SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Garza, C.; Platas, A.; Miaja, M.; Fonseca, A.; Mesa-Chavez, F.; Garcia-Garcia, M.; Chapman, J.A.; Lopez-Martinez, E.A.; Pineda, C.; Mohar, A.; et al. Young women with breast cancer in Mexico: Results of the pilot phase of the joven & fuerte prospective cohort. JCO Glob. Oncol. 2020, 6, 395–406. [Google Scholar]
- Gallegos-Arreola, M.P.; Zúñiga-González, G.M.; Figuera, L.E.; Puebla-Pérez, A.M.; Márquez-Rosales, M.G.; Gómez-Meda, B.C.; Rosales-Reynoso, M.A. ESR2 gene variants (rs1256049, rs4986938, and rs1256030) and their association with breast cancer risk. PeerJ 2022, 10, e13379. [Google Scholar] [CrossRef] [PubMed]
- Hecht, F.; Pessoa, C.F.; Gentile, L.B.; Rosenthal, D.; Carvalho, D.P.; Fortunato, R.S. The role of oxidative stress on breast cancer development and therapy. Tumour Biol. 2016, 37, 4281–4291. [Google Scholar] [CrossRef] [PubMed]
- Gallegos-Arreola, M.P.; Ramírez-Hernández, M.A.; Figuera, L.E.; Zúñiga-González, G.M.; Puebla-Pérez, A.M. The rs2234694 and 50 bp Insertion/Deletion polymorphisms of the SOD1 gene are associated with breast cancer risk in a Mexican population. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8017–8027. [Google Scholar]
- Rendic, S.; Guengerich, F.P. Summary of information on the effects of ionizing and non-ionizing radiation on cytochrome P450 and other drug metabolizing enzymes and transporters. Curr. Drug Metab. 2012, 13, 787–814. [Google Scholar] [CrossRef] [Green Version]
- Klaunig, J.E.; Kamendulis, L.M.; Hocevar, B.A. Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol. 2010, 38, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, Z. Increased oxidative stress as a selective anticancer therapy. Oxid. Med. Cell. Longev. 2015, 2015, 294303. [Google Scholar] [CrossRef] [Green Version]
- Alateyah, N.; Gupta, I.; Rusyniak, R.S.; Ouhtit, A. SOD2, a potential transcriptional target underpinning CD44-promoted breast cancer progression. Molecules 2022, 27, 811. [Google Scholar] [CrossRef]
- Soerensen, M.; Christensen, K.; Stevnsner, T.; Christiansen, L. The Mn-superoxide dismutase single nucleotide polymorphism rs4880 and the glutathione peroxidase 1 single nucleotide polymorphism rs1050450 are associated with aging and longevity in the oldest old. Mech. Ageing Dev. 2009, 130, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Yari, A.; Saleh-Gohari, N.; Mirzaee, M.; Hashemi, F.; Saeidi, K. A Study of associations between rs9349379 (PHACTR1), rs2891168 (CDKN2B-AS), rs11838776 (COL4A2) and rs4880 (SOD2) polymorphic variants and coronary artery disease in iranian population. Biochem. Genet. 2022, 60, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Ascencio-Montiel, I.; Parra, E.J.; Valladares-Salgado, A.; Gómez-Zamudio, J.H.; Kumate-Rodriguez, J.; Escobedo-de-la-Peña, J.; Cruz, M. SOD2 gene Val16Ala polymorphism is associated with macroalbuminuria in Mexican type 2 diabetes patients: A comparative study and meta-analysis. BMC Med. Genet. 2013, 14, 110. [Google Scholar] [CrossRef]
- Romero-Cordoba, S.L.; Salido-Guadarrama, I.; Rebollar-Vega, R.; Bautista-Piña, V.; Dominguez-Reyes, C.; Tenorio-Torres, A.; Villegas-Carlos, F.; Fernández-López, J.C.; Uribe-Figueroa, L.; Alfaro-Ruiz, L.; et al. Comprehensive omic characterization of breast cancer in Mexican-Hispanic women. Nat. Commun. 2021, 12, 2245. [Google Scholar] [CrossRef]
- Lemus-Varela, M.L.; García-Valdez, L.M.; Ramírez-Patiño, R.; Zúñiga-González, G.M.; Gallegos-Arreola, M.P. Association of the SOD2 rs5746136 C>T polymorphisms with the risk of persistent pulmonary hypertension of the Newborn. J. Pediatr. Neonatal. 2021, 3, 1–5. [Google Scholar]
- Boroumand, F.; Mahmoudinasab, H.; Saadat, M. Association of the SOD2 (rs2758339 and rs5746136) polymorphisms with the risk of heroin dependency and the SOD2 expression levels. Gene 2018, 649, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gu, J.; Jin, Y.; Yuan, Q.; Ma, G.; Du, M.; Ge, Y.; Qin, C.; Lv, Q.; Fu, G.; et al. Genetic variants in N6-methyladenosine are associated with bladder cancer risk in the Chinese population. Arch. Toxicol. 2021, 95, 299–309. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic. Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zha, L.; Li, B.; Zhang, L.; Yu, T.; Li, L. Correlation between superoxide dismutase 1 and 2 polymorphisms and susceptibility to oral squamous cell carcinoma. Exp. Ther. Med. 2014, 7, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Sanguinetti, C.J.; Días, E.; Simpson, A.J. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 1994, 17, 914–921. [Google Scholar]
- Shi, Y.Y.; He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005, 15, 97–98. [Google Scholar] [CrossRef]
- Soto-Perez-de-Celis, E.; Chavarri-Guerra, Y. National and regional breast cancer incidence and mortality trends in Mexico 2001-2011: Analysis of a population-based database. Cancer Epidemiol. 2016, 41, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Hydes, T.J.; Burton, R.; Inskip, H.; Bellis, M.A.; Sheron, N. A comparison of gender-linked population cancer risks between alcohol and tobacco: How many cigarettes are there in a bottle of wine? BMC Public Health 2019, 19, 316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coughlin, S.S. Epidemiology of Breast Cancer in Women. Adv. Exp. Med. Biol. 2019, 1152, 9–29. [Google Scholar]
- Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: Individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012, 13, 1141–1151. [Google Scholar] [CrossRef]
- Jabir, F.A.; Hoidy, W.H. Pharmacogenetics as personalized medicine: Association investigation of SOD2 rs4880, CYP2C19 rs4244285, and FCGR2A rs1801274 polymorphisms in a breast cancer population in Iraqi women. Clin. Breast Cancer 2018, 18, e863–e868. [Google Scholar] [CrossRef] [PubMed]
- Glynn, S.A.; Boersma, B.J.; Howe, T.M.; Edvardsen, H.; Geisler, S.B.; Goodman, J.E.; Ridnour, L.A.; Lønning, P.E.; Børresen-Dale, A.L.; Naume, B.; et al. A mitochondrial target sequence polymorphism in manganese superoxide dismutase predicts inferior survival in breast cancer patients treated with cyclophosphamide. Clin. Cancer Res. 2009, 15, 4165–4173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuliano-Bica, C.; Mânica-da Cruz, I.B.; de Moura-da Silva, L.L.; Vieira-Toscani, N.; Galleano, C.; Silveira-Graudenz, M. Association of manganese superoxide dismutase gene polymorphism (Ala-9Val) and breast cancer in males and females. J. Bras. Patol. Med. Lab. 2007, 43, 219–225. [Google Scholar] [CrossRef]
- Cox, D.G.; Tamimi, R.M.; Hunter, D.J. Gene × Gene interaction between MnSOD and GPX-1 and breast cancer risk: A nested case-control study. BMC Cancer 2006, 6, 217. [Google Scholar] [CrossRef] [Green Version]
- Tengström, M.; Mannermaa, A.; Kosma, V.M.; Soini, Y.; Hirvonen, A.; Kataja, V. MnSOD rs4880 and XPD rs13181 polymorphisms predict the survival of breast cancer patients treated with adjuvant tamoxifen. Acta Oncol. 2014, 53, 769–775. [Google Scholar] [CrossRef]
- Jablonska, E.; Gromadzinska, J.; Peplonska, B.; Fendler, W.; Reszka, E.; Krol, M.B.; Wieczorek, E.; Bukowska, A.; Gresner, P.; Galicki, M.; et al. Lipid peroxidation and glutathione peroxidase activity relationship in breast cancer depends on functional polymorphism of GPX1. BMC Cancer 2015, 15, 657. [Google Scholar] [CrossRef] [Green Version]
- Ambrosone, C.B.; Freudenheim, J.L.; Thompson, P.A.; Bowman, E.; Vena, J.E.; Marshall, J.R.; Graham, S.; Laughlin, R.; Nemoto, T.; Shields, P.G. Manganese superoxide dismutase (MnSOD) genetic polymorphisms, dietary antioxidants, and risk of breast cancer. Cancer Res. 1999, 59, 602–606. [Google Scholar] [PubMed]
- Kakkoura, M.G.; Demetriou, C.A.; Loizidou, M.A.; Loucaides, G.; Neophytou, I.; Malas, S.; Kyriacou, K.; Hadjisavvas, A. MnSOD and CAT polymorphisms modulate the effect of the Mediterranean diet on breast cancer risk among Greek-Cypriot women. Eur. J. Nutr. 2016, 55, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Pei, J. Possible risk modifications in the association between MnSOD Ala-9Val polymorphism and breast cancer risk: Subgroup analysis and evidence-based sample size calculation for a future trial. Breast Cancer Res. Treat. 2011, 125, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Eftekhari, A.; Peivand, Z.; Saadat, I.; Saadat, M. Association between genetic polymorphisms in superoxide dismutase Gene family and risk of gastric cancer. Pathol. Oncol. Res. 2020, 26, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Polat, S.; Şimşek, Y. Five variants of the superoxide dismutase genes in Turkish women with polycystic ovary syndrome. Free Radic. Res. 2020, 54, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, Ł.; Kepinska, M.; Milnerowicz, H. Alterations in concentration/activity of superoxide dismutases in context of obesity and selected single nucleotide polymorphisms in genes: SOD1, SOD2, SOD3. Int. J. Mol. Sci. 2020, 21, 5069. [Google Scholar] [CrossRef]
- Ahlgren, M.; Melbye, M.; Wohlfahrt, J.; Sørensen, T.I. Growth patterns and the risk of breast cancer in women. N. Engl. J. Med. 2004, 351, 1619–1626. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Gu, D.; Lee, N.P.; Sun, S.; Gong, W.; Tan, Y.; Luk, J.M.; Chen, J. SOD2 rs4880 CT/CC genotype predicts poor survival for Chinese gastric cancer patients received platinum and fluorouracil based adjuvant chemotherapy. Am. J. Transl. Res. 2015, 7, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Aslam, S.; Ameer, S.; Shabana, N.A.; Ahmed, M. Pharmacogenetics of induction therapy-related toxicities in childhood acute lymphoblastic leukemia patients treated with UKALL 2003 protocol. Sci. Rep. 2021, 11, 23757. [Google Scholar] [CrossRef]
BC Patients (n = 818) | Controls (n = 356) | p-Value | |||
---|---|---|---|---|---|
Age at diagnosis (years) | |||||
Mean (SD) | 54.06 | (11.51) | 43.92 | (14.07) | 0.0001 * |
<45 years [(n), %] | (188) | 23.0 | (192) | 54.0 | 0.0001 |
≥46 years [(n), %] | (630) | 77.0 | (164) | 46.0 | |
Age at menarche | |||||
8–10 years [(n), %] | (57) | 7.0 | (14) | 4.0 | 0.0611 |
11–13 years [(n), %] | (532) | 65.0 | (335) | 94.0 | 0.0001 |
14–18 years [(n), %] | (229) | 28.0 | (7) | 2.0 | 0.0001 |
Menopause status | |||||
Postmenopausal [(n), %] | (564) | 69.0 | (132) | 37.0 | 0.0001 |
Premenopausal [(n), %] | (254) | 31.0 | (224) | 63.0 | |
Hormonal consumption | |||||
Yes [(n), %] | (360) | 44.0 | (100) | 28.0 | 0.0001 |
No [(n), %] | (458) | 57.0 | (256) | 72.0 | |
Tobacco consumption | |||||
Yes [(n), %] | (229) | 28.0 | (85) | 24.0 | 0.1631 |
No [(n), %] | (589) | 72.0 | (271) | 76.0 | |
Alcohol consumption | |||||
Yes [(n), %] | (139) | 17.0 | (75) | 21.0 | 0.1141 |
No [(n), %] | (679) | 83.0 | (281) | 79.0 |
BC Patients (n = 818) | |||||
---|---|---|---|---|---|
(n) | % | (n) | % | ||
Family history of breast cancer | Tumor stage | ||||
Yes [(n), %] | (139) | 17.0 | I [(n), %] | (55) | 7.0 |
No [(n), %] | (679) | 83.0 | II [(n), %] | (240) | 29.0 |
Body mass index (BMI) * | III [(n), %] | (285) | 35.0 | ||
18–24.9 (normal weight) [(n), %] | (196) | 24.0 | IV [(n), %] | (238) | 29.0 |
25–29.9 (overweight) [(n), %] | (286) | 35.0 | Node status | ||
≥30 (obesity) [(n), %] | (336) | 41.0 | Positive [(n), %] | (597) | 73.0 |
Pregnancies status | Negative [(n), %] | (221) | 27.0 | ||
≤4 [(n), %] | (589) | 72.0 | Molecular type | ||
≥5 [(n), %] | (229) | 28.0 | Luminal A [(n), %] | (377) | 46.0 |
Miscarriage | Luminal B [(n), %] | (174) | 21.0 | ||
Yes [(n), %] | (254) | 31 | Her-2 [(n), %] | (115) | 14.0 |
No [(n), %] | (564) | 69 | Triple negative [(n), %] | (152) | 19.0 |
Breastfeeding | |||||
≤6 month [(n), %] | (180) | 22.0 | Ki-67 [(n), ≥20 %] | (295) | 36.0 |
>6 month [(n), %] | (458) | 56.0 | Ki-67 [(n), <20 %] | (523) | 64.0 |
No [(n), %] | (179) | 22.0 | Metastatic status | ||
Localization | Yes [(n), %] | (237) | 29.0 | ||
Left [(n), %] | (360) | 44.0 | No [(n), %] | (581) | 71.0 |
Right [(n), %] | (417) | 51.0 | Chemotherapy status | ||
Bilateral [(n), %] | (41) | 5.0 | Response [(n), %] | (517) | 63.0 |
Histology (adenocarcinoma) | No response [(n), %] | (301) | 37.0 | ||
Ductal [(n), %] | (733) | 90.0 | Personal medical history | ||
Lobular [(n), %] | (73) | 9.0 | benign breast disease- uterine fibroids ** | (228) | 28.0 |
Mixed [(n), %] | (12) | 1.0 | DM2-Hypertension ** | (220) | 27.0 |
Variant | BC | Controls * | OR | 95%(CI) | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
rs4880 | Genotype | (n = 818) | % | (n = 211) | % | ||||
CC | (330) | 40 | (119) | 56 | 0.52 | (0.38–0.07) | 0.0001 | ||
CT | (386) | 47 | (78) | 37 | 1.5 | (1.11–2.08) | 0.009 | ||
TT | (102) | 13 | (14) | 7 | 2.0 | (1.12–3.58) | 0.023 | ||
Dominant | CC | (330) | 40 | (119) | 56 | ||||
CT + TT | (488) | 60 | (92) | 44 | 1.91 | (1.41–2.59) | 0.0001 | ||
Recessive | TT | (102) | 13 | (14) | 7 | 2.0 | (1.12–3.58) | 0.023 | |
CC + CT | (716) | 87 | (197) | 93 | |||||
Codominant | CT | (386) | 47 | (78) | 37 | 1.5 | (1.11–2.08) | 0.009 | |
CC + TT | (432) | 53 | (386) | 63 | |||||
Allele (2n = 1636) | (2n = 422) | ||||||||
C | (1046) | 0.639 | (316) | 0.748 | 0.6 | (0.46–0.75) | 0.0001 | ||
T | (590) | 0.361 | (106) | 0.252 | 1.7 | (1.32–2.14) | 0.0001 | ||
rs5746136 | Genotype | (n = 481) | % | (n = 356) | % | ||||
CC | (248) | 52 | (223) | 63 | 0.63 | (0.48–0.83) | 0.001 | ||
CT | (193) | 40 | (118) | 33 | 1.35 | (1.01–1.80) | 0.046 | ||
TT | (40) | 8 | (15) | 4 | 2.0 | (1.12–3.79) | 0.025 | ||
Dominant | CC | (248) | 52 | (223) | 63 | ||||
CT + TT | (233) | 48 | (133) | 37 | 1.6 | (1.25–2.20) | 0.0004 | ||
Recessive | TT | (40) | 8 | (15) | 4 | 2.0 | (1.12–3.79) | 0.025 | |
CC + CT | (441) | 92 | (341) | 96 | |||||
Codominant | CT | (193) | 40 | (118) | 33 | 1.3 | (1.01–1.80) | 0.046 | |
CC + TT | (288) | 60 | (238) | 67 | |||||
Allele (2n = 962) | (2n = 712) | ||||||||
C | (694) | 0.717 | (564) | 0.792 | 0.66 | (0.52–0.83) | 0.0004 | ||
T | (274) | 0.283 | (148) | 0.208 | 1.5 | (1.20–1.89) | 0.0004 |
Variant | Genotype | Variable | OR | 95%(CI) | p-Value |
---|---|---|---|---|---|
rs4880 | CT | ≤45 years old | 1.7 | (1.05–2.74) | 0.038 |
CT | 11–13 years old menarche | 1.5 | (1.13–2.21) | 0.008 | |
CT | Hormonal consumption | 1.9 | (1.06–3.5) | 0.040 | |
rs5746136 | CT | 11–13 years old menarche | 1.55 | (1.12–2.13) | 0.008 |
Variant | Clinical Variable | OR | 95% (CI) | p-Value | |
---|---|---|---|---|---|
rs4880 | Obesity (BMI 30–40) | 3.7 | (1.07–12.9) | 0.039 | |
DM-SAH * | 1.6 | (1.05–1.27) | 0.002 | ||
Non-chemotherapy response | 1.6 | (1.97–1.27) | 0.002 | ||
rs5746136 | Ki-67 (≥20%) | 2.9 | (1.16–7.36) | 0.022 | |
Luminal A | 1.6 | (0.46–0.21) | 0.041 | ||
CTTT | Chemotherapy partial response | 2.37 | (1.06–5.32) | 0.035 |
SOD2 Gene | Patients | Controls | |||||
---|---|---|---|---|---|---|---|
rs4880 | rs5746136 | n | % | n | % | OR95%(CI) | p-Value |
C | C | (474) | 51 | (128) | 57 | 0.779 (0.58–1.04) | 0.095 |
C | T | (114) | 12 | (37) | 17 | 0.693 (0.46–1.03) | 0.072 |
T | C | (197) | 21 | (39) | 17 | 1.250 (0.85–1.82) | 0.245 |
T | T | (149) | 16 | (19) | 9 | 1.986 (1.20–3.26) | 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallegos-Arreola, M.P.; Ramírez-Patiño, R.; Sánchez-López, J.Y.; Zúñiga-González, G.M.; Figuera, L.E.; Delgado-Saucedo, J.I.; Gómez-Meda, B.C.; Rosales-Reynoso, M.A.; Puebla-Pérez, A.M.; Lemus-Varela, M.L.; et al. SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk. Curr. Issues Mol. Biol. 2022, 44, 5221-5233. https://doi.org/10.3390/cimb44110355
Gallegos-Arreola MP, Ramírez-Patiño R, Sánchez-López JY, Zúñiga-González GM, Figuera LE, Delgado-Saucedo JI, Gómez-Meda BC, Rosales-Reynoso MA, Puebla-Pérez AM, Lemus-Varela ML, et al. SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk. Current Issues in Molecular Biology. 2022; 44(11):5221-5233. https://doi.org/10.3390/cimb44110355
Chicago/Turabian StyleGallegos-Arreola, Martha P., Ramiro Ramírez-Patiño, Josefina Y. Sánchez-López, Guillermo M. Zúñiga-González, Luis E. Figuera, Jorge I. Delgado-Saucedo, Belinda C. Gómez-Meda, Mónica A. Rosales-Reynoso, Ana M. Puebla-Pérez, María L. Lemus-Varela, and et al. 2022. "SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk" Current Issues in Molecular Biology 44, no. 11: 5221-5233. https://doi.org/10.3390/cimb44110355
APA StyleGallegos-Arreola, M. P., Ramírez-Patiño, R., Sánchez-López, J. Y., Zúñiga-González, G. M., Figuera, L. E., Delgado-Saucedo, J. I., Gómez-Meda, B. C., Rosales-Reynoso, M. A., Puebla-Pérez, A. M., Lemus-Varela, M. L., Garibaldi-Ríos, A. F., Marín-Domínguez, N. A., Pacheco-Verduzco, D. P., & Mohamed-Flores, E. A. (2022). SOD2 Gene Variants (rs4880 and rs5746136) and Their Association with Breast Cancer Risk. Current Issues in Molecular Biology, 44(11), 5221-5233. https://doi.org/10.3390/cimb44110355