Genome-Wide Identification and Expression Analysis of the Aquaporin Gene Family in Lycium barbarum during Fruit Ripening and Seedling Response to Heat Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Heat Stress Assay
2.3. Relative Water Content Determination of L. barbarum Fresh Fruits
2.4. Identification and Chromosomal Location of LbAQP Genes
2.5. Classification of LbAQP Protein Members and Construction of a Phylogenetic Tree
2.6. Structure and Conserved Motif Analysis of LbAQPs
2.7. Promoter Cis-Element Analysis of LbAQPs
2.8. Quantitative Real-Time PCR (qRT-PCR)
2.9. Statistical Analysis
3. Results
3.1. Characterization of the LbAQP Gene Family
3.2. Physical Distribution of LbAQPs on L. barbarum Chromosomes
3.3. Phylogenetic Comparison of LbAQP Proteins of L. barbarum, Tomato, and Arabidopsis
3.4. Gene Structure, Conserved Motifs, and Phylogenetic-Tree-Based Classification of LbAQPs
3.5. Analyzing Cis-Elements in the LbAQP Promoters
3.6. Tissue-Specific Expression
3.7. Expression Profiles of LbAQPs during Fruit Ripening
3.8. Expression Profiles of LbAQPs in Response to Heat Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maurel, C.; Tournaire-Roux, C.; Verdoucq, L.; Santoni, V. Hormonal and environmental signaling pathways target membrane water transport. Plant Physiol. 2021, 187, 2056–2070. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Z.; Liu, F.; Sun, L.; Hao, F. Versatile roles of aquaporins in plant growth and development. Int. J. Mol. Sci. 2020, 21, 9485. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, X.; Hou, X.; Du, T. Developmental and water deficit-induced changes in hydraulic properties and xylem anatomy of tomato fruit and pedicels. J. Exp. Bot. 2021, 72, 2741–2756. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.R.; Maistriaux, L.C.; Chaumont, F. Toward understanding of the high number of plant aquaporin isoforms and multiple regulation mechanisms. Plant Sci. 2017, 264, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Laloux, T.; Junqueira, B.; Maistriaux, L.C.; Ahmed, J.; Jurkiewicz, A.; Chaumont, F. Plant and mammal aquaporins: Same but different. Int. J. Mol. Sci. 2018, 19, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurel, C.; Boursiac, Y.; Luu, D.T.; Santoni, V.; Shahzad, Z.; Verdoucq, L. Aquaporins in plants. Physiol. Rev. 2015, 95, 1321–1358. [Google Scholar] [CrossRef]
- Bezerra-Neto, J.P.; de Araújo, F.C.; Ferreira-Neto, J.R.C.; da Silva, M.D.; Pandolfi, V.; Aburjaile, F.F.; Sakamoto, T.; de Oliveira Silva, R.L.; Kido, E.A.; Barbosa Amorim, L.L.; et al. Plant aquaporins: Diversity, evolution and biotechnological applications. Curr. Protein Pept. Sci. 2019, 20, 368–395. [Google Scholar] [CrossRef]
- Ahmed, S.; Kouser, S.; Asgher, M.; Gandhi, S.G. Plant aquaporins: A frontward to make crop plants drought resistant. Physiol. Plant. 2021, 172, 1089–1105. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Penna, S.; Nguyen, D.V.; Tran, L.S. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses. Crit. Rev. Biotechnol. 2016, 36, 389–398. [Google Scholar] [CrossRef]
- Kapilan, R.; Vaziri, M.; Zwiazek, J.J. Regulation of aquaporins in plants under stress. Biol. Res. 2018, 51, 4. [Google Scholar] [CrossRef]
- Deshmukh, R.K.; Sonah, H.; Belanger, R.R. Plant Aquaporins: Genome-wide identification, transcriptomics, proteomics, and advanced analytical tools. Front. Plant Sci. 2016, 7, 1896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Ma, D.; Li, J.; Wei, M.; Zhang, L.; Zhou, L.; Zhou, X.; He, S.; Wang, L.; Shen, Y.; et al. Genome-wide identification and characterization of aquaporins in mangrove plant Kandelia obovata and its role in response to the intertidal environment. Plant Cell Environ. 2022, 45, 1698–1718. [Google Scholar] [CrossRef] [PubMed]
- Britto, D.T.; Kronzucker, H.J. From aquaporin to ecosystem: Plants in the water cycle. J. Plant Physiol. 2018, 227, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.J.; Liu, N.; Zhang, G.W.; Niu, F.G.; Xu, S.C.; Gong, Y.M. Investigation of the AQP family in soybean and the promoter activity of TIP2;6 in heat stress and hormone responses. Int. J. Mol. Sci. 2019, 20, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, P.S.; Dhaware, M.G.; Sivasakthi, K.; Divya, K.; Nagaraju, M.; Sri Cindhuri, K.; Kavi Kishor, P.B.; Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K.K. Pearl Millet aquaporin gene PgPIP2;6 improves abiotic stress tolerance in transgenic tobacco. Front. Plant Sci. 2022, 13, 820996. [Google Scholar] [CrossRef]
- Potterat, O. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med. 2010, 76, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.; Heinrich, M.; Weckerle, C.S. The genus Lycium as food and medicine: A botanical, ethnobotanical and historical review. J. Ethnopharmacol. 2018, 212, 50–66. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.L.; Li, Y.L.; Fan, Y.F.; Li, Z.; Yoshida, K.; Wang, J.Y.; Ma, X.K.; Wang, N.; Mitsuda, N.; Kotake, T.; et al. Wolfberry genomes and the evolution of Lycium (Solanaceae). Commun. Biol. 2021, 4, 671. [Google Scholar] [CrossRef]
- Gong, H.; Rehman, F.; Ma, Y.; Zeng, S.; Yang, T.; Huang, J.; Li, Z.; Wu, D.; Wang, Y. Germplasm resources and strategy for genetic breeding of Lycium species: A Review. Front. Plant Sci. 2022, 13, 802936. [Google Scholar] [CrossRef]
- Qin, X.; Qin, B.; He, W.; Chen, Y.; Yin, Y.; Cao, Y.; An, W.; Mu, Z.; Qin, K. Metabolomic and Transcriptomic Analyses of Lycium barbarum L. under Heat Stress. Sustainability 2022, 14, 12617. [Google Scholar] [CrossRef]
- Reuscher, S.; Akiyama, M.; Mori, C.; Aoki, K.; Shibata, D.; Shiratake, K. Genome-wide identification and expression analysis of aquaporins in tomato. PLoS ONE 2013, 8, e79052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesh, J.; Yu, J.W.; Park, S.W. Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiol. Biochem. 2013, 73, 392–404. [Google Scholar] [CrossRef]
- De Rosa, A.; Watson-Lazowski, A.; Evans, J.R.; Groszmann, M. Genome-wide identification and characterisation of aquaporins in Nicotiana tabacum and their relationships with other Solanaceae species. BMC Plant Biol. 2020, 20, 266. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, J.; Urban, L.; Staudt, M.; Lopez-Lauri, F.; Bidel, L.P.; Bertin, N. Water shortage and quality of fleshy fruits--making the most of the unavoidable. J. Exp. Bot. 2014, 65, 4097–4117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Keller, M. Discharge of surplus phloem water may be required for normal grape ripening. J. Exp. Bot. 2017, 68, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Zhang, D.; Ma, F.; Xing, W.; Huang, D.; Wu, B.; Chen, J.; Chen, D.; Xu, B.; Xu, Y. Genome-wide identification and expression analyses of the aquaporin gene family in Passion fruit ( Passiflora edulis), revealing PeTIP3-2 to be involved in drought Stress. Int. J. Mol. Sci. 2022, 23, 5720. [Google Scholar] [CrossRef]
- Tyerman, S.D.; McGaughey, S.A.; Qiu, J.; Yool, A.J.; Byrt, C.S. Adaptable and multifunctional ion-conducting aquaporins. Annu. Rev. Plant. Biol. 2021, 72, 703–736. [Google Scholar] [CrossRef]
- Hou, X.; Zhang, W.; Du, T.; Kang, S.; Davies, W.J. Responses of water accumulation and solute metabolism in tomato fruit to water scarcity and implications for main fruit quality variables. J. Exp. Bot. 2020, 71, 1249–1264. [Google Scholar] [CrossRef]
- Hou, X.; Li, H.; Zhang, W.; Yao, Z.; Wang, Y.; Du, T. Water transport in fleshy fruits: Research advances, methodologies, and future directions. Physiol. Plant. 2021, 172, 2203–2216. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, R.; Wu, Y.; Wei, S.; Wang, Q.; Zheng, Y.; Xia, R.; Shang, X.; Yu, F.; Yang, X.; et al. ERAD-related E2 and E3 enzymes modulate the drought response by regulating the stability of PIP2 aquaporins. Plant Cell 2021, 33, 2883–2898. [Google Scholar] [CrossRef]
- Jing, W.K.; Li, Y.H.; Zhang, S.; Zhou, X.F.; Gao, J.P.; Ma, N. Aquaporin, beyond a transporter. Horticult. Plant J. 2022. [Google Scholar] [CrossRef]
Gene Name | Gene ID | CDS Length (bp) | Size (aa) | Size (aa) | PI | TMHMM | GRAVY |
---|---|---|---|---|---|---|---|
LbPIP1;1 | Lba07g01359 | 861 | 287 | 30.777 | 8.31 | 6 | 0.409 |
LbPIP1;2 | Lba06g02040 | 855 | 285 | 30.784 | 8.64 | 6 | 0.318 |
LbPIP1;3 | Lba04g00268 | 858 | 286 | 30.694 | 7.69 | 6 | 0.375 |
LbPIP1;4 | Lba09g02427 | 861 | 287 | 30.866 | 7.68 | 6 | 0.422 |
LbPIP1;5 | Lba09g02372 | 492 | 164 | 17.854 | 9.91 | 3 | 0.746 |
LbPIP1;6 | Lba01g01166 | 858 | 286 | 30.627 | 9.10 | 6 | 0.416 |
LbPIP2;1 | Lba03g00307 | 849 | 283 | 30.223 | 8.21 | 6 | 0.501 |
LbPIP2;2 | Lba03g00306 | 849 | 283 | 30.168 | 6.94 | 6 | 0.496 |
LbPIP2;4 | Lba08g00456 | 861 | 287 | 30.732 | 6.37 | 6 | 0.537 |
LbPIP2;5 | Lba08g01659 | 855 | 285 | 30.425 | 8.24 | 6 | 0.408 |
LbPIP2;6 | Lba06g00111 | 861 | 287 | 30.624 | 8.57 | 6 | 0.590 |
LbPIP2;7 | Lba01g02704 | 528 | 176 | 18.901 | 5.16 | 4 | 0.545 |
LbPIP2;8 | Lba06g03476 | 852 | 284 | 30.435 | 9.28 | 6 | 0.486 |
LbPIP2;9 | Lba08g01171 | 849 | 283 | 30.150 | 9.24 | 6 | 0.512 |
LbPIP2;10 | Lba10g01287 | 852 | 284 | 30.421 | 8.83 | 6 | 0.545 |
LbPIP2;11 | Lba12g01911 | 810 | 270 | 28.867 | 8.82 | 6 | 0.522 |
LbPIP2;12 | Lba05g00065 | 1029 | 343 | 37.897 | 6.40 | 5 | 0.285 |
LbTIP1;1 | Lba01g02671 | 753 | 251 | 25.712 | 5.16 | 6 | 0.740 |
LbTIP2;1 | Lba07g01176 | 744 | 248 | 25.043 | 6.15 | 7 | 0.988 |
LbTIP2;2 | Lba03g02891 | 1476 | 492 | 49.630 | 5.51 | 15 | 1.009 |
LbTIP2;3 | Lba01g01487 | 750 | 250 | 25.220 | 5.35 | 6 | 0.919 |
LbTIP2;4 | Lba01g02017 | 744 | 248 | 24.988 | 5.66 | 7 | 0.952 |
LbTIP3;1 | Lba01g02391 | 774 | 258 | 27.175 | 6.70 | 6 | 0.621 |
LbTIP3;2 | Lba03g01980 | 780 | 260 | 27.752 | 8.07 | 6 | 0.523 |
LbTIP4;1 | Lba04g01403 | 741 | 247 | 25.883 | 6.01 | 7 | 0.866 |
LbTIP5;1 | Lba03g01262 | 768 | 256 | 26.549 | 8.58 | 6 | 0.709 |
LbNIP1;2 | Lba12g01378 | 1614 | 538 | 57.114 | 8.43 | 11 | 0.431 |
LbNIP2;1 | Lba11g02541 | 753 | 251 | 26.644 | 9.20 | 5 | 0.381 |
LbNIP3;1 | Lba01g02539 | 1041 | 347 | 37.614 | 8.45 | 6 | 0.386 |
LbNIP3;2 | Lba07g01497 | 810 | 270 | 29.075 | 9.30 | 5 | 0.564 |
LbNIP4;1 | Lba12g02217 | 834 | 278 | 29.332 | 5.92 | 7 | 0.698 |
LbNIP4;2 | Lba05g02002 | 2859 | 953 | 105.105 | 7.34 | 5 | -0.546 |
LbNIP4;3 | Lba12g00430 | 441 | 147 | 15.815 | 9.61 | 3 | 0.678 |
LbNIP4;4 | Lba12g00428 | 837 | 279 | 29.702 | 7.55 | 6 | 0.702 |
LbNIP5;1 | Lba09g02501 | 1167 | 389 | 40.914 | 6.11 | 5 | 0.249 |
LbNIP6;1 | Lba03g02537 | 1866 | 622 | 64.687 | 8.48 | 12 | 0.421 |
LbXIP1;2 | Lba08g01139 | 975 | 325 | 34.597 | 7.66 | 7 | 0.698 |
LbXIP1;6 | Lba06g03416 | 972 | 324 | 34.684 | 7.04 | 6 | 0.737 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Liu, M.; Qin, X.; Liang, A.; Chen, Y.; Yin, Y.; Qin, K.; Mu, Z. Genome-Wide Identification and Expression Analysis of the Aquaporin Gene Family in Lycium barbarum during Fruit Ripening and Seedling Response to Heat Stress. Curr. Issues Mol. Biol. 2022, 44, 5933-5948. https://doi.org/10.3390/cimb44120404
He W, Liu M, Qin X, Liang A, Chen Y, Yin Y, Qin K, Mu Z. Genome-Wide Identification and Expression Analysis of the Aquaporin Gene Family in Lycium barbarum during Fruit Ripening and Seedling Response to Heat Stress. Current Issues in Molecular Biology. 2022; 44(12):5933-5948. https://doi.org/10.3390/cimb44120404
Chicago/Turabian StyleHe, Wei, Mingyu Liu, Xiaoya Qin, Aihua Liang, Yan Chen, Yue Yin, Ken Qin, and Zixin Mu. 2022. "Genome-Wide Identification and Expression Analysis of the Aquaporin Gene Family in Lycium barbarum during Fruit Ripening and Seedling Response to Heat Stress" Current Issues in Molecular Biology 44, no. 12: 5933-5948. https://doi.org/10.3390/cimb44120404