of a non-sequencing based NIPT test on a Finnish general-risk population. Acta Obstet. Gynecol. Scand. 2021, 11. [Google Scholar] [CrossRef]
- Chiu, R.W.; Akolekar, R.; Zheng, Y.W.; Leung, T.Y.; Sun, H.; Chan, K.C.; Lun, F.M.; Go, A.T.; Lau, E.T.; To, W.W.; et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: Large scale validity study. BMJ 2011, 342, c7401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrich, M.; Deciu, C.; Zwiefelhofer, T.; Tynan, J.A.; Cagasan, L.; Tim, R.; Lu, V.; McCullough, R.; McCarthy, E.; Nygren, A.O.; et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood: A study in a clinical setting. Am. J. Obstet. Gynecol. 2011, 204, 205.e1–205.e11. [Google Scholar] [CrossRef] [PubMed]
- Palomaki, G.E.; Kloza, E.M.; Lambert-Messerlian, G.M.; Haddow, J.E.; Neveux, L.M.; Ehrich, M.; van den Boom, D.; Bombard, A.T.; Deciu, C.; Grody, W.W.; et al. DNA sequencing of maternal plasma to detect Down syndrome: An international clinical validation study. Genet. Med. 2011, 13, 913–920. [Google Scholar] [CrossRef]
- Sehnert, A.J.; Rhees, B.; Comstock, D.; de Feo, E.; Heilek, G.; Burke, J.; Rava, R.P. Optimal detection of fetal chromosomal abnormalities by massively parallel DNA sequencing of cell-free fetal DNA from maternal blood. Clin. Chem. 2011, 57, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Sparks, A.B.; Struble, C.A.; Wang, E.T.; Song, K.; Oliphant, A. Non-invasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: Evaluation for trisomy 21 and trisomy 18. Am. J. Obstet. Gynecol. 2012, 206, 319.e1–319.e9. [Google Scholar] [CrossRef]
- Ashoor, G.; Syngelaki, A.; Wagner, M.; Birdir, C.; Nicholaides, K.H. Chromosome-selective sequencing of maternal plasma cell-free DNA for first-trimester detection of trisomy 21 and trisomy 18. Am. J. Obstet. Gynecol. 2012, 206, 322.e1–322.e5. [Google Scholar] [CrossRef]
- Norton, M.E.; Brar, H.; Weiss, J.; Karimi, A.; Laurent, L.C.; Caughey, A.B.; Rodriguez, M.H.; Williams, J., 3rd; Mitchell, M.E.; Adair, C.D.; et al. Non-Invasive Chromosomal Evaluation (NICE) Study: Results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18. Am. J. Obstet. Gynecol. 2012, 207, 137.e1–137.e8. [Google Scholar] [CrossRef]
- Bianchi, D.W.; Platt, L.D.; Goldberg, J.D.; Abuhamad, A.Z.; Sehnert, A.J.; Rava, R.P.; MatErnal BLood IS Source to Accurately diagnose fetal aneuploidy (MELISSA) Study Group. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet. Gynecol. 2012, 119, 890–901. [Google Scholar] [CrossRef]
- Nicolaides, K.H.; Syngelaki, A.; Ashoor, G.; Birdir, C.; Touzet, G. Noninvasive prenatal testing for fetal trisomies in a routinely screened first-trimester population. Am. J. Obstet. Gynecol. 2012, 207, 374.e1–374.e6. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, F.; Langlois, S.; Johnson, J.A.; Gekas, J.; Bujold, E.; Audibert, F.; Walker, M.; Giroux, S.; Caron, A.; Clément, V.; et al. Prospective head-to-head comparison of accuracy of two sequencing platforms for screening for fetal aneuploidy by cell-free DNA: The PEGASUS study. Eur. J. Hum. Genet. 2019, 27, 1701–1715. [Google Scholar] [CrossRef] [PubMed]
- Gregg, A.R.; Skotko, B.G.; Benkendorf, J.L.; Monaghan, K.G.; Bajaj, K.; Best, R.G.; Klugman, S.; Watson, M.S. Noninvasive prenatal screening for fetal aneuploidy, 2016 update: A position statement of the American College of Medical Genetics and Genomics. Genet. Med. 2016, 18, 1056–1065. [Google Scholar] [CrossRef] [Green Version]
- Chetty, S.; Garabedian, M.J.; Norton, M.E. Uptake of noninvasive prenatal testing (NIPT) in women following positive aneuploidy screening. Prenat. Diagn. 2013, 33, 542–546. [Google Scholar] [CrossRef]
- Srebniak, M.I.; Diderich, K.E.; Noomen, P.; Dijkman, A.; de Vries, F.A.T.; van Opstal, D. Abnormal non-invasive prenatal test results concordant with karyotype of cytotrophoblast but not reflecting abnormal fetal karyotype. Ultrasound Obstet. Gynecol. 2014, 44, 109–111. [Google Scholar] [CrossRef] [Green Version]
- Grati, F.R.; Malvestiti, F.; Ferreira, J.C.; Bajaj, K.; Gaetani, E.; Agrati, C.; Grimi, B.; Dulcetti, F.; Ruggeri, A.M.; De Toffol, S.; et al. Fetoplacental mosaicism: Potential implications for false-positive and false-negative noninvasive prenatal screening results. Genet. Med. 2014, 16, 620–624. [Google Scholar] [CrossRef] [Green Version]
- Hall, A.L.; Drendel, H.M.; Verbrugge, J.L.; Reese, A.M.; Schumacher, K.L.; Griffith, C.B.; Weaver, D.D.; Abernathy, M.P.; Litton, C.G.; Vance, G.H. Positive cell-free fetal DNA testing for trisomy 13 reveals confined placental mosaicism. Genet. Med. 2013, 15, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Grömminger, S.; Yagmur, E.; Erkan, S.; Nagy, S.; Schöck, U.; Bonnet, J.; Smerdka, P.; Ehrich, M.; Wegner, R.D.; Hofmann, W.; et al. Fetal Aneuploidy Detection by Cell-Free DNA Sequencing for Multiple Pregnancies and Quality Issues with Vanishing Twins. J. Clin. Med. 2014, 3, 679–692. [Google Scholar] [CrossRef]
- Curnow, K.J.; Wilkins-Haug, L.; Ryan, A.; Kırkızlar, E.; Stosic, M.; Hall, M.P.; Sigurjonsson, S.; Demko, Z.; Rabinowitz, M.; Gross, S.J. Detection of triploid, molar, and vanishing twin pregnancies by a single-nucleotide polymorphism-based noninvasive prenatal test. Am. J. Obstet Gynecol. 2015, 212, e1–e9. [Google Scholar] [CrossRef] [Green Version]
- Osborne, C.M.; Hardisty, E.; Devers, P.; Kaiser-Rogers, K.; Hayden, M.A.; Goodnight, W.; Vora, N.L. Discordant noninvasive prenatal testing results in a patient subsequently diagnosed with metastatic disease. Prenat. Diagn. 2013, 33, 609–611. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, L.; Zhang, H.; Jiang, F.; Hu, H.; Chen, F.; Jiang, H.; Mu, F.; Zhao, L.; Liang, Z.; et al. Noninvasive prenatal genetic testing for fetal aneuploidy detects maternal trisomy X. Prenat. Diagn. 2012, 32, 1114–1116. [Google Scholar] [CrossRef]
- Hartwig, T.S.; Ambye, L.; Sørensen, S.; Jørgensen, F.S. Discordant non-invasive prenatal testing (NIPT)—A systematic review. Prenat. Diagn. 2017, 37, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.W.; Zhou, Q.; Zhang, B.; Yin, T.; Yu, B.; Wang, L. Lower detectability of non-invasive prenatal testing compared to prenatal diagnosis in high-risk pregnant women. Ann. Transl. Med. 2019, 7, 319. [Google Scholar] [CrossRef]
- VeriSeq NIPT Solution Package Insert (1000000001856 v07) (illumina.com). Available online: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/dx/veriseq-nipt-solution/veriseq-nipt-sample-prep-package-insert-ceivd-1000000001856-07.pdf (accessed on 20 May 2021).
- Hancock, S.; Ben-Shachar, R.; Adusei, C.; Oyolu, C.B.; Evans, E.A.; Kang, H.P.; Haverty, C.; Muzzey, D. Clinical Experience across the fetal-fraction spectrum of a non-invasive prenatal screening approach with low test-failure rate. Ultrasound Obstet. Gynecol. 2020, 56, 422–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomaki, G.; Deciu, C.; Kloza, E.M.; Lambert-Messerlian, G.M.; Haddow, J.E.; Neveux, L.M.; Ehrich, M.; van den Boom, D.; Bombard, A.T.; Grody, W.W. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: An international collaborative study. Genet. Med. 2012, 14, 296–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Values |
---|---|
Euploid subjects | 817 |
T21 samples | 19 (10 pregnant samples, 9 reference materials) |
T18 samples | 11 (3 pregnant sample, 8 reference materials) |
T13 samples | 9 (1 pregnant sample, 8 reference materials) |
Maternal age, median (min-max) | 32 (20 years–46 years) |
Gestational age, median (min-max) | 12 weeks 5 days (10 weeks–34 weeks) |
First pass no calls | 8 |
. | Trisomy 21 | Trisomy 18 | Trisomy 13 |
---|---|---|---|
Total subjects | 408 + 214 + 234 = 856 | 408 + 214 + 234 = 856 | 408 + 214 + 234 = 856 |
No calls: | 8 (no call rate: 0.93%, with unrepeated samples) | ||
Without no calls: | 848 | 848 | 848 |
True positives † | 7(5) + 4(0) + 8(4) = 19 | 7(6) + 2(0) + 2(2) = 11 | 6(6) + 1(0) + 2(2) = 9 |
False positives | 2 + 0 + 0 = 2 | 4 + 0 + 0 = 4 | 1 + 0 + 1 = 2 |
True negatives | 827 | 833 | 837 |
False negatives | 0 | 0 | 0 |
Sensitivity (95% CI) | 100.00% (82.35% to 100.00%) | 100.00% (71.51% to 100.00%) | 100.00% (66.37% to 100.00%) |
Specificity (95% CI) | 99.76% (99.13% to 99.97%) | 99.52% (98.78% to 99.87%) | 99.76% (99.14% to 99.97%) |
Sweden | Malaysia | USA | ||||||
---|---|---|---|---|---|---|---|---|
391 | 214 | 234 | ||||||
Females | Males | Females | Males | Females | Males | |||
Total subjects | 166 | 225 | Total subjects | 94 | 120 | Total subjects | 101 | 133 |
No calls | 6 | No calls | 2 | No calls | 0 | |||
Total subjects (w/o no calls) | 164 | 221 | Total subjects (w/o no calls) | 92 | 120 | Total subjects (w/o no calls) | 101 | 133 |
Correct classification | 162 | 220 | Correct classification | 92 | 120 | Correct classification | 98 | 129 |
Incorrect classification | 2 | 1 | Incorrect classification | 0 | 0 | Incorrect classification | 3 | 4 |
Females | Males | TOTAL | Performance Criteria | Females | Males | TOTAL | ||
Total subjects | 361 | 478 | 839 | Accuracy | 98.79% | 98.79% | 98.79% | |
No calls excluded: | 357 | 474 | 831 | |||||
Correct classification | 352 | 469 | 821 | |||||
Incorrect classification | 5 | 5 | 10 |
NGS NIPT [5,15,22,34,35,36] | Vanadis [8] * | |
---|---|---|
No call results | 0.7–6.6% | 0.1–0.9% |
Sensitivity (21) | 98.6–>99.9% | >99.9% |
Sensitivity (18) | 90–>99.9% | 89–>99.9% |
Sensitivity (13) | 91.7–>99.9% | >99.9% |
Specificity (21) | 99.5–99.9% | 99.8–>99.9% |
Specificity (18) | 99.7–>99.9% | 99.5% |
Specificity (13) | 99.0–99.8% | 99.8–>99.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gormus, U.; Chaubey, A.; Shenoy, S.; Wong, Y.W.; Chan, L.Y.; Choo, B.P.; Oraha, L.; Gousseva, A.; Persson, F.; Prensky, L.; et al. Assessment and Clinical Utility of a Non-Next-Generation Sequencing-Based Non-Invasive Prenatal Testing Technology. Curr. Issues Mol. Biol. 2021, 43, 958-964. https://doi.org/10.3390/cimb43020068
Gormus U, Chaubey A, Shenoy S, Wong YW, Chan LY, Choo BP, Oraha L, Gousseva A, Persson F, Prensky L, et al. Assessment and Clinical Utility of a Non-Next-Generation Sequencing-Based Non-Invasive Prenatal Testing Technology. Current Issues in Molecular Biology. 2021; 43(2):958-964. https://doi.org/10.3390/cimb43020068
Chicago/Turabian StyleGormus, Uzay, Alka Chaubey, Suresh Shenoy, Yong Wee Wong, Lee Yin Chan, Bao Ping Choo, Liza Oraha, Anna Gousseva, Fredrik Persson, Lawrence Prensky, and et al. 2021. "Assessment and Clinical Utility of a Non-Next-Generation Sequencing-Based Non-Invasive Prenatal Testing Technology" Current Issues in Molecular Biology 43, no. 2: 958-964. https://doi.org/10.3390/cimb43020068
APA StyleGormus, U., Chaubey, A., Shenoy, S., Wong, Y. W., Chan, L. Y., Choo, B. P., Oraha, L., Gousseva, A., Persson, F., Prensky, L., Chin, E., & Hegde, M. (2021). Assessment and Clinical Utility of a Non-Next-Generation Sequencing-Based Non-Invasive Prenatal Testing Technology. Current Issues in Molecular Biology, 43(2), 958-964. https://doi.org/10.3390/cimb43020068