Therapeutic Use and Chronic Abuse of CNS Stimulants and Anabolic Drugs
Abstract
:1. Introduction
2. Therapeutic Approaches to Restore Cognitive and Motor Tasks in Brain Aging and Disease
2.1. Aging, Cognitive Decline, and Dementia of Alzheimer’s Type
2.2. Pathophysiology of Cognitive Decline
2.3. Therapeutic Approaches to Restore Cognitive and Motor Tasks
2.3.1. Acetylcholine Pathway
2.3.2. Catecholaminergic Pathway
2.3.3. Serotonergic Drugs
2.4. Drugs to Treat Major Depression in Aging and Disease
2.4.1. Catecholaminergic Pathway
2.4.2. Anabolic Hormones and Erythropoietin
3. Chronic Abuse of CNS Stimulants and Anabolic Drugs to Enhance Athletic Performance May Lead to Cognitive Decline and Depressive Behavior
3.1. Drugs That Increase Alertness/Reduce Fatigue
3.2. Amphetamines and Metamphetamines
3.3. Mechanism of Action
3.4. Sympathomimetic Stimulants
3.4.1. Noradrenaline and Caffeine
3.4.2. Ephedrine
Mechanism of Action
3.4.3. Cocaine
Mechanism of Action
3.5. Anabolic Steroids
Mechanism of Action
3.6. Benzodiazepines
Mechanism of Action
3.7. Erythropoietin
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tabbarah, M.; Crimmins, E.M.; Seeman, T.E. The Relationship between Cognitive and Physical Performance: MacArthur Studies of Successful Aging. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M228–M235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, R.C.; Birnbaum, H.G.; Shahly, V.; Bromet, E.; Hwang, I.; McLaughlin, K.A.; Sampson, N.; Andrade, L.H.; de Girolamo, G.; Demyttenaere, K.; et al. Age Differences in the Prevalence and Co-morbidity of DSM-IV Major Depressive Episodes: Results from the WHO World Mental Health Survey Initiative. Depress. Anxiety 2010, 27, 351–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arve, S.; Tilvis, R.S.; Lehtonen, A.; Valvanne, J.; Sairanen, S. Coexistence of Lowered Mood and Cognitive Impairment of Elderly People in Five Birth Cohorts. Aging 1999, 11, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Lopez, O.L.; Jagust, W.J.; Dulberg, C. Risk Factors for Mild Cognitive Impairment in the Cardiovascular Health Study Cognition Study. Part 2. Arch. Neurol. 2003, 60, 1394–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, A.J.; Shiri-Feshki, M. Rate of Progression of Mild Cognitive Impairment to Dementia—Meta-Analysis of 41 Robust Inception Cohort Studies. Acta Psychiatr. Scand. 2009, 119, 252–265. [Google Scholar] [CrossRef]
- John, A.; Patel, U.; Rusted, J.; Richards, M.; Gaysina, D. Affective Problems and Decline in Cognitive State in Older Adults: A Systematic Review and Meta-Analysis. Psychol. Med. 2018, 49, 353–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freret, T.; Gaudreau, P.; Schumann-Bard, P.; Billard, J.M.; Popa-Wagner, A. Mechanisms Underlying the Neuroprotective Effect of Brain Reserve against Late Life Depression. J. Neural Transm. 2015, 122, 55–61. [Google Scholar] [CrossRef]
- Logan, J.M.; Sanders, A.L.; Snyder, A.Z.; Morris, J.C.; Buckner, R.L. Under-Recruitment and Nonselective Recruitment: Dissociable Neural Mechanisms Associated with Aging. Neuron 2002, 33, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Reuter-Lorenz, P.A.; Cappell, K.A. Neurocognitive Aging and the Compensation Hypothesis. Curr. Dir. Psychol. Sci. 2008, 17, 177–182. [Google Scholar] [CrossRef]
- Jahn, H. Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci. 2013, 15, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, H.; Hirata, Y.; Kobayashi, M.; Sakamoto, Y.; Fukasawa, K.; Ichikawa, S.; Poza, J.; Rodríguez-González, V.; Gómez, C.; Shigihara, Y. Distinctive Effects of Executive Dysfunction and Loss of Learning/ Memory Abilities on Resting-State Brain Activity. Sci. Rep. 2022, 12, 3459. [Google Scholar] [CrossRef] [PubMed]
- Webster-Cordero, F.; Giménez-Llort, L. The Challenge of Subjective Cognitive Complaints and Executive Functions in Middle-Aged Adults as a Preclinical Stage of Dementia: A Systematic Review. Geriatrics 2022, 7, 30. [Google Scholar] [CrossRef]
- Moller, J.T.; Cluitmans, P.; Rasmussen, L.S.; Houx, P.; Rasmussen, H.; Canet, J.; Rabbitt, P.; Jolles, J.; Larsen, K.; Hanning, C.D.; et al. Long-Term Postoperative Cognitive Dysfunction in the Elderly ISPOCD1 Study. ISPOCD Investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet 1998, 351, 857–861. [Google Scholar] [CrossRef]
- Monk, T.G.; Weldon, B.C.; Garvan, C.W.; Dede, D.E.; van der Aa, M.T.; Heilman, K.M.; Gravenstein, J.S. Predictors of Cognitive Dysfunction after Major Noncardiac Surgery. Anesthesiology 2008, 108, 18–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, C.C.; Garvan, C.W.; Monk, T.G. Type and Severity of Cognitive Decline in Older Adults after Noncardiac Surgery. Anesthesiology 2008, 108, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Arciniegas, D.B.; Held, K.; Wagner, P. Cognitive Impairment Following Traumatic Brain Injury. Curr. Treat. Options Neurol. 2002, 4, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.; Horton, L.; Kunzmann, K.; Sahakian, B.J.; Newcombe, V.S.J.; Stamatakis, E.A.; von Steinbuechel, N.; Cunitz, K.; Covic, A.; Maas, A.; et al. Understanding the Relationship between Cognitive Performance and Function in Daily Life after Traumatic Brain Injury. J. Neurol. Neurosurg. Psychiatry 2021, 92, 407–417. [Google Scholar] [CrossRef]
- Al-Qazzaz, N.K.; Ali, S.H.; Ahmad, S.A.; Islam, S.; Mohamad, K. Cognitive Impairment and Memory Dysfunction after a Stroke Diagnosis: A Post-Stroke Memory Assessment. Neuropsychiatr. Dis. Treat. 2014, 10, 1677–1691. [Google Scholar] [CrossRef] [Green Version]
- Aam, S.; Einstad, M.S.; Munthe-Kaas, R.; Lydersen, S.; Ihle-Hansen, H.; Knapskog, A.B.; Ellekjær, H.; Seljeseth, Y.; Saltvedt, I. Post-stroke Cognitive Impairment-Impact of Follow-Up Time and Stroke Subtype on Severity and Cognitive Profile: The Nor-COAST Study. Front. Neurol. 2020, 17, 699. [Google Scholar] [CrossRef]
- Palacios-Filardo, J.; Udakis, M.; Brown, G.A.; Tehan, B.G.; Congreve, M.S.; Nathan, P.J.; Brown, A.J.H.; Mellor, J.R. Acetylcholine Prioritises Direct Synaptic Inputs from Entorhinal Cortex to CA1 by Differential Modulation of Feedforward Inhibitory Circuits. Nat. Commun. 2021, 12, 5475. [Google Scholar] [CrossRef] [PubMed]
- Sergio, L.E.; Gorbet, D.J.; Adams, M.S.; Dobney, D.M. The Effects of Mild Traumatic Brain Injury on Cognitive-Motor Integration for Skilled Performance. Front. Neurol. 2020, 11, 541630. [Google Scholar] [CrossRef] [PubMed]
- Whelan, F.J.; Walker, M.S.; Schultz, S.K. Donepezil in the Treatment of Cognitive Dysfunction Associated with Traumatic Brain Injury. Ann. Clin. Psychiatry 2000, 12, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.O.; Lee, S.J.; Pyo, J.-S. Effect of Acetylcholinesterase Inhibitors on Post-Stroke Cognitive Impairment and Vascular Dementia: A Meta-Analysis. PLoS ONE 2020, 15, e0227820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winek, K.; Soreq, H.; Meisel, A. Regulators of cholinergic signaling in disorders of the central nervous system. J. Neurochem. 2021, 158, 1425–1438. [Google Scholar] [CrossRef] [PubMed]
- Scheidtmann, K.; Fries, W.; Muller, F.; Koenig, E. Effect of Levodopa in Combination with Physiotherapy on Functional Motor Recovery after Stroke: A Prospective, Randomised, Double-Blind Study. Lancet 2001, 358, 787–790. [Google Scholar] [CrossRef]
- Hosp, J.A.; Pekanovic, A.; Rioult-Pedotti, M.S.; Luft, A.R. Dopaminergic Projections from Midbrain to Primary Motor Cortex Mediate Motor Skill Learning. J. Neurosci. 2011, 31, 2481–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, A.N. New Roles for Dopamine in Motor Skill Acquisition: Lessons from Primates, Rodents, and Songbirds. J. Neurophysiol. 2021, 125, 2361–2374. [Google Scholar] [CrossRef] [PubMed]
- Levin, H.; Troyanskaya, M.; Petrie, J.; Wilde, E.A.; Hunter, J.V.; Abildskov, T.J.; Scheibel, R.S. Methylphenidate Treatment of Cognitive Dysfunction in Adults After Mild to Moderate Traumatic Brain Injury: Rationale, Efficacy, and Neural Mechanisms. Front. Neurol. 2019, 10, 925. [Google Scholar] [CrossRef] [PubMed]
- Al-Adawi, S.; Al-Naamani, A.; Jaju, S.; Al-Farsi, Y.M.; Dorvlo, A.S.S.; Al-Maashani, A.; Al-Adawi, S.S.H.; Moustafa, A.A.; Al-Sibani, N.; Essa, M.M.; et al. Methylphenidate Improves Executive Functions in Patients with Traumatic Brain Injuries: A Feasibility Trial via the Idiographic Approach. BMC Neurol. 2020, 20, 103. [Google Scholar] [CrossRef] [Green Version]
- Orr, K.; Taylor, D. Psycho Stimulants in the Treatment of Depression: A Review of the Evidence. CNS Drugs 2007, 21, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Hornstein, A.; Lennihan, L.; Seliger, G.; Lichtman, S.; Schroeder, K. Amphetamine in Recovery from Brain Injury. Brain Inj. 1996, 10, 145–148. [Google Scholar] [CrossRef]
- Whyte, J.; Vaccaro, M.; Grieb-Neff, P.; Hart, T. Psychostimulant Use in the Rehabilitation of Individuals with Traumatic Brain Injury. J. Head Trauma Rehabil. 2002, 17, 284–299. [Google Scholar] [CrossRef] [PubMed]
- Duong, J.; Elia, C.; Takayanagi, A.; Lanzilotta, T.; Ananda, A.; Miulli, D. The Impact of Methamphetamines in Patients with Traumatic Brain Injury: A Retrospective Review. Clin. Neurol Neurosurg. 2018, 170, 99–101. [Google Scholar] [CrossRef] [PubMed]
- El Hayek, S.; Allouch, F.; Razafsha, M.; Talih, F.; Gold, M.S.; Wang, K.K.; Kobeissy, F. Traumatic Brain Injury and Methamphetamine: A Double-Hit Neurological Insult. J. Neurol. Sci. 2020, 411, 116711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattay, V.S.; Callicott, J.H.; Bertolino, A.; Heaton, I.; Frank, J.A.; Coppola, R.; Berman, K.F.; Goldberg, T.E.; Weinberger, D.R. Effects of Dextroamphetamine on Cognitive Performance and Cortical Activation. Neuroimage 2000, 12, 268–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froese, L.; Dian, J.; Gomez, A.; Unger, B.; Zeiler, F.A. Cerebrovascular Response to Phenylephrine in Traumatic Brain Injury: A Scoping Systematic Review of the Human and Animal Literature. Neurotrauma Rep. 2020, 23, 46–62. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.; Strebel, S.; Steiner, L. Effects of Catecholamines on Cerebral Blood Vessels in Patients with Traumatic Brain Injury. Eur. J. Anaesthesiol. 2008, 25, 98–103. [Google Scholar] [CrossRef]
- Rordorf, G.; Koroshetz, W.J.; Ezzeddine, M.A.; Segal, A.Z.; Buonanno, F.S. A Pilot Study of Drug-Induced Hypertension for Treatment of Acute Stroke. Neurology 2001, 56, 1210–1213. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.B.; Sohn, H. Induced Hypertension Using Phenylephrine in Patients with Acute Ischemic Stroke: A Case Report. Korean J. Crit. Care Med. 2010, 25, 172–175. [Google Scholar] [CrossRef]
- Kim, H.; Kang, S.H.; Kim, S.H.; Kim, S.H.; Hwang, J.; Kim, J.-G.; Han, K.; Kim, J.B. Drinking Coffee Enhances Neurocognitive Function by Reorganizing Brain Functional Connectivity. Sci. Rep. 2021, 11, 14381. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, K.; Carrière, I.; de Mendonca, A.; Portet, F.; Dartigues, J.F.; Rouaud, O.; Barberger-Gateau, P.; Ancelin, M.L. The Neuroprotective Effects of Caffeine: A Prospective Population Study (the Three City Study). Neurology 2007, 69, 536–545. [Google Scholar] [CrossRef]
- Eskelinen, M.H.; Ngandu, T.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Midlife Coffee and Tea Drinking and the Risk of Late-Life Dementia: A Population-Based CAIDE Study. J. Alzheimers Dis. 2009, 16, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postuma, R.B.; Lang, A.E.; Munhoz, R.P.; Charland, K.; Pelletier, A.; Moscovich, M.; Filla, L.; Zanatta, D.; Rios Romenets, S.; Altman, R.; et al. Caffeine for Treatment of Parkinson Disease: A Randomized Controlled Trial. Neurology 2012, 76, 651–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Oliver, M.; Díaz-Ríos, M. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: A review. Life Sci. 2014, 101, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappelletti, S.; Piacentino, D.; Sani, G.; Aromatario, M. Caffeine: Cognitive and Physical Performance Enhancer or Psychoactive Drug? Curr. Neuropharmacol. 2015, 13, 71–88. [Google Scholar] [CrossRef] [Green Version]
- Saposnik, G.; Levin, M. Virtual Reality in Stroke Rehabilitation: A Meta-Analysis and Implications for Clinicians. Stroke 2011, 42, 1380–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winstein, C.J.; Wolf, S.L.; Dromerick, A.W.; Lane, C.J.; Nelsen, M.A.; Lewthwaite, R.; Blanton, S.; Scott, C.; Reiss, A.; Cen, S.Y.; et al. Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (icare): A Randomized Controlled Trial Protocol. BMC Neurol. 2013, 13, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramer, S.C. Repairing the Human Brain after Stroke, II: Restorative Therapies. Annu. Neuol. 2008, 63, 549–560. [Google Scholar] [CrossRef]
- Chollet, F.; Tardy, J.; Albucher, J.F.; Thalamas, C.; Berard, E.; Lamy, C.; Bejot, Y.; Deltour, S.; Jaillard, A.; Niclot, P.; et al. Fluoxetine for Motor Recovery after Acute Ischaemic Stroke (FLAME): A Randomised Placebo-Controlled Trial. Lancet Neurol. 2011, 10, 123–130. [Google Scholar] [CrossRef]
- Cramer, S.C. Drugs to Enhance Motor Recovery After Stroke. Stroke 2015, 46, 2998–3005. [Google Scholar] [CrossRef]
- Tedeschi, A.; Larson, M.J.E.; Zouridakis, A.; Mo, L.; Bordbar, A.; Myers, J.M.; Qin, H.Y.; Rodocker, H.I.; Fan, F.; Lannutti, J.J.; et al. Harnessing Cortical Plasticity via Gabapentinoid Administration Promotes Recovery after Stroke. Brain 2022, 145, 2378–2393. [Google Scholar] [CrossRef] [PubMed]
- Pearson-Fuhrhop, K.M.; Minton, B.; Acevedo, D.; Shahbaba, B.; Cramer, S.C. Genetic Variation in the Human Brain Dopamine System Influences Motor Learning and its Modulation by L-Dopa. PLoS ONE 2013, 8, e61197. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, A.N.; Huang, B.S.; Macisaac, S.E.; Mody, I.; Carmichael, S.T. Reducing Excessive GABA-Mediated Tonic Inhibition Promotes Functional Recovery after Stroke. Nature 2010, 468, 305–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, L.B.; Lennihan, L.; Rabadi, M.J.; Good, D.C.; Reding, M.J.; Dromerick, A.W.; Samsa, G.P.; Pura, J. Effect of Dextroamphetamine on Poststroke Motor Recovery: A Randomized Clinical Trial. JAMA Neurol. 2018, 75, 1494–1501. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.; Chamberlain, S.R.; Sahakian, B.J. Neurocognitive Mechanisms in Depression: Implications for Treatment. Annu. Rev. Neurosci. 2009, 32, 57–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glavan, D.; Gheorman, V.; Gresita, A.; Hermann, D.M.; Udristoiu, I.; Popa-Wagner, A. Identification of Transcriptome Alterations in the Prefrontal Cortex, Hippocampus, Amygdala and Hippocampus of Suicide Victims. Sci. Rep. 2021, 11, 18853. [Google Scholar] [CrossRef]
- Pluta, R.; Jolkkonen, J.; Cuzzocrea, S.; Pedata, F.; Cechetto, D.; Popa-Wagner, A. Cognitive Impairment with Vascular Impairment and Degeneration. Curr. Neurovasc. Res. 2011, 8, 342–350. [Google Scholar] [CrossRef]
- Han, L.K.M.; Dinga, R.; Hahn, T.; Ching, C.R.K.; Eyler, L.T.; Aftanas, L.; Aghajani, M.; Aleman, A.; Baune, B.T.; Berger, K.; et al. Brain aging in major depressive disorder: Results from the ENIGMA major depressive disorder working group. Mol. Psychiatry 2021, 26, 5124–5139. [Google Scholar] [CrossRef]
- Ramasubbu, R.; Goodyear, B.G. Methylphenidate modulates activity within cognitive neural networks of patients with post-stroke major depression: A placebo-controlled fMRI study. Neuropsychiatr. Dis. Treat. 2008, 4, 1251–1266. [Google Scholar] [CrossRef] [Green Version]
- Jorge, R.E.; Acion, L.; Moser, D.; Adams, H.P., Jr.; Robinson, R.G. Escitalopram and Enhancement of Cognitive Recovery Following Stroke. Arch. Gen. Psychiatry 2010, 67, 187–196. [Google Scholar] [CrossRef]
- Kuczemski, R.; Segal, D.S. Effects of Methylphenidate on Extra Cellular Dopamine, Serotonin, and Norepinephrine: Compression with Amphetamine. J. Neurochem. 1997, 68, 2032–2037. [Google Scholar] [CrossRef] [PubMed]
- Osier, N.D.; Dixon, C.E. Catecholaminergic Based Therapies for Functional Recovery after TBI. Brain Res. 2016, 1640, 15–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ide, V.; Vanderschueren, D.; Antonio, L. Treatment of Men with Central Hypogonadism: Alternatives for Testosterone Replacement Therapy. Int. J. Mol. Sci. 2020, 22, 21. [Google Scholar] [CrossRef] [PubMed]
- Valko-Rokytovská, M.; Očenáš, P.; Salayová, A.; Kostecká, Z. Breast Cancer: Targeting of Steroid Hormones in Cancerogenesis and Diagnostics. Int. J. Mol. Sci. 2021, 22, 5878. [Google Scholar] [CrossRef] [PubMed]
- García-Gómez, E.; Vázquez-Martínez, E.R.; Reyes-Mayoral, C.; Cruz-Orozco, O.P.; Camacho-Arroyo, I.; Cerbón, M. Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Front. Endocrinol. 2020, 10, 935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, S.M.; Altfeld, M. Human Immunodeficiency Virus 1 and Type I Interferons-Where Sex Makes a Difference. Front. Immunol. 2017, 8, 1224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basaria, S.; Wahlstrom, J.T.; Dobs, A.S. Clinical review 138: Anabolic-androgenic steroid therapy in the treatment of chronic diseases. J. Clin. Endocrinol. Metab. 2001, 86, 5108–5117. [Google Scholar] [CrossRef]
- Peixoto, C.; Grande, A.J.; Mallmann, M.B.; Nardi, A.E.; Cardoso, A.; Veras, A.B. Dehydroepiandrosterone (DHEA) for Depression: A Systematic Review and Meta-Analysis. CNS Neurol. Disord. Drug Targets 2018, 17, 706–711. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, Z.; Yang, G.Y.; Ding, J.; Wang, X. The Effect of Erythropoietin and Its Derivatives on Ischemic Stroke Therapy: A Comprehensive Review. Front. Pharmacol. 2022, 13, 743926. [Google Scholar] [CrossRef]
- Dewan, M.V.; Serdar, M.; van de Looij, Y.; Kowallick, M.; Hadamitzky, M.; Endesfelder, S.; Fandrey, J.; Sizonenko, S.V.; Herz, J.; Felderhoff-Müser, U.; et al. Repetitive Erythropoietin Treatment Improves Long-Term Neurocognitive Outcome by Attenuating Hyperoxia-Induced Hypomyelination in the Developing Brain. Front. Neurol. 2020, 12, 804. [Google Scholar] [CrossRef]
- Tahamtan, M.; Moosavi, S.M.; Sheibani, V.; Nayebpour, M.; Esmaeili-Mahani, S.; Shabani, M. Erythropoietin Attenuates Motor Impairments Induced by Bilateral Renal Ischemia/ Reperfusion in Rats. Fundam. Clin. Pharmacol. 2016, 30, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Hierro-Bujalance, C.; Infante-Garcia, C.; Sanchez-Sotano, D.; Del Marco, A.; Casado-Revuelta, A.; Mengual-Gonzalez, C.M. Erythropoietin Improves Atrophy, Bleeding and Cognition in the Newborn Intraventricular Hemorrhage. Front. Cell Dev. Biol. 2020, 8, 571258. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.H.; Lu, C.H.; Wallace, C.G.; Chang, W.N.; Chen, S.F.; Huang, C.R.; Tsai, N.W.; Lan, M.Y.; Sung, P.H.; Lin, C.F.; et al. Erythropoietin Improves Long-Term Neurological Outcome in Acute Ischemic Stroke Patients: A Randomized, Prospective, Placebo-Controlled Clinical Trial. Crit. Care 2015, 19, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Åberg, N.D.; Stanne, T.M.; Jood, K.; Schiöler, L.; Blomstrand, C.; Andreasson, U.; Blennow, K.; Zetterberg, H.; Isgaard, J.; Jern, C.; et al. Serum Erythropoietin and Outcome after Ischaemic Stroke: A Prospective Study. BMJ Open 2016, 25, e009827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falleti, M.G.; Maruff, P.; Burman, P.; Harris, A. The Effects of Growth Hormone (GH) Deficiency and GH Replacement on Cognitive Performance in Adults: A Meta-Analysis of the Current Literature. Psychoneuroendocrinology 2006, 31, 681–691. [Google Scholar] [CrossRef]
- Waters, M.J.; Blackmore, D.G. Growth Hormone (GH), Brain Development and Neural Stem Cells. Pediatr. Endocrinol. Rev. 2011, 9, 549–553. [Google Scholar] [PubMed]
- Nyberg, F.; Hallberg, M. Growth Hormone and Cognitive Function. Nat. Rev. Endocrinol. 2013, 9, 357–365. [Google Scholar] [CrossRef]
- Ong, L.K.; Chow, W.Z.; TeBay, C.; Kluge, M.; Pietrogrande, G.; Zalewska, K.; Crock, P.; Åberg, N.D.; Bivard, A.; Johnson, S.J.; et al. Growth Hormone Improves Cognitive Function After Experimental Stroke. Stroke 2018, 49, 1257–1266. [Google Scholar] [CrossRef]
- High, W.M.; Briones-Galang, M.; Clark, J.A.; Gilkison, C.; Mossberg, K.A.; Zgaljardic, D.J.; Masel, B.E.; Urban, R.J. Effect of Growth Hormone Replacement Therapy on Cognition after Traumatic Brain Injury. J. Neurotrauma 2010, 27, 1565–1575. [Google Scholar] [CrossRef]
- Reimunde, P.; Quintana, A.; Castañón, B.; Casteleiro, N.; Vilarnovo, Z.; Otero-Cepeda, X.L.; Devesa, J. Effects of Growth Hormone (GH) Replacement and Cognitive Rehabilitation in Patients with Cognitive Disorders after Traumatic Brain Injury. Brain Inj. 2011, 25, 65–73. [Google Scholar] [CrossRef]
- Song, J.; Park, K.; Lee, H.; Kim, M. The Effect of Recombinant Human Growth Hormone Therapy in Patients with Completed Stroke: A Pilot Trial. Ann Rehabil Med. 2012, 36, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Devesa, J.; Reimunde, P.; Devesa, P.; Barberá, M.; Arce, V. Growth Hormone (GH) and Brain Trauma. Horm. Behav. 2013, 63, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Moreau, O.K.; Cortet-Rudelli, C.; Yollin, E.; Merlen, E.; Daveluy, W.; Rousseaux, M. Growth Hormone Replacement Therapy in Patients with Traumatic Brain Injury. J. Neurotrauma 2013, 30, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Brower, K.J.; Blow, F.C.; Young, J.P.; Hill, E.M. Symptoms and Correlates of Anabolic-Androgenic Steroid Dependence. Br. J. Addict. 1991, 86, 759–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malone, D.A.; Dimeff, R.J.; Lombardo, J.A.; Sample, R.H. Psychiatric Effects and Psychoactive Substance Use in Anabolic-Androgenic Steroid Users. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 1995, 5, 25–31. [Google Scholar] [CrossRef]
- Kanayama, G.; Brower, K.J.; Wood, R.I.; Hudson, J.I.; Pope, H.G. Issues for DSM-V: Clarifying the Diagnostic Criteria for Anabolic-Androgenic Steroid Dependence. Am. J. Psychiatry 2009, 166, 642–645. [Google Scholar] [CrossRef] [Green Version]
- Momaya, A.; Fawal, M.; Estes, R. Performance-Enhancing Substances in Sports: A Review of the Literature. Sports Med. 2015, 45, 517–531. [Google Scholar] [CrossRef]
- Rashid, H.; Ormerod, S.; Day, E. Anabolic Androgenic Steroids: What the Psychiatrist Needs to Know. Adv. Psychiatr. Treat. 2007, 13, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Kanayama, G.; Pope, H.G. History and Epidemiology of Anabolic Androgens in Athletes and Non-Athletes. Mol. Cell Endocrinol. 2017, 464, 4–13. [Google Scholar] [CrossRef]
- Docherty, J.R. Pharmacology of Stimulants Prohibited by the World Anti-Doping Agency (WADA). Br. J. Pharmacol. 2008, 154, 606–622. [Google Scholar] [CrossRef]
- Kondric, M.; Sekulic, D.; Petroczi, A.; Ostojic, L.; Rodek, J.; Ostojic, Z. Is there a Danger for Myopia in Anti-Doping Education? Comparative Analysis of Substance Use and Misuse in Olympic Racket Sports Calls for a Broader Approach. Subst. Abuse Treat. Prev. Policy 2011, 6, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dandoy, C.h.; Gereige, R.S. Performance-Enhancing Drugs. Pediatr. Rev. 2012, 33, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Honour, J.W. Doping in Sport: Consequences for Health, Clinicians and Laboratories. Ann. Clin. Biochem. 2016, 53, 189–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazanov, J.; Huybers, T.; Connor, J. Prioritising Health in Anti-Doping: What Australians Think. J. Sci. Med. Sport 2012, 15, 381–385. [Google Scholar] [CrossRef]
- Ljungqvist, A. The Fight against Doping is a Fight for the Protection of the Clean Athlete, the Health of the Athlete and the Integrity of Sport. Br. J. Sports Med. 2014, 48, 799. [Google Scholar] [CrossRef]
- Desai, R.; Patel, U.; Rupareliya, C.; Singh, S.; Shah, M.; Patel, R.S.; Patel, S.; Mahuwala, Z. Impact of Cocaine Use on Acute Ischemic Stroke Patients: Insights from Nationwide Inpatient Sample in the United States. Cureus 2017, 9, e1536. [Google Scholar] [CrossRef] [Green Version]
- Cordeiro, L.M.S.; Rabelo, P.C.R.; Moraes, M.M.; Teixeira-Coelho, F.; Coimbra, C.C.; Wanner, S.P.; Soares, D.D. Physical exercise-induced fatigue: The role of serotonergic and dopaminergic systems. Braz. J. Med. Biol Res. 2017, 50, e6432. [Google Scholar] [CrossRef]
- Watson, P.; Hasegawa, H.; Roelands, B.; Piacentini, M.F.; Looverie, R.; Meeusen, R. Acute Dopamine/ Noradrenaline Reuptake Inhibition Enhances Human Exercise Performance in Warm, but not Temperate Conditions. J. Physiol. 2005, 565, 873–883. [Google Scholar] [CrossRef]
- Cordeiro, L.M.; Guimaraes, J.B.; Wanner, S.P.; La Guardia, R.B.; Miranda, R.M.; Marubayashi, U.; Soares, D.D. Inhibition of Tryptophan Hydroxylase Abolishes Fatigue Induced by Central Tryptophan in Exercising Rats. Scand. J. Med. Sci. Sports 2014, 24, 80–88. [Google Scholar] [CrossRef]
- Mullen, J.M.; Richards, J.R.; Crawford, A.T. Amphetamine-Related Psychiatric Disorders; StatPearls Publishing LLC: Treasure Island, FL, USA, 2022. [Google Scholar]
- Harro, J. Neuropsychiatric Adverse Effects of Amphetamine and Methamphetamine. Int. Rev. Neurobiol. 2015, 120, 179–204. [Google Scholar] [CrossRef]
- MacQueen, D.A.; Minassian, A.; Kenton, J.A.; Geyer, M.A.; Perry, W.; Brigman, J.L.; Young, J.W. Amphetamine Improves Mouse and Human Attention in the 5-Choice Continuous Performance Test. Neuropharmacology 2018, 138, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-García, L.E.; Tendilla-Beltrán, H.; Vázquez-Roque, R.A.; Jurado-Tapia, E.E.; Díaz, A.; Aguilar-Alonso, P.; Brambila, E.; Monjaraz, E.; De La Cruz, F.; Rodríguez-Moreno, A.; et al. Amphetamine Sensitization Alters Hippocampal Neuronal Morphology and Memory and Learning Behaviors. Mol. Psychiatry 2021, 26, 4784–4794. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Tsutomi, H.; Mori, R.; Wilson, D.B. Cognitive-behavioural treatment for amphetamine-type stimulants (ATS)-use disorders. Cochrane Database Syst. Rev. 2018, 12, CD011315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, G.; Alicata, D.; Cloak, C.; Chang, L. Neuropsychological Deficits in Adolescent Methamphetamine Abusers. Psychopharmacology 2010, 212, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Hart, C.L.; Marvin, C.B.; Silver, R.; Smith, E.E. Is Cognitive Functioning Impaired in Methamphetamine Users? A Critical Review. Neuropsychopharmacology 2012, 37, 586–608. [Google Scholar] [CrossRef] [Green Version]
- Potvin, S.; Pelletier, J.; Grot, S.; Hébert, C.; Barr, A.; Lecomte, T. Cognitive Deficits in Individuals with Methamphetamine Use Disorder: A Meta-Analysis. Addict. Behav. 2018, 80, 154–160. [Google Scholar] [CrossRef]
- Westbrook, S.R.; Dwyer, M.R.; Cortes, L.R.; Gulley, J.M. Extended Access Self-Administration of Methamphetamine is Associated with Age-and Sex-Dependent Differences in Drug Taking Behavior and Recognition Memory in Rats. Behav. Brain Res. 2020, 390, 112659. [Google Scholar] [CrossRef]
- Maranella, E.; Mareri, A.; Nardi, V.; Di Natale, C.; Di Luca, L.; Conte, E.; Pannone, V.; Catalucci, A.; Di Fabio, S. Severe Neurologic and Hepatic in a Newborn Prenatally Exposed to Methamphetamine. A Case Report. Brain Dev. 2019, 41, 191–194. [Google Scholar] [CrossRef]
- Grochecki, P.; Smaga, I.; Lopatynska-Mazurek, M.; Gibula-Tarlowska, E.; Kedzierska, E.; Listos, J.; Talarek, S.; Marszalek-Grabska, M.; Hubalewska-Mazgaj, M.; Korga-Plewko, A.; et al. Effects of Mephedrone and Amphetamine Exposure during Adolescence on Spatial Memory in Adulthood: Behavioral and Neurochemical Analysis. Int. J. Mol. Sci. 2021, 22, 589. [Google Scholar] [CrossRef]
- Moratalla, R.; Khairnar, A.; Simola, N.; Granado, N.; García-Montes, J.R.; Porceddu, P.F.; Tizabi, Y.; Costa, G.; Morelli, M. Amphetamine-Related Drugs Neurotoxicity in Humans and in Experimental Animals: Main Mechanisms. Prog. Neurobiol. 2017, 155, 149–170. [Google Scholar] [CrossRef]
- Castner, S.A.; Vosler, P.S.; Goldman-Rakic, P.S. Amphetamine Sensitization Impairs Cognition and Reduces Dopamine Turnover in Primate Prefrontal Cortex. Biol. Psychiatry 2005, 57, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Robertson, S.D.; Matthies, H.J.; Galli, A. A Closer Look at Amphetamine-Induced Reverse Transport and Trafficking of the Dopamine and Norepinephrine Transporters. Mol. Neurobiol. 2009, 39, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrucci, M.; Limanaqi, F.; Ryskalin, L.; Biagioni, F.; Busceti, C.L.; Fornai, F. The Effects of Amphetamine and Methamphetamine on the Release of Norepinephrine, Dopamine and Acetylcholine from the Brainstem Reticular Formation. Front. Neuroanat. 2019, 13, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCowan, T.J.; Dhasarathy, A.; Carvelli, L. The Epigenetic Mechanisms of Amphetamine. J. Addict. Prev. 2015, 2015. [Google Scholar] [CrossRef]
- Paulus, M.P.; Stewart, J.L. Neurobiology, Clinical Presentation, and Treatment of Methamphetamine Use Disorder: A Review. JAMA Psychiatry 2020, 77, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Jones, G. Caffeine and other Sympathomimetic Stimulants: Modes of Action and Effects on Sports Performance. Essays Biochem. 2008, 44, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Avois, L.; Robinson, N.; Saudan, C.; Baume, N.; Mangin, P.; Saugy, M. Central nervous system stimulants and sport practice. Br. J. Sports Med. 2006, 40 (Suppl. 1), i16–i20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, J.C. Enhancement of Athletic Performance with Drugs. An Overview. Sports Med. 1991, 2, 250–265. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Li, S.; Huang, Y.; Luo, X.; Zhong, Y.; Ji, Y.; Su, D.; Ai, Z. Metabolite Profile Changes in Different Regions of Rat Brain Affected by Ephedra sinica. Evid. Based Complement. Altern. Med. 2020, 2020, 8358039. [Google Scholar] [CrossRef]
- Duan, S.; Ma, Y.; Xie, L.; Zheng, L.; Huang, J.; Guo, R.; Sun, Z.; Xie, Y.; Lv, J.; Lin, Z.; et al. Effects of Chronic Ephedrine Toxicity on Functional Connections, Cell Apoptosis, and CREB-Related Proteins in the Prefrontal Cortex of Rhesus Monkeys. Neurotox. Res. 2020, 37, 602–615. [Google Scholar] [CrossRef]
- Stepens, A.; Logina, I.; Liguts, V.; Aldins, P.; Eksteina, I.; Platkājis, A.; Mārtinsone, I.; Tērauds, E.; Rozentāle, B.; Donaghy, M.A. Parkinsonian Syndrome in Methcathinone Users and the Role of Manganese. N. Engl. J. Med. 2008, 358, 1009–1017. [Google Scholar] [CrossRef] [PubMed]
- Stepens, A.; Groma, V.; Skuja, S.; Platkājis, A.; Aldiņš, P.; Ekšteina, I.; Mārtiņsone, I.; Bricis, R.; Donaghy, M. The Outcome of the Movement Disorder in Methcathinone Abusers: Clinical, MRI and Manganesemia Changes, and Neuropathology. Eur. J. Neurol. 2014, 21, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Limberger, R.P.; Jacques, A.L.B.; Schmitt, G.C.; Arbo, M.D. Pharmacological effects of ephedrine. In Natural, Products; Ramawat, K., Merillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1217–1237. [Google Scholar] [CrossRef]
- Garavan, H.; Kaufman, J.N.; Hester, R. Acute Effects of Cocaine on the Neurobiology of Cognitive Control. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3267–3276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahoney, J.J. Cognitive dysfunction in individuals with cocaine use disorder: Potential moderating factors and pharmacological treatments. Exp. Clin. Psychopharmacol. 2019, 27, 203–214. [Google Scholar] [CrossRef]
- Roncero, C.; Daigre, C.; Barral, C.; Ros-Cucurull, E.; Grau-López, L.; Rodríguez-Cintas, L.; Tarifa, N.; Casas, M.; Valero, S. Neuroticism associated with cocaine-induced psychosis in cocaine-dependent patients: A cross-sectional observational study. PLoS ONE 2014, 9, e106111. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.P. Review. Evidence-based treatments of addiction. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 3277–3286. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.; Sage, J.R.; Shuman, T.; Anagnostaras, S.G. Psychostimulants and Cognition: A Continuum of Behavioral and Cognitive Activation. Pharmacol. Rev. 2013, 66, 193–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, Y.; Dryanovski, D.I.; Kimura, Y.; Jackson, S.N.; Woods, A.S.; Yasui, Y.; Tsai, S.Y.; Patel, S.; Covey, D.P.; Su, T.P.; et al. Cocaine-Induced Endocannabinoid Signaling Mediated by Sigma-1 Receptors and Extracellular Vesicle Secretion. eLife 2019, 8, e47209. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.A.; Dai, W.; Hu, S.S. Sex Differences in Cocaine-Associated Memory: The Interplay between CB1, mGluR5, and Estradiol. Psychoneuroendocrinology 2021, 133, 105366. [Google Scholar] [CrossRef] [PubMed]
- Jenkinson, D.M.; Harbert, A.J. Supplements and Sports. Am. Fam. Physician 2008, 78, 1039–1046. [Google Scholar]
- Pan, M.M.; Kovac, J.R. Beyond Testosterone Cypionate: Evidence behind the Use of Nandrolone in Male Health and Wellness. Transl. Androl. Urol. 2016, 5, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viljanto, M.; Hincks, P.; Hillyer, L.; Cawley, A.; Suann, C.; Noble, G.; Walker, C.J.; Parkin, M.C.; Kicman, A.T.; Scarth, J. Monitoring Dehydroepiandrosterone (DHEA) in the Urine of Thoroughbred Geldings for Doping Control Purposes. Drug Test. Anal. 2018, 10, 1518–1527. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.I.G.; Ho, K.K.Y. The Use and Abuse of Growth Hormone in Sports. Endocr. Rev. 2019, 40, 1163–1185. [Google Scholar] [CrossRef] [PubMed]
- Cattelan, S.L.; de Brito, M.L.O.; Jesse, C.R.; Boeira, S.P.; de Gomes, M.G.; Goes, A.T.R.; Fabbro, L.D.; Machado, F.R.; Prigol, M.; Nogueira, C.W. Involvement of Kynurenine Pathway in Depressive-Like Behaviour Induced by Nandrolone Decanoate in Mice. Steroids 2020, 164, 108727. [Google Scholar] [CrossRef]
- Scarth, M.; Bjørnebekk, A. Androgen Abuse and the Brain. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, M.J.; Kanayama, G.; Hudson, J.I.; Pope, H.G., Jr. Supraphysiologic-Dose Anabolic-Androgenic Steroid Use: A Risk Factor for Dementia? Neurosci. Biobehav. Rev. 2019, 100, 180–207. [Google Scholar] [CrossRef] [PubMed]
- Mhillaj, E.; Morgese, M.G.; Tucci, P.; Bove, M.; Schiavone, S.; Trabace, L. Effects of Anabolic-Androgens on Brain Reward Function. Front. Neurosci. 2015, 9, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zotti, M.; Tucci, P.; Colaianna, M.; Morgese, M.J.; Mhillaj, E.; Schiavone, S.; Scaccianoce, S.; Cuomo, V.; Trabace, L. Chronic Nandrolone Administration Induces Dysfunction of the Reward Pathway in Rats. Steroids 2014, 79, 7–13. [Google Scholar] [CrossRef]
- Yang, P.; Jones, B.L.; Henderson, L.P. Mechanisms of Anabolic Androgenic Steroid Modulation of Alpha(1)beta(3)gamma(2L) GABA(A) Receptors. Neuropharmacology 2002, 43, 619–633. [Google Scholar] [CrossRef]
- Yang, P.; Jones, B.L.; Henderson, L.P. Role of the Alpha Subunit in the Modulation of GABA(A) Receptors by Anabolic Androgenic Steroids. Neuropharmacology 2005, 49, 300–316. [Google Scholar] [CrossRef]
- Zamboni, L.; Lugoboni, F.; Zandonai, T. Benzodiazepine abuse among athletes: Pain relief or just a weapon against insomnia? A clinical case study. Scand. J. Med. Sci. Sports 2019, 29, 1937–1940. [Google Scholar] [CrossRef] [PubMed]
- Nors, J.W.; Gupta, S.; Goldschen-Ohm, M.P.A. Critical Residue in the α1M2-M3 Linker Regulating Mammalian GABAA Receptor Pore Gating by Diazepam. eLife 2021, 10, e64400. [Google Scholar] [CrossRef] [PubMed]
- Trinh, K.V.; Diep, D.; Chen, K.J.Q.; Huang, L.; Gulenko, O. Effect of erythropoietin on athletic performance: A systematic review and meta-analysis. BMJ Open Sport Exerc. Med. 2020, 28, e000716. [Google Scholar] [CrossRef] [PubMed]
Drug | Therapeutic Use | Abuse in Sports | Recreational Use | Mechanism of Action | Reference |
---|---|---|---|---|---|
Acetycholine receptors; donezepil | Cognitive decline; post-stroke cognitive impairment; AD | NO | NO | Prevent/delay acetylcholine degradation | [20,22,23] |
Methylphenidate; amphetamine; methamphetamine; dextroamphetamine; mephedrone; caffeine; | Cognitive and motivational deficits; poststroke depression; motor recovery after stroke; Parkinson’s disease; ADHD | YES; psychoactive substances; increased endurance; increased motor coordination | YES; euphoriant; treat short-term obesity, narcolepsy | Dopamine and noradrenaline reuptake inhibitors; sympathomimetic vasoconstrictor that can raise blood pressure and increase heart rate | [31,32,33,34,52,53,54,59,62,100,101,102,103,104,114,115] |
Norepinephrine; phenylephrine; ephedrine, methylephedrine; methcathinone | Cardiovascular support | YES; ergogenic; increase muscle glycogen resynthesis | YES | Vasoconstriction; sympathomimetic, inhibition of neuronal NE reuptake; increase cellular cAMP | [36,37,38,39,40,45,118,119,124] |
Serotonergic drugs L-DOPA; Ephedrine | YES; increase alertness/reduce fatigue; activate cardiovascular system | NO | Increase serotonergic activity and reduced dopaminergic activity | [97,98,99] | |
Cocaine, heroin | Anesthetic, pain killer | YES; amphetamine-like properties | YES; euphoriant; pain killer | Increased DA neurotransmission by blockade of DA reuptake | [48,49,50] |
Anabolic-androgens steroids (DHEA, androstenedione, androstenediol nandrolone | Hypogonadism; gain weight and muscle loss after severe illness, injury; breast cancer; anemia of renal insufficiency | YES; increase muscle mass, decrease fat mass | YES; treatment of cachexia; loss of muscle loss in elderly; post-menopausal osteoporosis | Anti-catabolic effect by interference with the glucocorticoid receptor | [63,64,65,66] |
Erythropoietin | Treatment of anemia; motor deficits in ischemic stroke | YES; increase red blood cell mass and time to exhaustion during maximal physical exercise | NO | Angiogenic, antiapoptotic, anti-inflammatory, antioxidant, neurotrophic | [71,72,73,74] |
Human growth hormone, hGH | hGH deficiency; Turner Syndrome; Prader–Willi syndrome; cognitive impairment | YES; anabolic effects; increased muscle mass, improved exercise capacity and energy | YES; body rejuvenation, improvement in memory, decrease in fat mass and increased bone density and muscle mass | Increased whole body protein synthesis via IGF-1; lipolytic effects; in the brain, neurotrophic, angiogenic | [78,79,80,81,82,83,135] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coliță, D.; Coliță, C.-I.; Hermann, D.M.; Coliță, E.; Doeppner, T.R.; Udristoiu, I.; Popa-Wagner, A. Therapeutic Use and Chronic Abuse of CNS Stimulants and Anabolic Drugs. Curr. Issues Mol. Biol. 2022, 44, 4902-4920. https://doi.org/10.3390/cimb44100333
Coliță D, Coliță C-I, Hermann DM, Coliță E, Doeppner TR, Udristoiu I, Popa-Wagner A. Therapeutic Use and Chronic Abuse of CNS Stimulants and Anabolic Drugs. Current Issues in Molecular Biology. 2022; 44(10):4902-4920. https://doi.org/10.3390/cimb44100333
Chicago/Turabian StyleColiță, Daniela, Cezar-Ivan Coliță, Dirk M. Hermann, Eugen Coliță, Thorsten R. Doeppner, Ion Udristoiu, and Aurel Popa-Wagner. 2022. "Therapeutic Use and Chronic Abuse of CNS Stimulants and Anabolic Drugs" Current Issues in Molecular Biology 44, no. 10: 4902-4920. https://doi.org/10.3390/cimb44100333
APA StyleColiță, D., Coliță, C.-I., Hermann, D. M., Coliță, E., Doeppner, T. R., Udristoiu, I., & Popa-Wagner, A. (2022). Therapeutic Use and Chronic Abuse of CNS Stimulants and Anabolic Drugs. Current Issues in Molecular Biology, 44(10), 4902-4920. https://doi.org/10.3390/cimb44100333