Clinical Implications of MiR128, Angiotensin I Converting Enzyme and Vascular Endothelial Growth Factor Gene Abnormalities and Their Association with T2D
Abstract
:1. Introduction
2. Material Methods
2.1. Study Population, Inclusion and Exclusion Criteria
2.2. Sample Collection and Genomic DNA Extraction
2.3. Genotyping of VEGF rs699947C/A and miR-128a rs11888095 C/T by Amplification Refractory Mutation System PCR (ARMS-PCR)
2.3.1. ARMS-PCR Programming
2.3.2. Gel Electrophoresis for ARMS-PCR Products
2.4. Genotyping of VEGF I/D and ACE I/D rs4646994 by Mutation Specific PCR (MSP)
2.4.1. MSP Programming
2.4.2. Gel Electrophoresis for MSP Products
2.5. Statistical Analysis
3. Results
3.1. Genotypes Distribution of the Gene Polymorphisms
3.2. The Association of the VEGF rs699947 C/A SNP with T2D
3.3. The Association of VEGF-2549 I/D Polymorphism with T2D
3.4. Association of ACE I/D rs4646994 Polymorphism with T2D Patients
3.5. Association of miR128 rs11888095 C/T SNP with T2D Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexovic, M.; Urban, P.L.; Tabani, H.; Sabo, J. Recent advances in robotic protein sample preparation for clinical analysis and other biomedical applications. Clin. Chim. Acta 2020, 507, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.P.; Treit, P.V.; Geyer, P.E.; Omenn, G.S.; Mann, M. Ethical Principles, Constraints and Opportunities in Clinical Proteomics. Mol. Cell. Proteom. 2021, 20, 100046. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Alswaina, N. Awareness of diabetic retinopathy among patients with type 2 diabetes mellitus in Qassim, Saudi Arabia. J. Fam. Med. Prim. Care 2021, 10, 1183. [Google Scholar] [CrossRef] [PubMed]
- Roep, B.O.; Thomaidou, S.; van Tienhoven, R.; Zaldumbide, A. Type 1 diabetes mellitus as a disease of the beta-cell (do not blame the immune system?). Nat. Rev. Endocrinol. 2021, 17, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Newsholme, P.; Keane, K.N.; Carlessi, R.; Cruzat, V. Oxidative stress pathways in pancreatic beta-cells and insulin-sensitive cells and tissues: Importance to cell metabolism, function, and dysfunction. Am. J. Physiol. Cell Physiol. 2019, 317, C420–C433. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martin, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef]
- Davegardh, C.; Garcia-Calzon, S.; Bacos, K.; Ling, C. DNA methylation in the pathogenesis of type 2 diabetes in humans. Mol. Metab. 2018, 14, 12–25. [Google Scholar] [CrossRef]
- Elfaki, I.; Mir, R.; Abu-Duhier, F.; Jha, C.; Al-Alawy, A.; Babakr, A.; Habib, S. Analysis of the Potential Association of Drug-Metabolizing Enzymes CYP2C9*3 and CYP2C19*3 Gene Variations with Type 2 Diabetes: A Case-Control Study. Curr. Drug Metab. 2020, 21, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Elfaki, I.; Mir, R.; Almutairi, F.M.; Duhier, F.M.A. Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac. J. Cancer Prev. 2018, 19, 2057–2070. [Google Scholar] [PubMed]
- Jha, C.K.; Mir, R.; Elfaki, I.; Javid, J.; Babakr, A.T.; Banu, S.; Chahal, S.M.S. Evaluation of the Association of Omentin 1 rs2274907 A>T and rs2274908 G>A Gene Polymorphisms with Coronary Artery Disease in Indian Population: A Case Control Study. J. Pers. Med. 2019, 9, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elfaki, I.; Mir, R.; Abu-Duhier, F.M.; Khan, R.; Sakran, M. Phosphatidylinositol 3-kinase Glu545Lys and His1047Tyr Mutations are not Associated with T2D. Curr. Diabetes Rev. 2020, 16, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Elfaki, I.; Mir, R.; Mir, M.M.; AbuDuhier, F.M.; Babakr, A.T.; Barnawi, J. Potential Impact of MicroRNA Gene Polymorphisms in the Pathogenesis of Diabetes and Atherosclerotic Cardiovascular Disease. J. Pers. Med. 2019, 9, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir, R.; Elfaki, I.; Abu-Duhier, F.; Alotaibi, M.; Alalawy, A.; Barnawi, J.; Babakr, A.; Mir, M.; Mirghani, H.; Hamadi, A.; et al. Molecular Determination of mirRNA-126 rs4636297, Phosphoinositide-3-Kinase Regulatory Subunit 1-Gene Variability rs7713645, rs706713 (Tyr73Tyr), rs3730089 (Met326Ile) and Their Association with Susceptibility to T2D. J. Pers. Med. 2021, 11, 861. [Google Scholar] [CrossRef]
- Elfaki, I.; Almutairi, F.; Mir, R.; Khan, R.; Abu-Duhier, F. Cytochrome P450 CYP1B1*2 gene and its association with T2D in Tabuk population, Northwestern region of saudi arabia. Asian J. Pharm. Clin. Res. 2018, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.E.; Wilgus, T.A. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv. Wound Care 2014, 3, 647–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.R.; Hong, S.H. Promoter polymorphisms of the vascular endothelial growth factor gene are associated with metabolic syndrome susceptibility in Koreans. Biomed. Rep. 2017, 6, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Ghazizadeh, H.; Fazilati, M.; Pasdar, A.; Avan, A.; Tayefi, M.; Ghasemi, F.; Mehramiz, M.; Mirhafez, S.R.; Ferns, G.A.; Azimi-Nezhad, M.; et al. Association of a Vascular Endothelial Growth Factor genetic variant with Serum VEGF level in subjects with Metabolic Syndrome. Gene 2017, 598, 27–31. [Google Scholar] [CrossRef]
- Salami, A.; El Shamieh, S. Association between SNPs of Circulating Vascular Endothelial Growth Factor Levels, Hypercholesterolemia and Metabolic Syndrome. Medicina 2019, 55, 464. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, K.E.; Ong, F.S.; Blackwell, W.L.; Shah, K.H.; Giani, J.F.; Gonzalez-Villalobos, R.A.; Shen, X.Z.; Fuchs, S.; Touyz, R.M. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol. Rev. 2013, 65, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.H.; Wang, M.; Huang, Y.M.; Wang, Y.H.; Chen, Y.L.; Geng, L.J.; Zhang, X.X.; Zhao, H.L. ACE Gene I/D Polymorphism and Obesity in 1,574 Patients with Type 2 Diabetes Mellitus. Dis. Markers 2016, 2016, 7420540. [Google Scholar] [CrossRef] [PubMed]
- Pigeyre, M.; Sjaarda, J.; Chong, M.; Hess, S.; Bosch, J.; Yusuf, S.; Gerstein, H.; Pare, G. ACE and Type 2 Diabetes Risk: A Mendelian Randomization Study. Diabetes Care 2020, 43, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Merlo, S.; Novak, J.; Tkacova, N.; Nikolajevic Starcevic, J.; Santl Letonja, M.; Makuc, J.; Cokan Vujkovac, A.; Letonja, J.; Bregar, D.; Zorc, M.; et al. Association of the ACE rs4646994 and rs4341 polymorphisms with the progression of carotid atherosclerosis in slovenian patients with type 2 diabetes mellitus. Balk. J. Med. Genet. 2015, 18, 37–42. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir, R.; Elfaki, I.; Khullar, N.; Waza, A.A.; Jha, C.; Mir, M.M.; Nisa, S.; Mohammad, B.; Mir, T.A.; Maqbool, M.; et al. Role of Selected miRNAs as Diagnostic and Prognostic Biomarkers in Cardiovascular Diseases, Including Coronary Artery Disease, Myocardial Infarction and Atherosclerosis. J. Cardiovasc. Dev. Dis. 2021, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Prabu, P.; Poongothai, S.; Shanthirani, C.S.; Anjana, R.M.; Mohan, V.; Balasubramanyam, M. Altered circulatory levels of miR-128, BDNF, cortisol and shortened telomeres in patients with type 2 diabetes and depression. Acta Diabetol. 2020, 57, 799–807. [Google Scholar] [CrossRef]
- Medrano, R.F.; de Oliveira, C.A. Guidelines for the tetra-primer ARMS-PCR technique development. Mol. Biotechnol. 2014, 56, 599–608. [Google Scholar] [CrossRef]
- Darawi, M.N.; Ai-Vyrn, C.; Ramasamy, K.; Hua, P.P.; Pin, T.M.; Kamaruzzaman, S.B.; Majeed, A.B. Allele-specific polymerase chain reaction for the detection of Alzheimer’s disease-related single nucleotide polymorphisms. BMC Med. Genet. 2013, 14, 27. [Google Scholar] [CrossRef] [Green Version]
- Amle, D.; Mir, R.; Khaneja, A.; Agarwal, S.; Ahlawat, R.; Ray, P.C.; Saxena, A. Association of 18bp insertion/deletion polymorphism, at -2549 position of VEGF gene, with diabetic nephropathy in type 2 diabetes mellitus patients of North Indian population. J. Diabetes Metab. Disord. 2015, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Chung, W.C.; Jun, K.H.; Chin, H.M. Genetic polymorphisms of vascular endothelial growth factor (VEGF) associated with gastric cancer recurrence after curative resection with adjuvant chemotherapy. BMC Cancer 2019, 19, 483. [Google Scholar] [CrossRef]
- Zafar, M.I.; Mills, K.; Ye, X.; Blakely, B.; Min, J.; Kong, W.; Zhang, N.; Gou, L.; Regmi, A.; Hu, S.Q.; et al. Association between the expression of vascular endothelial growth factors and metabolic syndrome or its components: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2018, 10, 62. [Google Scholar] [CrossRef]
- Skrypnik, D.; Mostowska, A.; Jagodzinski, P.P.; Bogdanski, P. Association of rs699947 (-2578 C/A) and rs2010963 (-634 G/C) Single Nucleotide Polymorphisms of the VEGF Gene, VEGF-A and Leptin Serum Level, and Cardiovascular Risk in Patients with Excess Body Mass: A Case-Control Study. J. Clin. Med. 2020, 9, 469. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, Q.; Liu, J.; Wang, Y.; Zheng, G.; Lin, L.; Yu, H.; Tang, W.; Huang, Z. Vascular endothelial growth factor A polymorphisms are associated with increased risk of coronary heart disease: A meta-analysis. Oncotarget 2017, 8, 30539–30551. [Google Scholar] [CrossRef]
- Huebschmann, A.G.; Huxley, R.R.; Kohrt, W.M.; Zeitler, P.; Regensteiner, J.G.; Reusch, J.E.B. Sex differences in the burden of type 2 diabetes and cardiovascular risk across the life course. Diabetologia 2019, 62, 1761–1772. [Google Scholar] [CrossRef] [Green Version]
- Nordstrom, A.; Hadrevi, J.; Olsson, T.; Franks, P.W.; Nordstrom, P. Higher Prevalence of Type 2 Diabetes in Men Than in Women Is Associated With Differences in Visceral Fat Mass. J. Clin. Endocrinol. Metab. 2016, 101, 3740–3746. [Google Scholar] [CrossRef] [Green Version]
- Bradley, D.; Hsueh, W. Type 2 Diabetes in the Elderly: Challenges in a Unique Patient Population. J. Geriatr. Med. Gerontol. 2016, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Buraczynska, M.; Ksiazek, P.; Baranowicz-Gaszczyk, I.; Jozwiak, L. Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetes patients. Nephrol. Dial. Transplant. 2007, 22, 827–832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleda, S.; De Haro, J.; Varela, C.; Esparza, L.; Ferruelo, A.; Acin, F. Vascular endothelial growth factor polymorphisms are involved in the late vascular complications in Type II diabetic patients. Diab. Vasc. Dis. Res. 2012, 9, 68–74. [Google Scholar] [CrossRef]
- Tavakkoly-Bazzaz, J.; Amoli, M.M.; Pravica, V.; Chandrasecaran, R.; Boulton, A.J.; Larijani, B.; Hutchinson, I.V. VEGF gene polymorphism association with diabetic neuropathy. Mol. Biol. Rep. 2010, 37, 3625–3630. [Google Scholar] [CrossRef] [PubMed]
- Awata, T.; Inoue, K.; Kurihara, S.; Ohkubo, T.; Watanabe, M.; Inukai, K.; Inoue, I.; Katayama, S. A common polymorphism in the 5′-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes 2002, 51, 1635–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Churchill, A.J.; Carter, J.G.; Ramsden, C.; Turner, S.J.; Yeung, A.; Brenchley, P.E.; Ray, D.W. VEGF polymorphisms are associated with severity of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3611–3616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.; Zhang, L.; Xing, W.; Zhuo, R.; Lin, X.; Hao, Y.; Wu, Q.; Zhao, J. The associations between VEGF gene polymorphisms and diabetic retinopathy susceptibility: A meta-analysis of 11 case-control studies. J. Diabetes Res. 2014, 2014, 805801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amoli, M.M.; Hasani-Ranjbar, S.; Roohipour, N.; Sayahpour, F.A.; Amiri, P.; Zahedi, P.; Mehrab-Mohseni, M.; Heshmat, R.; Larijani, B.; Tavakkoly-Bazzaz, J. VEGF gene polymorphism association with diabetic foot ulcer. Diabetes Res. Clin. Pract. 2011, 93, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lu, Y.; Wei, P. Association between VEGF genetic variants and diabetic foot ulcer in Chinese Han population: A case-control study. Medicine 2018, 97, e10672. [Google Scholar] [CrossRef]
- Wu, L.E.; Meoli, C.C.; Mangiafico, S.P.; Fazakerley, D.J.; Cogger, V.C.; Mohamad, M.; Pant, H.; Kang, M.J.; Powter, E.; Burchfield, J.G.; et al. Systemic VEGF-A neutralization ameliorates diet-induced metabolic dysfunction. Diabetes 2014, 63, 2656–2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Serri, A.; Ismael, F.G.; Al-Bustan, S.A.; Al-Rashdan, I. Association of the insertion allele of the common ACE gene polymorphism with type 2 diabetes mellitus among Kuwaiti cardiovascular disease patients. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 910–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Rubeaan, K.; Siddiqui, K.; Saeb, A.T.; Nazir, N.; Al-Naqeb, D.; Al-Qasim, S. ACE I/D and MTHFR C677T polymorphisms are significantly associated with type 2 diabetes in Arab ethnicity: A meta-analysis. Gene 2013, 520, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Mahwish, U.N.; Ponnaluri, K.C.; Heera, B.; Alavala, S.R.; Devi, K.R.; Raju, S.B.; Latha, G.S.; Jahan, P. Link between ACE I/D Gene Polymorphism and Dyslipidemia in Diabetic Nephropathy: A Case-control Study from Hyderabad, India. Indian J. Nephrol. 2020, 30, 77–84. [Google Scholar]
- Luptakova, L.; Bencova, D.; Sivakova, D.; Cvicelova, M. Association of CILP2 and ACE gene polymorphisms with cardiovascular risk factors in Slovak midlife women. BioMed Res. Int. 2013, 2013, 634207. [Google Scholar] [CrossRef] [Green Version]
- Bindom, S.M.; Hans, C.P.; Xia, H.; Boulares, A.H.; Lazartigues, E. Angiotensin I-converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice. Diabetes 2010, 59, 2540–2548. [Google Scholar] [CrossRef] [Green Version]
- Motohashi, N.; Alexander, M.S.; Shimizu-Motohashi, Y.; Myers, J.A.; Kawahara, G.; Kunkel, L.M. Regulation of IRS1/Akt insulin signaling by microRNA-128a during myogenesis. J. Cell Sci. 2013, 126 (Pt 12), 2678–2691. [Google Scholar] [CrossRef] [Green Version]
- Ciccacci, C.; Morganti, R.; Di Fusco, D.; D’Amato, C.; Cacciotti, L.; Greco, C.; Rufini, S.; Novelli, G.; Sangiuolo, F.; Marfia, G.A.; et al. Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol. 2014, 51, 663–671. [Google Scholar] [CrossRef]
- Simeoli, R.; Fierabracci, A. Insights into the Role of MicroRNAs in the Onset and Development of Diabetic Neuropathy. Int. J. Mol. Sci. 2019, 20, 4627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aryal, B.; Singh, A.K.; Rotllan, N.; Price, N.; Fernandez-Hernando, C. MicroRNAs and lipid metabolism. Curr. Opin. Lipidol. 2017, 28, 273–280. [Google Scholar] [CrossRef] [PubMed]
- den Braver, N.R.; de Vet, E.; Duijzer, G.; Ter Beek, J.; Jansen, S.C.; Hiddink, G.J.; Feskens, E.J.M.; Haveman-Nies, A. Determinants of lifestyle behavior change to prevent type 2 diabetes in high-risk individuals. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Asif, M. The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. J. Educ. Health Promot. 2014, 3, 1. [Google Scholar] [CrossRef]
- Elfaki, I.; Knitsch, A.; Matena, A.; Bayer, P. Identification and characterization of peptides that bind the PPIase domain of Parvulin17. J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2013, 19, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Jaremko, L.; Jaremko, M.; Elfaki, I.; Mueller, J.W.; Ejchart, A.; Bayer, P.; Zhukov, I. Structure and dynamics of the first archaeal parvulin reveal a new functionally important loop in parvulin-type prolyl isomerases. J. Biol. Chem. 2011, 286, 6554–6565. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Moche, M.; Winblad, B.; Pavlov, P.F. Combined X-ray crystallography and computational modeling approach to investigate the Hsp90 C-terminal peptide binding to FKBP51. Sci. Rep. 2017, 7, 14288. [Google Scholar] [CrossRef] [Green Version]
Primers for VEGF-rs699947 (−2578) C/A Gene Polymorphism | Band | Band Size | A.Tm | |
---|---|---|---|---|
VEGF Fo | 5-CCTTTTCCTCATAAGGGCCTTAG-3 | Control band | 353 bp | 58 °C |
VEGF Ro | 5-AGGAAGCAGCTTGGAAAAATTC-3 | |||
VEGF FI A | 5-TAGGCCAGACCCTGGCAA-3 | A-allele | 149bp | |
VEGF RI C | 5-GTCTGATTATCCACCCAGATCG-3 | C-allele | 243bp | |
ARMS primers for miR128a rs11888095 C/T | ||||
miR128 Fo | 5-AGTATGGAATTTTTACTGTGTTGTCTGT-3 | Control band | 441 bp | 55 °C |
miR128 Ro | 5-GCCAATTATTGCAAAATATTAAATGTATATGG-3 | |||
miR128 FI | 5-ATGTATGCTTTGAATACTGTGAAGGAT-3 | T-allele | 202 bp | |
miR128 RI | 5-ATACTATACCACACTCCTTATATGCATTG-3 | C-allele | 295 bp | |
Primers for VEGF -2549 insertion/deletion (I/D) gene polymorphism | ||||
VEGF F | 5′-GCTGAGAGTGGGGCTGACTAGGTA-3′ | D-allele | 211 bp | 58.8 °C |
VEGF R | 5′-GTTTCTGACCTGGCTATTTCCAGG-3′ | I-allele | 229 bp | |
Primer sequence of ACE I/D rs4646994 | ||||
ACE F | 5′- GTGGAGACCACTCCCATCCTTTCT -3′ | D | 190bp | 58 °C |
ACE R | 5′- GATGTGGCCATCAACTTCGTCACGAT -3′ | I | 490bp |
Subjects | n | CC | % | CA | % | AA | % | Df | X2 | C | A | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cases | 122 | 42 | 34.4 | 70 | 57.4 | 10 | 8.2 | 2 | 9.93 | 0.63 | 0.37 | 0.007 |
Controls | 126 | 58 | 46 | 48 | 38.1 | 20 | 15.9 | 0.60 | 0.40 |
Subjects | n | I | % | ID | % | D | % | Df | X2 | I | D | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cases | 133 | 20 | 15 | 71 | 53.4 | 42 | 31.6 | 2 | 6 | 0.42 | 0.58 | 0.049 |
Controls | 133 | 30 | 22.6 | 77 | 57.9 | 26 | 19.5 | 0.52 | 0.48 |
Subjects | n | II % | ID % | DD % | I | D | Df | X2 | p-Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 152 | 87 (57.23%) | 55 (36.2%) | 10 (6.57%) | 0.75 | 0.25 | 2 | 92.43 | <0.0001 |
Controls | 150 | 18 (12%) | 60 (40%) | 72 (48%) | 0.32 | 0.68 |
Subjects | n | CC | CT | TT | C | T | Df | X2 | p-Value |
---|---|---|---|---|---|---|---|---|---|
Cases | 129 | 35 (27.13%) | 68 (52.71%) | 26 (20.16) | 0.54 | 0.46 | 2 | 20.06 | 0.0001 |
Controls | 112 | 62 (55.35%) | 38 (33.92%) | 12 (10.70%) | 0.73 | 0.27 |
Genotypes | Healthy Controls | T2D Cases | OR (95% CI) | Risk Ratio (RR) | p-Value | ||
---|---|---|---|---|---|---|---|
(n = 126) | % | (n = 122) | % | ||||
Codominant | |||||||
VEGF–(C) | 58 | 46 | 42 | 34.4 | 1 (ref.) | 1 (ref.) | |
VEGF-(CA) | 48 | 38.1 | 70 | 57.4 | 2.01 (1.17–3.45) | 1.42 (1.08–1.87) | 0.011 * |
VEGF-(A) | 20 | 15.9 | 10 | 8.2 | 0.69 (0.29–1.62) | 0.87 (0.64–1.17) | 0.363 |
Dominant | |||||||
VEGF (C) | 58 | 46 | 42 | 34.4 | 1 (ref.) | 1 (ref.) | |
VEGF-(CA + A) | 68 | 54 | 80 | 65.6 | 1.62 (0.97–2.71) | 1.26 (0.99–1.60) | 0.05 |
Recessive | |||||||
VEGF-(C + CA) | 106 | 84 | 112 | 91.8 | 1 (ref.) | 1 (ref.) | |
VEGF–(A) | 20 | 16 | 10 | 8.2 | 0.47 (0.211–1.05) | 0.72 (0.54–0.97) | 0.06 |
Allele | |||||||
VEGF-(C) | 164 | 154 | 1 (ref.) | 1 (ref.) | |||
VEGF-(A) | 88 | 90 | 1.08 (0.75–1.57) | 1.04 (0.86–1.25) | 0.64 |
Clinical Feature | CC 42 | CA 70 | AA 10 | X2 | DF | p-Value | ||
---|---|---|---|---|---|---|---|---|
Gender | ||||||||
Male | 82 | 18 (14.75%) | 58 (47.54%) | 6 (4.91%) | 19.32 | 2 | 0.0001 * | |
Female | 40 | 24 (19.67%) | 12 (9.83%) | 4 (3.27%) | ||||
Age | ||||||||
>40 | 91 | 36 (29.50%) | 50 (40.98%) | 5 (4.09%) | 6.3 | 2 | 0.042 * | |
>25 | 31 | 6 (4.8%) | 20 (9.6%) | 5 (1.9%) | ||||
HbA1c% | ||||||||
>6 | 102 | 36 (29.50%) | 60 (49.18%) | 6 (4.91%) | 4.43 | 2 | 0.100 | |
<6 | 20 | 6 (4.91%) | 10 (8.19%) | 4 (3.27%) | ||||
TG mg/dl | ||||||||
<200 | 49 | 25 (51%) | 20 (40.81%) | 4 (8.16%) | 10.16 | 2 | 0.005 * | |
>200 | 73 | 17 (23.28%) | 50 (68.49%) | 6 (8.21%) | ||||
TC mg/dl | ||||||||
<200 | 64 | 12 (18.75%) | 45 (70.31%) | 7 (10.93%) | 14.12 | 2 | 0.006 * | |
>200 | 58 | 30 (51.72%) | 25 (43.10%) | 3 (5.17%) | ||||
LDL-C mg/dl | ||||||||
<100 | 66 | 32 (57.57%) | 30 (45.45%) | 4 (6.06%) | 12.6 | 2 | 0.0018 * | |
>100 | 56 | 10 (10.85%) | 40 (71.42%) | 6 (10.71%) | ||||
HDL-C mg/dl | ||||||||
<55 | 49 | 9 (18.36%) | 34 (69.38%) | 6 (12.24%) | 8.32 | 2 | 0.015 * | |
>55 | 73 | 31 (42.46%) | 38 (52%) | 4 (5.47%) | ||||
VITD ng/mL | ||||||||
<30 | 16 | 6 (5.8%) | 10 (9.6%) | 0 (0%) | 1.343 | 4 | 0.854 | |
>30 | 14 | 5 (4.8%) | 8 (7.7%) | 1 (1%) |
Genotypes | Healthy Controls | T2D Cases | OR (95% CI) | Risk Ratio (RR) | p-Value | ||
---|---|---|---|---|---|---|---|
(n = 133) | % | (n = 133) | % | ||||
Codominant | |||||||
VEGF–(I) | 30 | 22.55 | 20 | 15.03 | 1 (ref.) | 1 (ref.) | |
VEGF-(ID) | 77 | 57.89 | 71 | 53.38 | 1.38 (0.72–2.65) | 1.15 (0.87–1.51) | 0.32 |
VEGF-(D) | 26 | 19.54 | 42 | 31.57 | 2.42 (1.14–5.11) | 1.56 (1.07–2.28) | 0.010 * |
Dominant | |||||||
VEGF (I) | 30 | 22.55 | 20 | 15.03 | 1 (ref.) | 1 (ref.) | |
VEGF-(ID + D) | 103 | 77.44 | 113 | 84.96 | 1.64 (0.88–3.07) | 1.25 (0.96–1.64) | 0.090 |
Recessive | |||||||
VEGF-(I + ID) | 107 | 80.45 | 91 | 68.42 | 1 (ref.) | 1 (ref.) | |
VEGF–(D) | 26 | 19.54 | 42 | 31.57 | 1.89 (1.08–3.33) | 1.37 (0. 98–1.91) | 0.025 * |
Allele | |||||||
VEGF-(I) | 133 | 100 | 111 | 83.45 | 1 (ref.) | 1 (ref.) | |
VEGF-(D) | 129 | 97 | 155 | 116.54 | 1.43 (1.02–2.03) | 1.01 (0.83–1.21) | 0.037 * |
Clinical Feature | n | D % | I % | ID % | X2 | DF | p-Value |
---|---|---|---|---|---|---|---|
Gender | |||||||
Female | 40 | 7 (6.5%) | 9 (8.4%) | 24 (22.4%) | 1.498 | 2 | 0.473 |
Male | 67 | 14 (13.1%) | 9 (8.4%) | 44 (41.1%) | |||
Age | |||||||
>25 | 16 | 4 (3.7%) | 1 (0.9%) | 11 (10.3%) | 1.607 | 2 | 0.448 |
>40 | 91 | 17 (15.9%) | 17 (15.9%) | 57 (53.3%) | |||
HbA1c% | |||||||
<6 | 1 | 0 (0.0%) | 0 (0.0%) | 1 (0.9%) | 0.579 | 2 | 0.749 |
>6 | 96 | 21 (19.6%) | 18 (16.8%) | 67 (62.6%) | |||
TC mg/dl | |||||||
<200 | 65 | 12 (11.2%) | 7 (6.5%) | 46 (43.0%) | 11.411 | 4 | 0.022 * |
>200 | 17 | 6 (35.29%) | 2 (11.76%) | 9 (52.94%) | |||
TG mg/dl | |||||||
<200 | 65 | 12 (18.46%) | 7 (10.76%) | 46 (70.76%) | 11.0 | 2 | 0.004 * |
>200 | 31 | 12 (38.70%) | 8 (16.12%) | 11 (35.48%) | |||
LDL-C mg/dl | |||||||
<100 | 34 | 4 (3.7%) | 2 (1.9%) | 26 (24.3%) | 11.364 | 4 | 0.023 * |
>100 | 51 | 14 (13.1%) | 8 (7.5%) | 29 (27.1%) | |||
HDL-C mg/dl | |||||||
<55 | 26 | 17 (15.9%) | 9 (8.4%) | 45 (42.1%) | 13.106 | 4 | 0.011 * |
>55 | 12 | 1 (0.9%) | 0 (0.0%) | 11 (10.3%) | |||
VIT D ng/ml | |||||||
<30 | 22 | 3 (2.8%) | 2 (1.9%) | 17 (15.9%) | 2.777 | 4 | 0.596 |
>30 | 15 | 3 (2.8%) | 2 (1.9%) | 10 (9.3%) |
Genotypes | Healthy Controls | T2D Cases | OR (95% CI) | Risk Ratio (RR) | p-Value |
---|---|---|---|---|---|
(n = 150) | (n = 152) | ||||
Co-dominant | |||||
ACE–II | 18 | 87 | 1 (ref.) | 1 (ref.) | |
ACE–ID | 60 | 55 | 0.18 (0.1–0.35) | 0.32 (0.208–0.518) | 0.0001 * |
ACE–DD | 72 | 10 | 0.128 (0.01–0.1) | 0.19 (0.1272–0.2996) | <0.0001 * |
Dominant | |||||
ACE–II | 18 | 87 | 1 (ref.) | 1 (ref.) | |
ACE–(DI+DD) | 132 | 65 | 0.10 (0.06–0.18) | 0.25 (0.1661–0.3940) | <0.0001 * |
Recessive | |||||
ACE–(II+DI) | 78 | 142 | 1 (ref.) | 1 (ref.) | |
ACE–DD | 72 | 10 | 0.076 (0.04–0.15) | 0.40 (0.3–0.49) | <0.0001 * |
Allele | |||||
ACE–I | 96 | 229 | 1 (ref.) | 1 (ref.) | |
ACE–D | 204 | 75 | 0.10 (0.1–0.2) | 0.40 (0.33–0.48) | 0.0001 * |
Over dominant | |||||
ACE–II+DD | 90 | 97 | 1 (ref.) | 1 (ref.) | |
ACE–ID | 60 | 55 | 0.85 (0.5–1.4) | 0.92 (0.73–1.16) | 0.4910 |
Clinical Feature | n | n = 152 | II | DI | DD | X2 | DF | p-Value |
---|---|---|---|---|---|---|---|---|
Gender | ||||||||
Male | 44 | 25 | 17 | 02 | 0.49 | 2 | 0.78 | |
Female | 108 | 62 | 38 | 08 | ||||
Age | ||||||||
>25 | 96 | 41 | 46 | 09 | 22.62 | 2 | 0.0001 * | |
<25 | 56 | 46 | 09 | 01 | ||||
HBA1c% | ||||||||
>6 | 103 | 52 | 45 | 06 | 7.79 | 2 | 0.020 * | |
<6 | 49 | 35 | 10 | 04 | ||||
TG mg/dl | ||||||||
<200 | 80 | 46 | 25 | 09 | 6.74 | 2 | 0.0344 * | |
>200 | 72 | 41 | 30 | 01 | ||||
TC mg/dl | ||||||||
<200 | 99 | 50 | 43 | 06 | 6.49 | 2 | 0.039 * | |
>200 | 53 | 37 | 12 | 4 | ||||
LDL-C mg/dl | ||||||||
<100 | 82 | 37 | 30 | 01 | 7.19 | 2 | 0.022 * | |
>100 | 70 | 50 | 25 | 09 | ||||
HDL-C mg/dl | ||||||||
<55 | 104 | 58 | 42 | 04 | 5.47 | 2 | 0.64 | |
>55 | 48 | 29 | 13 | 06 |
Genotypes | Healthy Controls | T2D Cases | OR (95% CI) | Risk Ratio (RR) | p-Value |
---|---|---|---|---|---|
(n) | (n) | ||||
Codominant | |||||
miR128 –(C) | 62 | 35 | Ref | Ref | |
miR128-(CT) | 38 | 68 | 3.16(1.8–5.6) | 1.78(1.3–2.4) | 0.0001 * |
miR128-(T) | 12 | 26 | 3.83(1.7–8.5) | 2.0 (1.2–3.3) | 0.0010 * |
Dominant | |||||
miR128-(C) | 62 | 35 | Ref | Ref | |
miR128-(CT + T) | 50 | 94 | 3.3(1.9–5.7) | 1.84(1.4063–2.4097) | <0.0001 * |
Recessive | |||||
miR128-(C + CT) | 100 | 103 | Ref | Ref | |
miR128–(T) | 12 | 26 | 3.3(1.9–5.7) | 1.55(0.96–2.5) | <0.0001 * |
Allele | |||||
miR128-(C) | 112 | 129 | Ref | Ref | |
miR128-(T) | 62 | 120 | 1.68(1.13–2.5) | 1.36 (1.1–1.7) | 0.0105 * |
Clinical Feature | n | CC | CT | TT | X2 | DF | p-Value | |
---|---|---|---|---|---|---|---|---|
Gender | 129 | 35 | 68 | 26 | ||||
Male | 40 | 7 | 28 | 05 | 6.95 | 2 | 0.031 * | |
Female | 89 | 28 | 40 | 21 | ||||
Age | ||||||||
>25 | 109 | 26 | 59 | 25 | 7.53 | 2 | 0.021 * | |
<25 | 20 | 10 | 09 | 01 | ||||
HBA1c% | ||||||||
>6 | 82 | 12 | 49 | 21 | 18 | 2 | 0.0001 * | |
<6 | 47 | 23 | 19 | 05 | ||||
TG mg/dl | ||||||||
<200 | 82 | 14 | 48 | 20 | 11.84 | 2 | 0.0027 * | |
>200 | 47 | 21 | 20 | 6 | ||||
TC mg/dl | ||||||||
<200 | 85 | 28 | 40 | 17 | 0.52 | 2 | 0.776 | |
>200 | 44 | 17 | 18 | 9 | ||||
LDL-C mg/dl | ||||||||
<100 | 56 | 08 | 34 | 14 | 8.37 | 2 | 0.0152 * | |
>100 | 73 | 27 | 34 | 12 | ||||
HDL-C mg/dl | ||||||||
<55 | 98 | 25 | 54 | 19 | 0.96 | 2 | 0.6188 | |
>55 | 31 | 10 | 14 | 07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elfaki, I.; Mir, R.; Duhier, F.M.A.; Alotaibi, M.A.; Alalawy, A.I.; Barnawi, J.; Babakr, A.T.; Mir, M.M.; Altayeb, F.; Mirghani, H.; et al. Clinical Implications of MiR128, Angiotensin I Converting Enzyme and Vascular Endothelial Growth Factor Gene Abnormalities and Their Association with T2D. Curr. Issues Mol. Biol. 2021, 43, 1859-1875. https://doi.org/10.3390/cimb43030130
Elfaki I, Mir R, Duhier FMA, Alotaibi MA, Alalawy AI, Barnawi J, Babakr AT, Mir MM, Altayeb F, Mirghani H, et al. Clinical Implications of MiR128, Angiotensin I Converting Enzyme and Vascular Endothelial Growth Factor Gene Abnormalities and Their Association with T2D. Current Issues in Molecular Biology. 2021; 43(3):1859-1875. https://doi.org/10.3390/cimb43030130
Chicago/Turabian StyleElfaki, Imadeldin, Rashid Mir, Faisel M. Abu Duhier, Maeidh A. Alotaibi, Adel Ibrahim Alalawy, Jameel Barnawi, Abdullatif Taha Babakr, Mohammad Muzaffar Mir, Faris Altayeb, Hyder Mirghani, and et al. 2021. "Clinical Implications of MiR128, Angiotensin I Converting Enzyme and Vascular Endothelial Growth Factor Gene Abnormalities and Their Association with T2D" Current Issues in Molecular Biology 43, no. 3: 1859-1875. https://doi.org/10.3390/cimb43030130
APA StyleElfaki, I., Mir, R., Duhier, F. M. A., Alotaibi, M. A., Alalawy, A. I., Barnawi, J., Babakr, A. T., Mir, M. M., Altayeb, F., Mirghani, H., & Frah, E. A. M. (2021). Clinical Implications of MiR128, Angiotensin I Converting Enzyme and Vascular Endothelial Growth Factor Gene Abnormalities and Their Association with T2D. Current Issues in Molecular Biology, 43(3), 1859-1875. https://doi.org/10.3390/cimb43030130